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Abstract. The Cauchy convolution for the Oresme numbers and Fibonacci, Lucas, Pell,
Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas numbers are investigated. The convolutions
leading to various congruences with expressions involving Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal, and Jacobsthal-Lucas numbers are studied.

1. Introduction

In 1974, Horadam [8] indicated that, in spite of their considerable biological interest, the
Oresme numbers had not received much attention. This is no longer the case. The biographies
of Nicole Oresme [10, 12] and several papers [1, 3, 5, 6, 14] have addressed Oresme numbers
and their generalizations. Additional information can be found at the On-Line Encyclopedia
of Integer Sequences (OEIS) [13, A273692].

Many papers have been written on convolutions of sequences. Hoggatt [7] considered
Fibonacci convolutions and Koshy [11] considered Pell and Pell-Lucas convolutions. In this
paper, convolutions with Oresme numbers and Fibonacci, Lucas, Pell, and Jacobsthal se-
quences are investigated.

Definition 1.1. The Oresme numbers [13, A273692]
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are given by the initial conditions O0 = 0, O1 = O2 =
1
2 , and the second order relation

On+2 = On+1 −
1

4
On,

with the closed form

On = n2−n.

The Cauchy convolution {cn} for two sequences {an} and {bn} is defined in [7].

Definition 1.2. Let {an}n≥0 and {bn}n≥0 be given. The Cauchy convolution {cn}n≥0 is
defined by

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =
n∑

k=0

akbn−k,

where n ≥ 0.

2. Convolutions of Oresme Numbers

Next, we state and prove some propositions regarding convolutions of Oresme numbers.
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Proposition 2.1. Let n be a nonnegative integer. Then

n∑
k=0

OkOn−k =
(n+ 1)n(n− 1)

6 · 2n
.

Proof.

n∑
k=0

OkOn−k =
n∑

k=0

k

2n
· n− k

2n−k
=

n∑
k=0

k(n− k)

2n

=
n

2n

n∑
k=0

k − 1

2n

n∑
k=1

k2 =
n

2n
· n(n+ 1)

2
− 1

2n
· n(n+ 1)(2n+ 1)

6

=
n

2n
· n+ 1

2

(
3n− (2n+ 1)

3

)
=

n

2n
· n+ 1

2
· n− 1

3
=

(n+ 1)n(n− 1)

6 · 2n
.

□

3. Preliminary Tools

The key to computing the convolutions of Oresme numbers with Fibonacci, Lucas, Pell, and
Pell-Lucas numbers is the following equation

n∑
k=0

akOn−k =
n∑

k=0

n− k

2n−k
ak =

n

2n

n∑
k=0

2kak −
1

2n

n∑
k=0

k2kak, (3.1)

where n is a nonnegative integer. This reduces the problem of computing the convolutions
with Oresme numbers to computing the two sums on the right side of (3.1). In addition, for
n a nonnegative integer, recall that

n∑
k=0

xk =
xn+1 − 1

x− 1
=

1− xn+1

1− x
, (3.2)

and
n∑

k=0

kxk = x

(
(n+ 1)xn

x− 1
− xn+1 − 1

(x− 1)2

)
=
x− (n+ 1)xn+1 + nxn+2

(1− x)2
. (3.3)

These formulas can be found in Concrete Mathematics [4, pp. 32–33]. With (3.1), (3.2), and
(3.3), we can proceed to compute convolutions with Oresme numbers.

4. Convolutions of Fibonacci and Lucas Numbers with Oresme Numbers

Proposition 4.1. Let n be a nonnegative integer and Fn be the nth Fibonacci number. Then

n∑
k=0

FkOn−k =
2

5
Fn+1 −

2(n+ 1)

5 · 2n
.

Proof. Let n be a nonnegative integer and let 0 ≤ k ≤ n be an integer. From the Binet formula

for Fk, with α, β = 1±
√
5

2 , we have

Fk =
αk − βk√

5
.
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Thus,

n∑
k=0

FkOn−k =

n∑
k=0

n− k

2n−k
· α

k − βk√
5

=
n

2n
√
5

n∑
k=0

(
(2α)k − (2β)k

)
− 1

2n
√
5

n∑
k=0

(
k(2α)k − k(2βk)

)
.

For readability, we compute the two sums separately and combine them later. For the first
sum, we use (3.2) and that 2α− 1 =

√
5 and 2β − 1 = −

√
5. Therefore,

n

2n
√
5

n∑
k=0

(
(2α)k − (2β)k

)
=

n

2n
√
5

(
2n+1αn+1 − 1

2α− 1
− 2n+1βn+1 − 1

2β − 1

)
=

2n√
5

(
αn+1

√
5

− βn+1

−
√
5

)
+

n

2n
√
5

(
−1√
5
− −1

−
√
5

)
(4.1)

=
2n

5
(αn+1 + βn+1) +

n

2n
√
5
· −2√

5

=
2n

5
Ln+1 −

2n

5 · 2n

=
2n

5
(Fn + Fn+2)−

2n

5 · 2n
.

For the second sum, we use (3.3) and that (2α− 1)2 = (2β − 1)2 = 5. Therefore,

n∑
k=0

(
k(2α)k − k(2β)k

)
= 2α

(
(n+ 1)2nαn

2α− 1
− 2n+1αn+1 − 1

(2α− 1)2

)
− 2β

(
(n+ 1)2nβn

2β − 1
− 2n+1βn+1 − 1

(2β − 1)2

)
=

(n+ 1)2n+1αn+1

√
5

− 2n+2αn+2 − 2α

5
+

(n+ 1)2n+1βn+1

√
5

+
2n+2βn+2 − 2β

5

=
(n+ 1)2n+1

√
5

(αn+1 + βn+1)− 2n+2

5
(αn+2 − βn+2) +

2

5
(α− β)

=
(n+ 1)2n+1

√
5

Ln+1 −
2n+2

√
5
Fn+2 +

2√
5

=
n2n+1

√
5

(Fn + Fn+2) +
2n+1

√
5
(Fn + Fn+2)−

2n+2

√
5
Fn+2 +

2√
5
.

Thus,

− 1

2n
√
5

n∑
k=0

(
k(2α)k − k(2β)k

)
= −2n

5
(Fn+Fn+2)−

2

5
(Fn+Fn+2)+

2

5
(2Fn+2)−

2

5
· 1

2n
. (4.2)
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Combining (4.1) and (4.2) yields
n∑

k=0

FkOn−k = − 2n

5 · 2n
− 2

5
(Fn + Fn+2) +

2

5
(2Fn+2)−

2

5
· 1

2n

=
2

5

(
2Fn+2 − Fn − Fn+2 −

(
n+ 1

2n

))
=

2

5

(
Fn+1 − 2

(
n+ 1

2n+1

))
=

2

5
Fn+1 −

2(n+ 1)

5 · 2n
.

□

For n = 0, 1, 2, 3, 4, 5, 6, 7, the first eight values of the Fn+1 − n+1
2n are

0, 0,
5

4
,
5

2
,
75

16
,
125

16
,
825

64
,
335

16
.

All the numerators of these fractions have 5 as a factor. This leads us to the following corollary.

Corollary 4.2. Let n be a nonnegative integer. Then 2n−1Fn ≡ n (mod 5).

Proof. The proof is by induction on n. The base step is true for n = 0, 1, 2, 3, 4, 5, 6, 7. Now
assume that n ≥ 7 and the corollary is true for all nonnegative integers 0, 1, . . . , n. Then

2nFn+1 − (n+ 1) = 2n(Fn + Fn−1)− (n+ 1)

= 2nFn + (2n− 2n) + 2nFn−1 + (−4(n− 1) + 4(n− 1))− (n+ 1)

= (2nFn − 2n) + (2nFn−1 − 4(n− 1)) + 2n+ 4(n− 1)− (n+ 1)

= 2(2n−1Fn − n) + 4(2n−2Fn−1 − (n− 1)) + 2n+ 4(n− 1)− (n+ 1)

= 2(2n−1Fn − n) + 4(2n−2Fn−1 − (n− 1)) + 5(n− 1).

Because 5 divides each term, 5 divides 2nFn+1 − (n + 1). Thus, the result is true for n + 1.
Therefore, by the principle of mathematical induction, the corollary is true. □

Proposition 4.3. Let n be a nonnegative integer. Then
n∑

k=0

LkOn−k =
2

5
Ln+1 −

2

5 · 2n
.

The proof of this statement is similar to that of the Fibonacci convolution and is omitted.
Inspection of the first few terms reveals, similar to Corollary 4.2, that 5 is a factor of the

numerators of Ln+1 − 1
2n .

Corollary 4.4. Let n be a nonnegative integer. Then 2nLn+1 ≡ 1 (mod 5).

Proof. The proof is by induction on n. Inspection of the numerators of Ln+1 − 1
2n for

n = 0, 1, 2, 3, 4 are 0, 5
2 ,

15
4 ,

55
8 ,

175
16 . So the corollary is true for the first five terms. Let n ≥ 4

and assume the induction hypothesis is true for all integers less than or equal to n. Then

2n+1Ln+2 − 1 = 2n+1(Ln+1 + Ln)− 1

= 2(2nLn+1 − 1) + 4(2n−1Ln − 1) + 2 + 4− 1

= 2(2nLn+1 − 1) + 4(2n−1Ln − 1) + 5.

Again, because 5 divides each term, 2n+1Ln+2 ≡ 1 (mod 5). Thus, the result is true for n+1.
Therefore, by the principle of mathematical induction, the corollary is true. □
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5. Convolutions of Pell and Pell-Lucas Numbers with Oresme Numbers

We next consider convolutions of Pell and Pell-Lucas numbers with Oresme numbers. We
will state some properties that we need for our calculations.

In the case of the Pell-Lucas sequence [13, A001333], 1, 3, 7, 17, 41, 99, . . ., there is
a bit of a problem. The OEIS does not call this the Pell-Lucas sequence, but refers to it
as the numerators of continued fraction convergents of

√
2. The sequence [13, A002203],

0, 2, 6, 14, 34, 82, 198, . . ., is called the Pell companion numbers. Bicknell [2] defines the
Pell-Lucas sequence as the even number sequence; however, Koshy [11] calls the Pell-Lucas
sequence the odd number sequence. In this paper, we use the odd number sequence as the
Pell-Lucas sequence.

Definition 5.1. The Pell numbers are defined by P0 = 0, P1 = 1, and for n ≥ 2

Pn = 2Pn−1 + Pn−2.

The Pell-Lucas numbers are defined by Q0 = 1, Q1 = 1, and for n ≥ 2

Qn = 2Qn−1 +Qn−2.

The Binet formulas for the Pell and Pell-Lucas numbers are

Pn =
ϕn − ψn

2
√
2

and Qn =
ϕn + ψn

2
,

where
ϕ = 1 +

√
2 and ψ = 1−

√
2.

Among other identities, note that

ϕ · ψ = −1, ϕ+ ψ = 2, and ϕ− ψ = 2
√
2.

We now state the following two Propositions.

Proposition 5.2. Let n be a nonnegative integer. Then
n∑

k=0

PkOn−k =
2

49
(5Pn+1 − 4Pn)−

2

49

(
7n+ 5

2n

)
.

Proof. Using (3.1) with ak equal to Pk the first sum is found to be

n

2n

n∑
k=0

2kPk =
14n

49

(
Pn+1 + 2Pn − 1

2n

)
,

and the second is

1

2n

n∑
k=0

k2kPk =
14n

49
(Pn+1 + 2Pn)−

2

49
(5Pn+1 − 4Pn) +

10

49 · 2n
.

Subtracting the two expressions yields the statement of the theorem. □

Corollary 5.3. Let n be a nonnegative integer, then

2n(5Pn+1 − 4Pn) ≡ (7n+ 5) (mod 49).

Proof. Again, the proof is by induction on n. The values of the congruence mod 49 on the left
and right sides of the congruence for n = 0 and n = 1 are 5 and 12, respectively. Let n ≥ 1
and assume that

2n(5Pn+1 − 4Pn)− (7n+ 5) ≡ 0 (mod 49) and 2n−1(5Pn − 4Pn−1)− (7n− 2) ≡ 0 (mod 49).
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We will prove that the congruence is true for n+ 1. We have

2n+1(5Pn+2 − 4Pn+1)− (7n+ 12)

= 2n+1(10Pn+1 − 3Pn − 4Pn−1)− (7n+ 12)

= 2n+2(5Pn+1 − 4Pn) + 2n+1(5Pn − 4Pn−1)− 4(7n+ 5)− 4(7n− 2) + 49n

= 4 (2n(5Pn+1 − 4Pn)− (7n+ 5)) + 4
(
2n−1(5Pn − 4Pn−1)− (7n− 2)

)
+ 49n.

Because 49 divides each term, 49 divides 2n+1(5Pn+2− 4Pn+1)− (7n+12). Thus, the result is
true for n+1. Therefore, by the principle of mathematical induction, the corollary is true. □

Proposition 5.4. Let n be a nonnegative integer. Then

n∑
k=0

QkOn−k =
2

49
(5Qn+1 − 4Qn) +

1

49

(
7n− 2

2n

)
.

The proof is analogous to that of the Pell case.

Corollary 5.5. Let n be a nonnegative integer, then

2n+1(5Qn+1 − 4Qn) ≡ (2− 7n) ≡ 0 (mod 49).

Proof. Again, the proof is by induction on n. The values of the congruence mod 49 on the left
and right sides of the congruence for n = 0 and n = 1 are 2 and 44, respectively. Let n ≥ 1
and assume that

2n+1(5Qn+1 − 4Qn)− (2− 7n) ≡ 0 (mod 49) and 2n(5Qn − 4Qn−1)− (9− 7n) ≡ 0 (mod 49).

We will prove that the congruence is true for n+ 1. We have

2n+2(5Qn+2 − 4Qn+1)− (−5− 7n)

= 2n+2(10Qn+1 − 3Qn − 4Qn−1)− (−5− 7n)

= 2n+3(5Qn+1 − 4Qn) + 2n+2(5Qn − 4Qn−1)− 4(2− 7n)− 4(9− 7n) + 49− 49n

= 4
(
2n+1(5Qn+1 − 4Qn)− (2− 7n)

)
+ 4 (2n(5Qn − 4Qn−1)− (9− 7n)) + 49− 49n.

Because 49 divides each term, 49 divides 2n+1(5Qn+1 − 4Qn)− (−5− 7n). Thus, the result is
true for n+1. Therefore, by the principle of mathematical induction, the corollary is true. □

6. Convolutions of Jacobsthal and Jacobsthal-Lucas Numbers with Oresme
Numbers

We next consider convolutions of Jacobsthal and Jacobsthal-Lucas numbers with Oresme
numbers.

Definition 6.1. The Jacobsthal numbers are defined by J0 = 0, J1 = 1, and for n ≥ 2

Jn = Jn−1 + 2Jn−2.

The Jacobsthal-Lucas numbers are defined by j0 = 2, j1 = 1, and for n ≥ 2

jn = jn−1 + 2jn−2.
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Proposition 6.2. Let n be a nonnegative integers. Then
n∑

k=0

JkOn−k =
2

9
Jn+1 −

2(n+ 1)

9 · 2n
.

Proof. Note that the closed form of Jk is 2k−(−1)k

3 so

n∑
k=0

JkOn−k =
1

3

n∑
k=0

2kOn−k −
1

3

n∑
k=0

(−1)kOn−k.

By (3.1) we have
n∑

k=0

2kOn−k =
n

2n

n∑
k=0

22k − 1

2n

n∑
k=0

k22k,

which by (3.2) and (3.3) is

n

2n

(
22n+2 − 1

n− 1

)
− 1

2n
· 4 ·

(
(n+ 1)22n+2

3
− 22n+2 − 1

9

)
.

By [8] we have

n∑
k=0

(−1)kOn−k = (−1)n
n∑

k=0

(−1)−kOn−k = (−1)n
n∑

k=0

(−1)kOk

= (−1)n · 4
9

(
−1
2

+ (−1)nOn+2 − 2On+1

)
.

With tedious expansion, collecting like terms, using the closed form of the Jacobsthal numbers,
and dividing by a further third, yields the result. □

We next have a corollary similar to Corollary 4.2. For n = 0, 1, 2, 3, 4, the first five values
of the Jn+1 − 2On+1 are

0, 0,
9

4
,
9

2
,
171

16
.

All of the numerators of these fractions have 9 as a factor. This leads us to the following
corollary.

Corollary 6.3. Let n be a nonnegative integer. Then 2nJn+1 ≡ (n+ 1) (mod 9).

Proof. The proof is by induction on n. The base step is true for n = 0, 1, 2, 3, 4. Now, assume
that n ≥ 4 and the corollary is true for all nonnegative integers 0, 1, . . . , n. Then

2n+1Jn+2 − (n+ 2) = 2n+1(Jn+1 + 2Jn)− (n+ 2)

= 2(2nJn+1 − (n+ 1)) + 8(2n−1Jn − n) + 9n.

Because 9 divides each term, 2n+1Jn+2 ≡ (n+ 2) (mod 9). Thus, the result is true for n+ 1.
Therefore, by the principle of mathematical induction, the corollary is true. □

Proposition 6.4. Let n be a nonnegative integers. Then
n∑

k=0

jkOn−k +
2

9
jn+1 −

2

9 · 2n
.

Corollary 6.5. Let n be a nonnegative integer. Then 2njn+1 ≡ 1 (mod 9).
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7. Concluding Comments

It is interesting to note that formula (3.1), which was used to find convolutions for second
order sequences with the Oresme sequence, is not limited to second order sequences. Readers
might find it interesting to consider a few third order sequences. Many such sequences exist;
the most recognized ones being the Perrin [13, A0001608], Padovan [13, A000931], Tribonacci
[13, A000073], and the Narayana Cow [13, A000930] sequences.

The authors would especially like to thank the referee and Curtis Cooper for their sugges-
tions on improvement of this paper.
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