ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI
POLYNOMIAL, II

FLORIAN LUCA

ABSTRACT. In this paper, we show that the absolute value of the discriminant of the k-
generalized Fibonacci polynomial X* — X*~! —... — X — 1 is a member of the k-generalized
Fibonacci sequence (FT(Lk))nZO only when k = 2, 3.

1. INTRODUCTION

Let k > 2 be an integer. The sequence of k-generalized Fibonacci numbers {F,gk)}nez has

initial terms Fz(ﬁ)k =...= Fék) =0, Fl(k) = 1 and satisfies the recurrence

7®)

W o=F® 4+ FEP forall neZ

Here are a few terms of the k-generalized Fibonacci sequence with positive indices.

k | Name First nonzero terms with positive indices
2 | Fibonacci | 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
3 | Tribonacci | 1,1, 2,4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136
4 | Tetranacci | 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536,
5 | Pentanacci | 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, ...
6 | Hexanacci |1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, ...
7 | Heptanacci | 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, ...
8 | Octanacci |1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, ...
9 | Nonanacci | 1,1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, ...
10 | Decanacci | 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, ...
Let
fe(X) =Xk X1 ... _x 1

be the characteristic polynomial of the k-generalized Fibonacci sequence. This is sometimes
referred to as the k-generalized Fibonacci polynomial. Let Disc(fx) be the discriminant of
fx(X). This number has been computed in many places (see, for example Lemma 2.3 in [6]).
Its formula is

k+1 ktlph _ i
Disc(fi(X)) = (1))~ <2 k(k; —(]i)t : )

For k = 2,3, we get that |Disc(fx)| = 5, 44 and a quick look at the above table convinces us
that 5 = Féz) and 44 = F8(3). We ask whether there are other instances when |Disc(fy)] is a
member of {F,(Lk)}nzo? The answer is no and this is the main theorem of this paper.

Theorem 1. The only k > 2 such that |Disc(fx)| is a member of {Fék)}nzo are k = 2, 3.
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2. PRELIMINARY RESULTS

We label the roots of f;(X) as aq,..., . It is known that fi(X) has only one positive real
root, we call it o := 1. This root satisfies

2(1—1/2k)<a<2 for all k> 2. (1)
Furthermore, |o;| < 1 for i =2,...,k. It is also known that

holds for all n > 1 (see [1]). For sharper estimates of F¥ in terms of a, we need some more
notation. Putting

z—1
= £ >2
&)= sy ey o 22%
then
k
Fqgk) = Z fk(ai)a?_l holds for all n € 7. (3)
i=1
Furthermore,
1
|EX) — f(@)e ! < 5 holds for all n > 1. (4)

Both (3) and (4) appear in [3]. An even sharper estimate than (4), but in a more restricted
range for n in terms of k, appears in [1]. Namely,

2’!’1
o (5)

If n<2? and k>10, then |fi(a)a" ' —2"72% <

(see also (15) in [4]). Finally, we need the following formula of Cooper and Howard [2]:

k
Lk 1

» - —jk —jk—2
F® =m0 3" € 0m it 02 here Gy = (<1) <(n J ) B <n J ; )) ‘
7j=1
(6)
In the above formulas, the regular assumptions apply, namely that (Z) = 0 if either a < b or

one of a or b is negative.

3. THE PROOF
We need to solve
2FHLER — (k4 1)F 1
(k—1)2 (7)

for some k > 4 and some positive integer n. We start with some rough bounds for n in terms
of k. First, by (2), we have

EP =

2k+1kk
12 (8)

Since o > 1.927 for k > 4, the above inequality implies n < 800 when k& < 100. We check the
range k € [4,100] and n € [2,800] for equation (7) and we do not find solutions. From now

"2 < FF <
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on, we assume that £ > 101. From (8) and (1), we get
(k+1)log2+ klogk —2log(k — 1) - (k+1)log2+ klogk —2log(k — 1)

-2
" log o log 2 + log(1 — 1/2F)
(k+1)log2+ klogk —2log(k — 1) 1
log 2 1—1/(2k1log?2)
(k+1)log2+ klogk —2log(k — 1) L+ 1
log 2 2k—2]0g 2
kloghk —2log(k —1) (k+1)log2+ klogk
kE+1
< Rl log 2 2k=2(1log 2)2
1 —21 -1
< k41014 Flogk—2log(k=1)
log 2

In the above, we used log(1 — x) > -2z, valid for z € (0,1/2) (with z := 1/2F), as well as the
inequality 1/(1 —y) < 1 4 2y, valid for y € (0,1/2) (with y := 1/(2¥"log?2)), as well as the
fact that

(k+1)log2+ klogk

01 fi k > 101.
2 1og 2 < 0.0 or > 10

Hence,

klog k — 2log(k — 1
n<k+3.01+ %8 og(k—1)
log 2

But we can also find a similar lower bound for n. Namely, by (2) and (1), we have

n—1 n—1 (k) — -
2 zen > BT =Ty ( JEEFL (), — 1)2>

ok+11.k 1 ok+1 1.k 1
2ok (o bt 2R LY )
(k‘ _ 1)2 (k‘ _ 1)22k+1 (k _ 1)2 2k—1

where we used (1 + 1/k)* < e < 4, valid for all k > 2 as well as k + 1 < (k — 1)2, valid for

k > 4. Taking logarithms, we get
(k+1)log2+ klogk —2log(k — 1) n log(1 — 1/2F1)

n—1
log 2 log 2
klogk — 2log(k — 1) 1

kE+1 -
SR log 2 2k=2]og 2

klogk — 2log(k — 1

> k4 0.99 4 Plogk = 2log(k = 1)

log 2

In the above, we again used log(1—z) > -2z, valid for all z € (0,1/2) with z := 1/(2¥ ! log2),
as well as the fact that 2z < 0.01 since k£ > 101. Thus,
klogk — 2log(k — 1)

n>k+1.99 +
log 2

(11)
From (9) and (11), we record the following lemma.

Lemma 1. In equation (7) with k > 100, we have

klogk —2log(k — 1 klogk —2log(k — 1
ogk —2loglk = 1) _, _ g4 5014 Flogk —2log(h — 1)
log 2 log 2

k+1.99 +
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From (9), together with the fact that £ > 100, we conclude that

klogk —2log(k — 1) < ok/2

n<k+3.01+
log 2

so we are in the range of (5). Thus, from (4) and (5), we get

2k+1]€k _ (k‘ 4 1)k+1
(k—1)?

By (11), we conclude that n > k/2, so the right side above is at most 2"*1 /25/2, Thus,

n
_ 2n—2

+ 1

2
< |F® = ful@)a?| + [fila)a"? =272 < o

2k+1kk R 2n+1 N (k 4 1)k+1
(k—1)2 ok/2 T (k—1)2
Let M := 28+1kF /(k —1)? and N := 2"~2. Note that
ontl gntl 8 (k4 1)F+1 (k+ DML e(k+1) 1

< = < <
22 max{M, N} ~ 262N ~ 282" (k—1)2max{M,N} — 2F1k 2R+l ™ 9k/2’

since k > 100. We get

8 1 9

—1\6 _
1—(MN )’<2k/2+2k/2*2k/2’ (12)

where 6 € {1} (so 6 =1if N > M and § = -1 otherwise). The left side above is
|23k (k- 1)72)0 — 1. (13)

This expression is not zero, since k > 100, so there is an odd prime p dividing (k — 1)k, which
therefore appears with nonzero exponent in the factorization of 28¥3="k*(k — 1)=2. To find a
lower bound on the above expression, we use Matveev’s theorem (see [7], or the formulation
of Theorem 3 in [4]). We take D =1, ¢t = 3,

M =2, Y2i=k=1, wi=k
by :=6(k+3—mn), bg:=-20, bs:=75k.

We take A; :=log~y; for i =1,2,3 and B = n > max{|b1], |b2], |b3]}. So, if we put
A=ttt - 1

we get

|A| > exp (-1.4-30° 3%5(1 +logn) - log?2 - log k - log(k — 1)).
Comparing this with (12), we get

1
(k/2)log2 —log9 < 1.4 - 305 - 3%510g 2 (1 + 1ogn> (logn)(log k)2.

Using Lemma 1 and the fact that £ > 101, we get 763 < n < 2klogk. We get

1 21og9
log k)2 log(2k log k
1Ogm?))(og )~ log(2k log k) +

log 2
< 3.3-10"(log k)% log(2k log k).
This gives k < 2-10', and now Lemma 1 gives n < 1.5-10'®. We record these conclusions.

Lemma 2. In equation (7) for k > 100, we have k < 2-10® and n < 1.5 - 10'8.

kE < 2.8-300.3%° <1+

We need to reduce the above bounds. We use a 2-adic argument. Let r € {0,1,...,k} be
the residue of n modulo n — 2 modulo k& + 1. We have the following lemma.
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Lemma 3. We have r =k + 1 —r1, where
5logk

o< <3 .
STsot log 2

(14)

Proof. Assume first that k is even. Then Disc(fy) = 1 (mod 2). In particular, P =1
(mod 2). The sequence (Egk))nez is periodic modulo 2 with period k + 1. This is easily seen
as fr(z) | 21 — 22 4- 1, so that

F® o =2 —F®  holds forall  neZ,

which modulo 2 simplifies to Fr(fk)k 41

FP=FM =1 and FP=2"2 for m=34,... k+1.

=p® (mod 2). Further,

This shows that if £\" is odd, then n = 1,2 (mod k+1),sothat n—2= (k+1)—0, (k+1)—1
(mod k +1). Thus, r; € {0,1} in this case. Assume next that & is odd. Then

kE_ k+1
R )

which implies that
vo(F)) = vy (Disc(fi) =k + 1+ o (k¥ — (k+1)/2)"™) —a((k— 1)) > k+1—2ua(k — 1).

The right-most inequality above is an equality if and only if 4 | £ + 1. We now go to (6) and
deduce that

k-1

v(FF) =vy [ 2024 > 22, o) (15)
j=1

n+k
PRETIIN

Using (11) and the fact that & > 100, we get

Let

n+k22k+1.99 klogk —2log(k — 1) 2_& <1_3) logk:>8.447
E+1 E+1 (k+1)log2 E+1 k+1) log2
which shows that J > 7. As an upper bound, we have
< n—1<k—i—2.01 klogk — 2log(k — 1)
- k+17 k41 (k+1)log2
1.01 — 2log(k — 1)/ log 2 klog k log k
1+ (k;gin )/1og +(k+1;glog2<l+10§2<2logk, (16)
since k > 100. Since
n+k
J+1:L€+1J’ we get (J+D(kE+1)<n+k<(J+2)(k+1),

which implies
J+1<n—Jk<k+J+1 and J—1<n—-Jk-2<k+J-1

So, we see that
o n—Jk\ (n—Jk-=2\ _ (n—Jk)(n—Jk—l)_1 n—JK—2
T J—2 ) J(J—1) J—2 )
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Thus,
—Jk—2
p(Ch,y) < 1/2<n J_o ) +vo((n—Jk)(n—Jk—2)—J(J—1))
log(n — Jk—1) log((n—Jk)(n —Jk—1))
+
log 2 log 2
3log(n — Jk) log(k 4+ 2logk +1)  3log(2k)
<3 < .
log 2 log 2 log 2

(17)

n
In the above, we used Kummer’s theorem [5] to the effect that the exponent of 2 in )
m

is at most the number of carries when adding m and n — m in base 2 (which is at most
log(n + 1)/log 2), inequality (16), as well as the fact that 2logk + 1 < k for k£ > 100. O

In the sum appearing in the right side of (15), all powers of 2 appearing there are congruent
to the same number, namely » modulo k + 1. Furthermore, n —2 — (k+1)j > k+1if j =0
orje{l1,2,...,J —1}. Since
3log(2k)

on—2-J(k+1)
log 2 > v n’J)

E+1>

holds for £ > 100, we get that
w(FF) = (227700, 1)y =n— 2 — J(k + 1) + 15(Cy ).

)

We study n — 2 — J(k + 1). Note that since

-1
‘]:{ZHJ’ it follows that ~ n—1=J(k+1)+X,  where 0<A<k+1.

IfAX>1,thenn—2=J(k+1)+(A—1)and A—1 > 0, so that A\ —1 = r. It could be the case
that A = 0, in which case n —2 = (J —1)(k+ 1) + k, so r = k, but in this case we certainly
have r = k = (k+ 1) — 1, so that ; = 1 and the conclusion of the lemma holds. So, we may
assume that A > 1; therefore,

va(F\M) =1+ v5(Ch ).
Comparing the last formula above with (15) and (17), we get

2log(k —1) 2logk _log(2k) log k
k+l-m=r>k+1————= — n k+1-— — =k—-2-— :
* n=r2it log 2 v2(Chy) > ki + log 2 3 log 2 5log2
This gives

log k
<
’r‘1_3+510g2,

as desired. Since k < 2-10'0, the above upper bound on r; is at most 273 in our range. At
this point, we find it convenient to increase the range of k£ to £ < 300. Lemma 1 gives us
n < 2755 and a few minutes of computation with Mathematica reveal no additional solutions
in the range k € [101,300]. From now on, k£ > 301. We write

n—2
k+1
Since k € [301,2-10'%], Lemma 1 implies L € [9, 55]. We go back to inequalities (12) and (13).
Writing A := el — 1 and using that |[A| < 9/2%/2 implies |I'| < 18/2F/2 we get

18

|(n— (k+3))log2 — klogk + 2log(k — 1)] < ST

n—2=(k+1)(L+1)—ry, where L:{ J, and 0<r <273
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The above can be rewritten as
18
|(k+1)(Llog2 —logk) —r1log2 +logk + 2log(k — 1)| < 2
or
log 2k _mn log2 +logk + 2log(k — 1) + 18/2’“/2'
k kE+1

Since k € [301,2 - 10%], the numerator of the fraction from the right side above is < 265.
Hence, taking the exponential, we get

oL 265 265
= wh
k exp(C), e Ce( h+1k+1>

Since 265/(k + 1) < 265/302 < 1.51/(e — 1), it follows that
exp(¢) € (1 —[¢],1+2.51[¢]) .

265k 666k
L S — —_—
€<k k+rk+k+1>'

In particular, k € [2° — 666,2" 4 265]. We now have everything we want to carry out the
calculations. Namely, we fix a number L € [9,55]. We fix k € [max{301,2L — 666}, 2L + 265].
Note that the above maximum is always 2° — 666 except if L = 9, in which case it is 301. Note
that L is determined in at most 50 ways, then k is determined in at most 1000 ways. Lemma 1
then shows that n is in an interval of length 2.02, so there are at most three possibilities for
n. Hence, there are less than 50 - 1000 - 3 = 1.5 - 10° possibilities. We choose a prime p of size
10?2 and we check, using formula (6), whether

Thus,

L)1 k
. e 2 +1k.k_(k_|_1)k+1
on—2 4 Z o(n=D—ilk+1)y . = 12 (mod p).

Since k < 2-10' < p, it follows that k — 1 is invertible modulo p. We used Mathematica and
in particular the command PowerMod to calculate 27~2=7*+1)  kF and (k 4 1)¥ modulo p.
We chose p = 10%° + 39. The computations lasted less than one hour and no solution to the
above congruence modulo p was found in our range of the variables L, k, r1, n. The theorem
is therefore proved.
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