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Abstract. This paper extends our previous result on the circuit array, a two-dimensional
array associated with the resistances in circuits whose underlying graph, when embedded in
the Cartesian plane, has the form of a triangular grid. This paper extends the results of the
prior paper by considering the circuit array in terms of polynomials instead of numbers as a
means to facilitate finding patterns. The main conjecture of this paper states that the char-
acteristic polynomials corresponding to the recursions of single or multivariable polynomial
formulations of the circuit array exclusively have powers of 9 as roots. Several initial cases
and one major sub-case are proven.

1. Introduction

In prior work [7], the authors introduced the circuit array, a two-dimensional array
associated with the resistance values in electrical circuits whose underlying graphs, when
embedded in the Cartesian plane, have the form of a triangular grid. The circuit array is
constructed by applying to an initial electric circuit with specified resistances a sequence of
equivalent network transformations. The prior work showed certain patterns in the circuit
array that formed linear homogeneous recursions with constant coefficients and suggested sev-
eral approaches for studying further patterns in the sequences of the rows of the circuit array.
The main conjecture of this paper states that the characteristic polynomial (annihilator) of
the rows i, i ≥ 0, of the circuit array, when it is reformulated in terms of single or multivariable
polynomials, exclusively has roots that are powers of 9. Several initial cases and one major
sub-case are proven.

We begin by briefly reviewing the history of approaches to (exact) computations of effective
resistance in a graph. First, we recall that effective resistance, also called resistance distance, is
a graph metric whose definition was motivated by considering a graph as an electrical circuit.
A formal definition of this metric can be found in [7], but the effective resistance r(i, j) between
nodes i and j of a graph is the resistance measured between those nodes where each link in
the graph has a given resistance (typically one ohm).

The initial approach to computing resistances was to use the Kirchhoff laws that, at least
theoretically, allowed solving any electrical circuit. However, for a circuit whose underlying
graph is embeddable in the Cartesian plane, all computations and simplifications of this circuit
can be made with four well-known circuit transformation functions: parallel, series, ∆–Y, and
Y–∆. These four circuit transformation functions reduce the complexity of the underlying
graph, while leaving the effective resistance between two vertices of interest the same.

For circuits derived from small graphs or graphs with special structures, the combinatorial
Laplacian is frequently used to compute resistances between two points in a circuit [1, 2]. For
triangular grids, [2, 11] exploit the idea of reducing the number of rows in the underlying,
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initial, triangular n-grid one row at a time. This can be accomplished by the four electrical
circuit functions. [2] used this idea to accomplish proofs, whereas [11] was the first to show
its computational benefits in discovering numerical conjectures.

To simplify the computations of resistances arising from reductions, [7, 8] showed that only
four local functions, each of which takes up to nine arguments, need to be considered. These
four functions calculate resistances for a (i) left-boundary, (ii) left-interior, (iii) right, and (iv)
base edge of a given triangle in a triangular n-grid reduced once.

An outline of this paper is the following. Section 2 presents necessary terminology, notation,
and conventions; introduces the four transformation functions; and defines the various circuit
arrays. Familiarity with the prior paper [7] is not assumed; a modest example illustrates
basic computations and patterns. Section 3 reviews the method of annihilators. The main
results of the paper for single variable and multivariable polynomials are presented in Section
4. Generalization of these results is conjectured with certain partial results proven. The paper
closes with the observation that the patterns studied in this paper should prove fertile ground
for future researchers.

2. Background, Notation, Conventions, Functions, and Arrays

In this section, we review important terminology and concepts. The material in this section
is taken almost verbatim from [7, 8, 11]; therefore, attribution to the original and subsequent
sources are omitted below except for a few important concepts.

Definition 2.1. An n-triangular-grid (usually abbreviated as an n-grid) is any graph that is
(graph-) isomorphic to the graph, whose vertices are all integer pairs (x, y) = (2r+ s, s) in the
Cartesian plane, with r and s integer parameters satisfying 0 ≤ r ≤ n, 0 ≤ s ≤ n − r; and
whose edges consist of any two vertices (x, y) and (x′, y′) with

(i) x′ − x = 1, y′ − y = 1,
(ii) x′ − x = 2, y′ − y = 0, or
(iii) x′ − x = 1, y′ − y = −1.

Figure 1 illustrates this definition with various notational conventions that are explained
below.

(3, 3)

(2, 2) (4, 2)

(1, 1) (3, 1) (5, 1)

(6, 0)(4, 0)(2, 0)(0, 0)

T3,1 T3,2 T3,3

T2,1 T2,2

T1,1

Figure 1. A 3-grid embedded in the Cartesian plane constructed using
Definition 2.1 (left panel) with row and diagonal coordinates (right panel).

Rows are numbered from top to bottom; diagonals are numbered from left to
right.
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As mentioned in the introduction, the focus of this paper is on recursions, and not the
underlying circuit theory. The recursions in this paper arise by applying three circuit trans-
formations to the n-grid: the well-known series rule (from physics), the ∆–Y, and the Y–∆
transformations. The ∆–Y transformation is a mathematical technique to convert resistors in a
triangle (∆) formation to an equivalent system of three resistors in a “Y” format as illustrated
in Figure 2. More formally, the ∆–Y and Y–∆ functions defined from circuit transformations
are given by:

∆(x, y, z) =
xy

x+ y + z
, Y (a, b, c) =

ab+ bc+ ca

a
. (2.1)

Conventions on the order of the arguments are illustrated in Figure 2.

Q

P S

Q

P S

Y12

Y4
Y8

R

B

L

Y12 = ∆(L,R,B)

Y4 = ∆(R,B,L)

Y8 = ∆(B,L,R)

R = Y (Y8, Y12, Y4)

B = Y (Y12, Y4, Y8)

L = Y (Y4, Y8, Y12)

Figure 2. Definition and assumed orientation of the ∆ (that is ∆–Y) and Y
(that is the Y–∆) resistance functions. P,Q, S are vertex labels; L,R,B are
edge labels standing for left, right, and bottom edge. We use L to refer to the
left edge and the label of the left edge; the meaning should be clear from the

context.

As mentioned in the introduction, row reduction is an algorithm, formulated using series,
∆–Y, and Y–∆ transformations, that takes an n-grid and creates an (n − 1)-grid. Given an
n-grid with given resistance values, the row-reduction of this n-grid (to a (n− 1)-grid) refers
to the sequential performance of the following steps (with illustrations of the steps provided
by Figure 3).

• Step 1: Start with an n-grid (Figure 3 illustrates with n = 3).
• Step 2: Apply a ∆–Y transformation to each upright triangle (a 3-loop) resulting in a
grid of n rows of out-stars.

• Step 3: Discard the corner tails, that is, edges with a vertex of degree one. This does
not affect the resistances in the reduced 2-grid shown in Step 5. (However, these corner
tails are useful for computing certain effective resistances as shown in [3, 9]).

• Step 4: Perform series transformations on all consecutive pairs of boundary edges (i.e.,
the dashed edges in Step 3).

• Step 5: Apply Y–∆ transformations to any remaining out-stars, transforming them
into loops.

In Figure 3, the step labels correspond to the five steps indicated in the narrative. Although
the reduction algorithm is stated generally for any initial n-grid – regardless of initial resistance
values – we illustrate it with a simple numerical example. Suppose all edges have resistance
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equal to 1 in Step 1 (in the sequel, an initial n-grid whose resistance values are identically
one will be called an all one n-grid). Then in Steps 2 and 3, all resistances are uniformly
Y (1, 1, 1) = 1

3 . In Step 4, the boundary edges have resistance value equal to 2
3 . In Step 5, the

non-boundary edges have resistance Y (13 ,
1
3 ,

1
3) = 1.

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 3. Illustration of the reduction algorithm on a 3-grid.

Throughout this paper, the label of edge e, e ∈ {L,R,B} (standing, respectively, for the
left, right, and base edges of a triangle in the upright oriented position), of the triangle in row
r diagonal d is indicated by Tr,d,e.

The notations T c
r,d,e and T c

r,d refer, respectively, to edges and triangles in an initial all one

n-grid reduced c times (T 0 refers to the initial n-grid).
Using these notations, we can reformulate the reduction algorithm in terms of functions

whose arguments are resistances in a parent grid and whose return values are resistances in a
child grid. Tracing Steps 1 through 5 of Figure 3 shows that starting with an all one 3-grid,
T ,

T 1
1,1,L = ∆(T1,1,B, T1,1,L, T1,1,R) + ∆(T2,1,L, T2,1,R, T2,1,B)

T 1
2,1,L = ∆(T2,1,B, T2,1,L, T2,1,R) + ∆(T3,1,L, T3,1,R, T3,1,B)

This motivates defining the following function.

Tm+1
r,1,L = P(Tm

r,1, T
m
r+1,1) = ∆(Tm

r,1,B, T
m
r,1,L, T

m
r,1,R) + ∆(Tm

r+1,1,L, T
m
r+1,1,R, T

m
r+1,1,B). (2.2)

Here, P stands for the left-side perimeter of the grid. As in [7, 8], because of the symmetries
of the m-grid, knowledge of edge values on the left half of the m-grid suffices to determine the
edge values on its right half.

Besides the left-side perimeter function, only three other functions are needed to perform
all computations [7, 8]. These functions compute right edges (R), non-boundary left edges
(L), and base edges (B) in a once-reduced parent grid.

Tm+1
r,d,B = B(Tm

r+2,d+1, T
m
r+1,d, T

m
r+1,d+1) = Y (∆(Tm

r+2,d+1,L, T
m
r+2,d+1,R, T

m
r+2,d+1,B),

∆(Tm
r+1,d,R, T

m
r+1,d,B, T

m
r+1,d,L),∆(Tm

r+1,d+1,B, T
m
r+1,d+1,L, T

m
r+1,d+1,R)), (2.3)

Tm+1
r,d,R = R(Tm

r,d, T
m
r,d+1, T

m
r+1,d) = Y (∆(Tm

r,d,R, T
m
r,d,B, T

m
r,d,L),∆(Tm

r,d+1,B, T
m
r,d+1,L, T

m
r,d+1,R,

∆(Tm
r+1,d,L, T

m
r+1,d,R, T

m
r+1,d,B)), (2.4)
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Tm+1
r,d,L = L(Tm

r,d−1, T
m
r,d, T

m
r+1,d) = Y (∆(Tm

r,d−1,R, T
m
r,d−1,B, T

m
r,d−1,L),∆(Tm

r,d,B, T
m
r,d,L, T

m
r,d,R),

∆(Tm
r+1,d,L, T

m
r+1,d,R, T

m
r+1,d,B)). (2.5)

Further details of these four local functions can be found in [7, 8]. The following example
from [7] motivates the circuit array.

Example 2.2. In Figure 3, T 1
1,1,L = 2

3 . This is true for any initial all one n-grid, n ≥ 2. A
derivation similar to the one connected with Figure 3 shows that for an all-one n-grid, n ≥ 2,
the boundary edges are uniformly 2

3 , whereas the remaining edges are uniformly 1. Therefore,
if T is an all one n-grid, n ≥ 6, then

T 2
3,2,L = L(T 1

3,1, T
1
3,2, T

1
4,2) = Y (∆(1, 1,

2

3
),∆(1, 1, 1),∆(1, 1, 1)) =

26

27
.

Generally, if T is an all one n-grid, n ≥ 4s− 2, then

T s
2s−1,s,L =

1
39

s − 1
1
39

s
. (2.6)

The denominators of the sequence T s
2s−1,s,L, s ≥ 1 satisfy the recursion Gn+1 = 9Gn, while

the numerators satisfy Gn+1 = 9Gn + 8. These numbers form Row 0 in Table 1. The proof of
(2.6) is reviewed in Section 4.

Definition 2.3. The circuit array {Ci,j} is an infinite array such that for 0 ≤ i ≤ 2(j − 1),
j ≥ 1,

Ci,j = T j

2j−1,j−⌊ i+1
2

⌋,LR,

where LR refers to the left edge (right edge) if i is even (odd) [7].

Table 1 gives the numerical values of the first few rows and columns of the circuit array;
they can be computed using the reduction algorithm or the four local functions introduced
above. Further details are presented in [7]. Although this is not needed later, based on the
Uniform Center Theorem [8], it can be shown that Definition 2.3 gives all numbers in column j,
provided the initial all one n-grid satisfies n ≥ 4j − 2. Example 2.2 illustrates this for Row 0.

Table 1. First four rows and columns of the numerical values of the circuit
array.

1 2 3 4

0 2
3

26
27

242
243

2186
2187

1 13
12

121
120

1093
1092

2 1
2

89
100

16243
16562

3 1157
960

1965403
1904448

As pointed out in [7], attempts to find recursive patterns in the rows of Table 1 failed; instead,
it was suggested that it might be easier to find patterns in related single or multivariable
polynomials and rational functions.
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Definition 2.4. To create the one-variable circuit array, CX , we rewrite the value of C0,1 =

T 1
1,1,L = 2

3 as a rational function, X−3
X . We then proceed to calculate, using the four local

functions, the resistance values of further reductions.

What results is a circuit array of rational functions in a single variableX as shown in Table 2.
When the substitution X = 9 is made, we recover the numerical circuit array, Table 1.

Table 2. First four rows and columns of CX , the one-variable circuit array.

1 2 3 4

0
3
9
X−1
3
9
X

3X−1
3X

27X−1
27X

243X−1
243X

1 3X−1
3X−3

27X−1
27X−3

243X−1
243X−3

2 2
1− 4

3
X+ 1

3
X2

(X−1)2
213−36X+39X2

(9X−1)2
2121−540X+3267X2

(81X−1)2

3 1
12

3X−1
9X−1

13−36X+39X2

1−2X+X2
1
12

27X−1
81X−1

121−540X+3267X2

10−36X+45X2

Definition 2.5. The multivariable circuit array, CM , is constructed analogously to the con-
struction of CX . We sequentially compute, one reduction at a time, the values in Table 1
replacing certain numerical values with variables. More specifically, we set C0,1 = T 1

2,1,L = X1,

C2,2 = T 2
3,1,L = X2, C4,3 = T 3

5,1,L = X3, . . ., C2i,2i−1 = T i
2i+1,1,L = Xi, i ≥ 0. The {Xi}

constitute the left-side diagonal of C [7].

As a result of this construction, we obtain Table 3. Entries in the first two rows of CM are
functions of X1, entries in the next two rows are functions of X1 and X2, etc. In this table,

A =
(
9X2

1X2 + 8X2
1 + 36X1X2 + 128X1 + 36X2 + 512

)
,

B =
(
81X2

1X2 + 80X2
1 + 324X1X2 + 2432X1 + 324X2 + 55808

)
, and

D =
(
27X2

1X2 + 26X2
1 + 108X1X2 + 596X1 + 108X2 + 5696

)
.

As with CX , we can recover the numerical circuit array by making the appropriate substitu-
tions for X1, X2, . . ..
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Table 3. First four rows and columns of CM , the multivariable circuit array.

1 2 3 4

0 X1
X1+8

9
X1+80

81
X1+728

729

1 X1+8
3X1+6

X1+80
3(X1+26)

X1+728
3(X1+242)

2 X2
A

(X1+26)2
B

(X1+242)2

3 (X1+8)A
3(X1+2)(X1+26)(3X1X2+2X1+6X2+16)

(X1+80)B
3(X1+242)D

For i ≥ 0, we let Ci = {Ci,j}{all j, where defined} denote the ith row of the circuit array. CX
i

and CM
i are similarly defined.

3. Annihilators

The main result of this paper identifies recursive patterns in the row sequences of CX and
CM . The motivation, formulation, and proof of results require the use of the method of
annihilators [4, 5, 10]. Annihilator techniques were established by Boole in the first edition
of [4], are easy to use, and are a less messy approach to traditional inductive approaches in
proofs connected with recursive sequences. Several authors [5, 10] have begun using them
again when dealing with recursions. This section reviews the basic theory.

Definition 3.1. Given a sequence, G = {Gs}s≥0 (numerical or polynomial), the translation
operator, E, is defined for s ≥ 0 by E(Gs) = Gs+1.

We let 1 be the identity operator. Scalar multiplication and addition of expressions in E is
defined componentwise. Multiplication of expressions in E refers to composition.

Lemma 3.2. With F any field (numerical or functional), F [E] is an algebra over F . (The
elements of F are called operators.)

Definition 3.3. An operator, O, is an annihilator of a sequence G if O(G) ≡ 0 (with 0, the
0 sequence).

Lemma 3.4. Any characteristic polynomial of a sequence, G, is also an annihilator of G.

Example 3.5. Let F = {Fs}s≥0, indicate the Fibonacci numbers, whose minimal polynomial
is X2−X−1. Then for s ≥ 0, (E2−E−1)(Fs) = E2(Fs)−E(Fs)−Fs = Fs+2−Fs+1−Fs = 0,
the last equality following from the Fibonacci recursion.

Remark 3.6. The ideal in Z[X] generated by the minimal polynomial X2 − X − 1 consists
of all characteristic polynomials of the Fibonacci numbers. For example, X3 − 2X2 + 1 is
a characteristic polynomial for the Fibonacci numbers. Similarly, annihilators need not be
unique.

To effectively use annihilators in proofs we will need two lemmas, one presenting trivial facts
and another dealing with sums and products. The proofs of these lemmas are straightforward
consequences of the fact that the annihilators form an algebra.
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Lemma 3.7 (The Trivial Lemma).
(i) With c an arbitrary constant, E − c annihilates the sequence {cs}s≥0.
(ii) For any constants a, b, if A annihilates the sequence G, then it also annihilates aG+b.

Lemma 3.8 (The Addition-Multiplication Lemma).
(i) Suppose Ai, i ∈ I are annihilators of the sequences Gi, i ∈ I. Then for arbitrary

constants ci,
∑

i∈I ciGi is annihilated by
∏

i∈I Ai.
(ii) [12] Suppose Ai, i = 1, 2 annihilate the sequences Gi with characteristic polynomials,

pi with roots ri,j, 1 ≤ j ≤ ki, i = 1, 2. Then A =
∏

all pairs (i, j), (i′, j′)(E − ri,jri′,j′),

annihilates the (term by term) product G1 ·G2.

Example 3.9. Using these two lemmas, we may calculate the annihilator of the sequence
G = {Gs = (3s + 2s)2 = 9s + 4s + 2 · 6s}s≥0, as follows:

(i) E − 3 and E − 2 annihilate {3s}s≥0 and {2s}s≥0, respectively.
(ii) Hence their product, (E − 3)(E − 2) annihilates the sum 3s + 2s.
(iii) Since (E−3)(E−2) has roots 3, 2 we may obtain the annihilator of (3s+2s)2 by taking

into consideration all products of pairs of roots: (E − 9)(E − 6)(E − 4).

4. Main Results

This section motivates and states the main result of this paper by presenting examples,
detailing several patterns, stating the generalized pattern as the Main Conjecture, and indi-
cating proven results (proof methods and special cases). We first state and prove an inductive
characterization of CX , followed by computational corollaries and illustrative examples.

To prepare for the next proposition, we adopt the convention that the functions (2.2)–(2.5)
can be stated with triangle or triangle-side arguments. For example, (2.2) can be functionally
written as

Tm+1
r,1,L = P(Tm

r,1, T
m
r+1,1) = P(Tm

r,1,L, T
m
r,1,R, T

m
r,1,B, T

m
r+1,1,L, T

m
r+1,1,R, T

m
r+1,1,B), (4.1)

where we substitute for each triangle argument the set of its edges listed in clockwise order
starting from the left edge and separated by commas.

Although Definition 2.3 suffices to compute entries of CX , the following proposition facili-
tates the computations.

Proposition 4.1. CX
i,j may be computed using the inductive relations (i) through (iii), with

the boundary conditions indicated by Parts (iv) and (v).

(i) For c ≥ 2,

CX
2(c−1),c = P

(
CX
2(c−2),(c−1), C

X
2(c−2)−1,(c−1),

CX
2(c−2)−1,(c−1), C

X
2(c−2),(c−1), C

X
2(c−2)−1,(c−1), C

X
2(c−2)−1,(c−1)

)
.

(ii) For j > c ≥ 2,

CX
2(c−1),j = L

(
CX
2(c−1),j−1, C

X
2(c−1)−1,j−1, C

X
2(c−1)−1,j−1,

CX
2(c−1)−2,j−1, C

X
2(c−1)−3,j−1, C

X
2(c−1)−3,j−1, C

X
2(c−1)−2,j−1, C

X
2(c−1)−3,j−1, C

X
2(c−1)−3,j−1

)
.
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(iii) For j ≥ c ≥ 2,

CX
2(c−1)−1,j = R

(
CX
2(c−1)−2,j−1, C

X
2(c−1)−3,j−1, C

X
2(c−1)−3,j−1,

CX
2(c−1−4),j−1, C

X
2(c−1)−5,j−1, C

X
2(c−1)−5,j−1, C

X
2(c−1)−4,j−1, C

X
2(c−1)−5,j−1, C

X
2(c−1)−5,j−1

)
.

(iv) CX
0,1 =

X−3
X .

(v) CX
i (j) = 1, −3 ≤ i ≤ −1 for all j.

Proof. Proof of (i). By Definition 2.3, CX
2(c−1),c = T j

2c−1,1,L. By (2.2), T j
2c−1,1,L =

P(T j−1
2c−1,1, T

j−1
2c,1 ). We prove in the paragraph below that for c ≥ 3

P(T j−1
2c−1,1, T

j−1
2c,1 ) = P(T j−1

2c−3,1, T
j−1
2c−3,1). (4.2)

By Definition 2.3, CX
2(c−2),c−1 = T c−1

2c−3,1,L and CX
2(c−2)−1,c−1 = T c−1

2c−3,1,R. We prove immediately

below this paragraph that

T c−1
2c−3,1,R = T c−1

2c−3,1,B. (4.3)

Combining this with (4.2) and our notational conventions (4.1) completes the proof of Part (i).
We have left to prove (4.2) and (4.3). Both these assertions follow from the Uniform Center

Theorem [8], which we now briefly describe. The Uniform Center Theorem states that for
sufficiently large n, the triangles in the central region of the diagonal d = 1, (for rows r ≥ 3)
are uniformly labeled, that is corresponding sides have the same labels, [8, Definition 6.2,
Equation (12), and Theorem 6.5(a)], and moreover, the right and base sides are identically
labeled [8, Theorem 6.5(d)]. This implies that corresponding sides of the triangles T c−1

r,1 ,

r ∈ {2c − 3, . . . , 2c} are identically labeled and moreover their base and right-side labels are
the same, proving (4.2) and (4.3).

Proof of (ii) and (iii). The proofs for Parts (ii) and (iii) are similar to the proof for Part
(i) just presented, and hence they are omitted.

Proof of (iv). This is simply Definition 2.4

Proof of (v). The recursions for computing CX
r in Parts (i) through (iii) make use of the

prior three or four rows depending on the parity of r. Thus, these recursions suffice (assuming
certain prior row or column values computed) for computation of CX

r , r ≥ 4. To prove these
boundary conditions valid, we need to show that they can be used to compute rows 0,1,2,3.
We prove this for r = 0, the proofs for the other rows are similar and hence omitted. What
has to be proven is that Part (ii) coupled with the boundary conditions of Part (v) correctly
compute row 0. This proof for row 0 is similar to the proof of Part (i).

By Definition 2.3, CX
0,j = T j

2j−1,j,L, j ≥ 2. By (2.5), T j
2j−1,j,L = L

(
T j−1
2j−1,j−1, T

j−1
2j−1,j , T

j−1
2j,j

)
.

We claim T j
2j−1,j,L = L

(
T j−1
2j−1,j−1, T

j−1
2j−1,j , T

j−1
2j,j )

)
= L

(
T j−1
2j−3,j−1,1,1

)
, where 1 refers to a

triangle whose sides are uniformly labeled 1. This follows from the Uniform Center Theorem

described above. First, the following triangles are identically labeled: T j−1
r,j−1, r ∈ {2j− 3, 2j−

2, 2j − 1}. Second, by [8, Definition 2.13 with Lemma 5.3 or Theorem 6.5(c)], the triangles

T j−1
2j−1,j and T j−1

2j,j ) are uniformly labeled 1. But by Definition 2.3, T j−1
2j−3,j−1 = CX

0,j−1, and

by Part (v), CX
r = 1, r ≤ −1. Combining the above shows that Part (ii) coupled with the
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boundary conditions of Part (v) yields the correct computational formula, completing the
proof. □

The power of this proposition lies in the ease by which it allows proofs of closed forms for
the circuit array rows.

Corollary 4.2. For c ≥ 1:

(i) To prove CX
2(c−1),j = rj(X), j ≥ c, with rj(X) a rational function in j and X, it

suffices to verify that CX
2(c−1),c = rc(X) and CX

2(c−1),j = rj(X), j > c.

(ii) To prove CX
2(c−1)−1,j = rj(X) it suffices to verify that CX

2(c−1)−1,j = rj(X), j ≥ c.

Remark 4.3. In practice, one uses the prior corollary in conjunction with Proposition 4.1,
which computes row and column values CX using the four local functions, (2.2)–(2.5), evaluated
at values that occur in prior rows or columns of CX . This requires proving that two rational
functions are equal, which is then conveniently accomplished by algebraic software.

Using the corollary, we can immediately present closed forms for rows 0,1,2 of CX and row 2
of CM . (For CM , we make explicit the verification, since technically, Proposition 4.1 applies
to CX not to CM . Although an analogous proposition could be presented for CM , we only
address rows 0–2 of CM and do not need elaborate machinery.)

Corollary 4.4. For CX
0 , (2.6) (and the associated recursions) in Example 2.2 provides a

closed form.

Similarly, we have

Corollary 4.5. CX
1,s = c1(s,X) = 3·9s−2X−1

3·9s−2X
.

Corollary 4.6. Define c2,0(s) = 27 · 9s−3 − 1, c2,1(s) = 24 · (2s − 3) · 9s−3, and c2,2(s) =

81 · 81s−3 − 3 · 9s−3. Then CX
2,s = r2(s,X) =

c2,0(s)−c2,1(s)X+c2,2(X2)
(9s−2X−1)2

.

Remark 4.7. The functions c(2, i), 0 ≤ i ≤ 2, are respectively the coefficients of Xi in the
numerator of r2(s,X). The first few terms are given by

CX
2 =

{
2
2(1− 4

3X + 1
3X

2)

(X − 1)2
, 2

13− 36X + 39X2

(9X − 1)2
, 2

121− 540X + 3267X2

(81X − 1)2
, . . .

}
.

Besides this closed form, we may describe CX
2 with recursions and annihilators. The c2,i,

0 ≤ i ≤ 2, satisfy respectively the recursions Gn = 10Gn−1 − 9Gn−2, Gn = 18Gn−1 + 81Gn−2,
and Gn = 90Gn−1 − 81Gn−2. The corresponding annihilators are (X − 1)(X − 9), (X − 9)2,
and (X − 9)(X − 81), respectively.

Notice that the annihilators immediately suggest a pattern of products of linear factors of
the form X − 9k, k ≥ 0. In contrast, neither the recursions nor the closed formula immedi-
ately suggest any pattern. For this reason, the main conjectures and results of this paper are
formulated in terms of annihilators. It turns out what was just seen in the second row appears
to be true in all rows: the annihilators of the closed forms are products of linear factors of the
form X − 9k, k ≥ 0. Before formulating this result, we show that

(i) this pattern is true for CM , thus supporting the patterns noted, and
(ii) also motivate a stronger formulation of the patterns.

Corollary 4.8. For s ≥ 1, define cM0 (s,X1) =
9s−1−1+X1

9s−1 , s ≥ 1. Then, cM0 (s,X1) = cM0,s.
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Remark 4.9. As noted above, technically, we cannot prove this corollary with Proposition 4.1,
which is formulated for CX , not for CM . Rather than create an analogous proposition, we
provide details for CM

2 below and note here that the derivation for CM
i , i = 0, 1 is similar and

hence is omitted.
Notice that the coefficients of the constant and X1 term in numerators of cM0 (s,X1) satisfy

the recursions Gs = Gs−1 and Gs = 10Gs−1 − 9Gs−2, respectively. No apparent pattern
emerges. In contrast, the annihilators of the constant and X1 term are (E − 1) and
(E − 1)(E − 9). This is consistent with our observation that the patterns for CX are more
naturally formulated in terms of annihilators.

Corollary 4.10. For s ≥ 2, CM
1,s = cM1 (s,X1) =

(9s−1−1)+X1

3(X1+3·9s−2−1)
.

Remark 4.11. The annihilators of the coefficient sequences of 1 and X1 are similar to those
for cM0 (s,X1) and are therefore consistent with the idea of formulating patterns in terms of
annihilators.

Corollary 4.12. Define coefficient functions, c2,1(s) = 9s−2, c2,0(s) = 9s−2 − 1, c1,1(s) =
4 · 9s−2, c1,0(s) = 2 + (16(s − 2) − 2)9s−2, c0,1(s) = 4 · 9s−2, c0,0(s) = −1 + 9 · 81s−2 − (8 +
16(s− 2))9s−2, and ci,j(s) = 0, otherwise. By the Trivial and Addition-Multiplication Lemma
of Section 3, these coefficient functions are annihilated by the annihilators listed in Table 4
and satisfy the recursions presented there.

Define

cM2 (s,X1, X2) =

∑
0≤i,j≤2

ci,j(s)X
i
1X

j
2

(3 · 9s−2 − 1 +X1)2
.

Then
CM
2,s = cM2 (s,X1, X2). (4.4)

Proof. The proof is by induction. The base case verifies (4.4) for s = 3. Using an induction
assumption, we complete the proof by verifying the following algebraic identity of rational
functions:

cM2 (s+ 1, X1, X2) = L(cM2 (s,X1, X2), c
M
1 (X1, s), c

M
0 (s,X1), 1).

□

Table 4. The recursions satisfied by the coefficients of the numerator of CM
2,s.

Coefficient Recursion Annihilator

X0
1X

0
2 Gs = 100Gs−1 − 1638Gs−2 + 8100Gs−3 − 6561Gs−4 (E − 81)(E − 9)2(E − 1)

X0
1X

1
2 Gs = 10Gs−1 −Gs−2 (E − 1)(E − 9)

X1
1X

0
2 Gs = 19Gs−1 − 99Gs−2 + 81Gs−3 (E − 9)2(E − 1)

X1
1X

1
2 Gs = 9Gs−1 (E − 9)

X2
1X

0
2 Gs = 10Gs−1 − 9Gs−2 (E − 1)(E − 9)

X2
1X

1
2 Gs = 9Gs−1 (E − 9)

Prior to stating the main results of this paper, we present a stronger formulation of the
patterns of the factorizations of annihilators of the rows CX

r . The following example provides
motivation.
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Example 4.13. Using Proposition 4.1 or Definition 2.3, we may calculate the following.

CX
3,4 =

(−1 + 27X)(121− 540X + 3267X2)

24(−1 + 81X)(5− 18X + 45X2)
,

CX
4,4 =

(−1 + 27X)(−89 + 333X − 447X2 + 267X3)

(5− 18X + 45X2)2
,

CX
5,4 =

(13− 36X + 39X2)(−89 + 333X − 447X2 + 267X3)

192(−1 +X)3(5− 18X + 45X2)
.

Notice, that each CX
i,4, i ∈ {3, 4, 5} is a ratio of products of two polynomials (with an extra

constant term). Moreover, the following factors are identical: a linear factor occurring in
CX
3,4, C

X
4,4, the cubic factors occurring in CX

4,4, C
X
5,4, and the quadratic factor occurring in the

denominators of CX
i,4, i ∈ {3, 4, 5} with this factor being squared in CX

4,4.
It turns out that these factors, when restricted to any particular row, have coefficients that

satisfy recursions whose underlying annihilator consists of linear factors of the form X − 9k.
Remarkably, we can completely describe these factorizations using a 3-dimensional array satis-
fying order 1 (albeit non-homogeneous) recursions. This suggests a stronger form of the main
result. The main results of this paper are stated as conjectures with a strong and weak form.

Conjecture 4.14 (Main Result, Weak Form). For each row r ∈ {2(c− 1), 2(c− 1)− 1}, there
exists a sequence of functions Num[CX

r (j)] and Den[CX
r (j)] such that

(i) CX
r (j) = Num[CX

r (j)]
Den[CX

r (j)]
, and

(ii) Each of the sequences Num[CX
r (j)], Den[CX

r (j)], j ≥ c satisfies a recursion whose
corresponding annihilators are products of linear factors (possibly with repetition) of
the form X − 9k, k ≥ 0.

If we replace the superscript X with M , we obtain a corresponding Main Result, Weak Form,
for CM .

Conjecture 4.15 (Main Result, Strong Form). For c = 1, r = 0, and for each c ≥ 2 and
corresponding r ∈ {2(c − 1), 2(c − 1) − 1} there exists a sequence of polynomials pr(j,X),
j ≥ c, such that

(i) If c ≥ 1 and r = 2(c − 1) − 1, then there exists a constant, K, depending at most on
c, with

CX
r,j = K

pr−3(j − 1)pr−1(j)

pr−2(j)pr(j)
.

(ii) If c ≥ 1 and r = 2(c− 1), then there exists a constant, K, with

CX
r,j = K

pr−4(j − 1)pr(j)

pr−1(j)2
.

Moreover, we can completely describe the factorizations of the annihilators of the coeffi-
cient sequences of the pr. Towards this end, we first define the following 3-dimensional
recursive array, e (standing for exponent), the first four rows of which are presented
in Table 5.
(a) ei,j,k = 0, otherwise (i.e., if not defined by the remaining equations),
(b) ei,0,i = 1, i ≥ 0,
(c) ei+1,0,k = ei,0,k + k, i ≥ 0, 0 ≤ k ≤ i,
(d) ei,i+1,k+1 = ei,0,k, i ≥ 0, 0 ≤ k ≤ i,
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(e) ei,i,k = ei,i−1,k + k, i ≥ 1, 1 ≤ k ≤ i,
(f) ei,j,k = ei−1,j,k + k, i > j, 1 ≤ j ≤ i, 1 ≤ k ≤ i.

(iii) For c ≥ 1 and r ∈ {2(c−1), 2(c−1)+1}, deg(pr) = c. For each j, 0 ≤ j ≤ c, the degree-
j sequence, that is, the sequence of coefficients of Xj in pr(X), satisfy a recursion with
the annihilator of the degree-0 coefficient sequence being

∏c
k=0(X − 9k)e2r,0,k , and the

annihilator of the degree-j coefficient sequence, j > 0, being
∏c

k=1(X − 9k)e2r,j,k .

Table 5. First four rows and columns of the 3-dimensional array e. Rows
and columns start at index 0, while within a given cell, indices start at 0

(respectively 1) for column 0 (respectively column j, j > 0).

Row index, r Coefficient of X0 Coefficient of X1 Coefficient of X2 Coefficient of X3

Starts at (X − 1)e Starts at (X − 9)e Starts at (X − 9)e Starts at (X − 9)e

0 1 1

1 1,1 2 1,1

2 1,2,1 3,2 2,3 1,2,1

3 1,3,3,1 4,4,2 3,5,3 2,4,4

Example 4.16. To illustrate Part (iii) of the strong form of the main conjecture, we cal-
culate, for c ≥ 3, the annihilator of X of the cubic polynomial, pr, r ∈ {4, 5}. By Table 5,
e3,1,i{i=1,2,3} = {4, 4, 2}. By Part (iii) of the Strong Form of the Main Conjecture, the coeffi-

cient sequence of X in {p3(i)}i≥3 is annihilated by (X − 9)4(X − 81)4(X − 729)2.
The illustrations for Parts (i) and (ii) are similar so we suffice with an illustration of

Part (ii) using the explicit value of CX
5,4 presented in Example 4.13. Using the notation of

Part (ii), for CX
5,4 we have r = 5, c = 3, j = 4. To show that Part (ii) describes the right-hand

side of the equation with CX
5,4, we must compute pr−3(j − 1), pr−2(j), pr−1(j), and show that

the cubic pr(j) is a factor of CX
5,j.

Using Proposition 4.1, we may compute

{CX
2,k}{k≥2} =

{
2(X − 3)

3(X − 1)
, 2

13− 36X + 39X2

(1− 9X)2
, 2

121− 540X + 3267X2

(1− 81X)2
, . . .

}
.

These values confirm that pr−3(j − 1) = 13− 36X + 39X2.
Similarly, we can compute

{CX
3,k}{k≥3} =

{
(3X − 1)

(
39X2 − 36X + 13

)
12(X − 1)2(9X − 1)

,
(27X − 1)

(
3267X2 − 540X + 121

)
24(81X − 1) (45X2 − 18X + 5)

,

(243X − 1)
(
265599X2 − 6804X + 1093

)
12(729X − 1) (7371X2 − 486X + 91)

, . . .

}
,

which confirms the value of pr−2(j) = 5− 18X + 45X2.
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We may similarly compute the first few values of rows C4 and C5. For C4, we may compute

{CX
4,k}{k≥3} =

{
(X − 3)(3X − 1)

6(X − 1)2
,
(27X − 1)

(
267X3 − 447X2 + 333X − 89

)
4 (45X2 − 18X + 5)2

,

(243X − 1)
(
438561X3 − 187029X2 + 87399X − 16243

)
2 (7371X2 − 486X + 91)2

, . . .

}
,

confirming the value of pr−1(j) = −89 + 333X − 447X2 + 267X3.
For row C5, we may compute

{CX
5,k}{k≥4} =

{(
39X2 − 36X + 13

) (
267X3 − 447X2 + 333X − 89

)
192(X − 1)3 (45X2 − 18X + 5)

,(
3267X2 − 540X + 121

) (
438561X3 − 187029X2 + 87399X − 16243

)
192 (7371X2 − 486X + 91) (981X3 − 855X2 + 495X − 109)

, . . .

}
,

which confirms that (X − 1)3 is a cubic factor (of the denominator) of CX
5,4.

Using the above lists, we can also verify, consistent with Part (ii) of the Strong Form of the
Main Conjecture, that

CX
5,5 = K

p2(5)p4(5)

p3(5)p5(5)
=

(
3267X2 − 540X + 121

) (
438561X3 − 187029X2 + 87399X − 16243

)
192 (7371X2 − 486X + 91) (981X3 − 855X2 + 495X − 109)

,

with K = 1
192 .

It is natural to ask what can and cannot be proven and what evidence we have for believing
the Main Conjectures. Using the fact that the product of the characteristic polynomials
of two recursive sequences has as its root products of roots of the individual characteristic
polynomials, [12], we have the following elementary result.

Corollary 4.17. The Strong Form of the Main Conjecture implies the Weak Form of the
Main Conjecture.

Besides Corollaries 4.4–4.6 we have the following.

Corollary 4.18. The Strong Form of the Main Conjecture is true for rows r, 0 ≤ r ≤ 7.

Proof. We can obtain explicit forms for the pr, 0 ≤ r ≤ 7. We then simply apply Corollary 4.2.
□

This proof sheds light on what we cannot do. Although we conjecture that each entry
of CX

r,j is a quotient of a numerator and denominator of products of two polynomials, and
although we can explicitly give the underlying recursions satisfied by the coefficients of these
polynomials, we have not found explicit forms for all entries; equivalently, we have not found
explicit patterns for the initial conditions. It is this that holds up a complete proof. However,
we believe the conjecture to be true because of the many initial cases we can prove as well as
the very transparent and simple patterns underlying them.

We also note that because of the computational complexity involved, we have not pursued
CM further beyond Corollaries 4.8 and 4.10. We do believe that at least the weak form of the
conjecture (with CM replacing CX in the weak form of the Main Conjecture) is true.
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5. Conclusion

This paper has explored the polynomial sequences of CX , which is a polynomial general-
ization of the numerical circuit array that presents equivalent resistance values occurring in
the central regions of the collection of n-grids and their reductions. Interesting simply stated
patterns emerge, some of which we have proved. We believe this to be a fertile ground for
future research.
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