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Abstract. One of the most popular and studied recursive sequences is the Fibonacci se-
quence. It is challenging to see how Fibonacci numbers can be used to generate other recur-
sive sequences. In our article, we describe some families of integer recurrence sequences as
rational polynomial linear combinations of Fibonacci numbers.

1. Introduction

As usual, the sequence of Fibonacci numbers (Fn)
∞
n=0 is defined by F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2 (see sequence A000045 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [4]). Terms with negative subscripts −n (n ∈ N) can be introduced via the equality

F−n = −F−n+1 + F−n+2, (1.1)

and it turns out that F−n = (−1)n+1Fn. The zeros of the characteristic polynomial x2 − x− 1
are α = (1 +

√
5)/2 and β = (1 −

√
5)/2. The Binet formula gives the Fibonacci numbers

explicitly by Fn = (αn − βn)/
√
5.

Several problems of combinatorics have solutions in the form

wn := u(n)Fn + v(n)Fn−1 + c(n), (1.2)

where u(x), v(x), and c(x) are rational polynomials of the variable x. It is not obvious, at least
at the beginning, that the terms of wn in (1.2) are integers, because the coefficient polynomials
are rational.

For example, if an gives the number of parts in all compositions of n+ 1 with no 1s, then

an =
2n+ 3

5
Fn − n

5
Fn−1,

see A010049 [4]. Here, u(x) = (2x + 3)/5 and v(x) = −x/5 are linear polynomials with
noninteger rational coefficients (and c(x) vanishes), but (an) is an integer sequence. There
are polynomials with higher degree appearing in (1.2). For instance, consider the sequence
an = A129707 of [4], which describes the number of inversions in all Fibonacci binary words
of length n. The formula

an−3 =
5n2 − 37n+ 50

50
Fn +

4n− 4

50
Fn−1 (1.3)

given in the encyclopedia leads to

an =
5n2 − n− 4

25
Fn +

5n2 + n

50
Fn−1

via the identity z3Fn+3 + z2Fn+2 = (3z3 + 2z2)Fn + (2z3 + z2)Fn−1. The last identity comes
immediately when one applies the Fibonacci recurrence thrice. An extension having a similar
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flavor is based on the well-known Fibonacci identity Fn−j = FnF−j + Fn−1F−j+1 with n ∈ Z
and j ∈ N. Combining it with (1.1), we have

Fn−j =
(
(−1)jFj−1

)
Fn +

(
(−1)j+1Fj

)
Fn−1. (1.4)

In this paper, we study the following general problem. Let 0 ≤ j1 < j2 < · · · < js
be nonnegative integers, and p1(x), p2(x), . . . , ps(x) ∈ Q[x] such that deg(pi(x)) = di. Put
d⋆ = maxi{di}, which is a nonnegative integer. Define the sequence (wn)n∈Z by

wn = p1(n)Fn−j1 + p2(n)Fn−j2 + · · ·+ ps(n)Fn−js . (1.5)

The following question is the main subject of the present work. Can we give conditions for
the rational functions pi(x) to guarantee that the sequence (wn) is integral? Later, we will
answer the question for certain families of polynomials.

Remark 1. Multiple applications of (1.4) transforms (1.5) into the form

wn = P0(n)Fn + P1(n)Fn−1, (1.6)

where P0(x) and P1(x) are suitable rational polynomials depending on the subscripts
j1, j2, . . . , js and on the polynomials p1(x), p2(x), . . . , ps(x). Hence, essentially, it is sufficient
to consider only (1.6). But, sometimes the form (1.5) promises a more advantageous starting
point in the investigations.

In general, a linear recurrence with constant coefficients is called a C-finite sequence, where
the character C refers to the constant coefficients. It is known that the set of C-finite sequences
is closed under the operations of addition and multiplication (see [2, Chapter 4]).

The question arises naturally whether integer sequences (wn) having type (1.6) (or
equivalently (1.5)) are C-finite. And are they closed under addition?

For the first question, consider (1.6). This admits

wn = P0(n)Fn + P1(n)Fn−1 =
1√
5

(
P0(n) +

P1(n)

α

)
αn +

1√
5

(
P0(n) +

P1(n)

β

)
βn.

The last expression shows that the corresponding characteristic polynomial of the sequence
(wn) has zeros α and β with certain multiplicities (which can be derived from the coefficient
polynomials, respectively). Hence, the constant coefficients of the characteristic polynomial
provide the coefficients of the linear recurrence for (wn). Thus, (wn) is C-finite.

The closure property (for addition) of sequences (wn) having type (1.6) can be easily seen.
Indeed, taking two such sequences (wn) and (w⋆

n), their sum is given by

wn + w⋆
n = (P0(n)Fn + P1(n)Fn−1) + (P ⋆

0 (n)Fn + P ⋆
1 (n)Fn−1) = P ⋆⋆

0 (n)Fn + P ⋆⋆
1 (n)Fn−1,

where P ⋆⋆
0 (n) = P0(n)+P ⋆

0 (n) and P ⋆⋆
1 (n) = P1(n)+P ⋆

1 (n). The integrity of the sum sequence
is obvious because (wn) and (w⋆

n) are integer sequences.
In Section 2, after considering the general case (1.5), we examine only (1.6) for rational

coefficient polynomials with small degree. In Section 3, a modified version of (1.2) will be
studied.

2. Main Results

2.1. General Approach. Although Remark 1 of the previous section provides the idea how
to simplify (1.5) to get (1.6); here, we choose a slightly different way. At the beginning, we
assume that pj(x) ∈ C[x] for j = 1, 2, . . . , s.
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The Binet formula implies that

wn = p1(n)Fn−j1 + p2(n)Fn−j2 + · · ·+ ps(n)Fn−js (2.1)

=
s∑

t=1

pt(n)
αn−jt − βn−jt

√
5

=

s∑
t=1

(
pt(n)

αjt

αn

√
5
− pt(n)

βjt

βn

√
5

)
.

Then, there exist polynomials qα(x), qβ(x) ∈ C[x] (if pj(x) ∈ Q[x], then qα(x) and qβ(x) are
from Q(α)[x]) such that

wn = qα(n)α
n − qβ(n)β

n. (2.2)

Clearly,

qα(n) =

s∑
t=1

pt(n)√
5αjt

, qβ(n) =

s∑
t=1

pt(n)√
5βjt

.

Let dα = deg(qα(x)) and dβ = deg(qβ(x)). Put d̃ = dα + dβ + 2, which gives the order of
the recursive sequence (wn). The characteristic polynomial of (wn) is

cw(x) = (x− α)dα+1(x− β)dβ+1 = (x2 − x− 1)dαβ+1(x− α)dα−dαβ (x− β)dβ−dαβ ,

where dαβ = min{dα, dβ}. Note that at least one of dα − dαβ and dβ − dαβ is zero.
Before investigating the principal problem, we analyze the question of equality of degrees

dα and dβ. In the case s = 2, j1 = 0, j2 = 1, the example

wn = (n+ 1)Fn + (−αn+ 2)Fn−1,

where p1(n) = n+ 1 and p2(n) = −αn+ 2 admits qα(n) = 1 and qβ(n) = αn− 1, so it might
happen that dα differs from dβ. In the example above, the coefficients are not from Q, but

from Q(
√
5), and this is the reason why dα ̸= dβ may happen. The situation differs when we

assume pj(x) ∈ Q[x] for all possible j. In this case, one can easily show that dα = dβ. Here,
we skip the proof because it is rather technical, but we note the crucial point. The leading
coefficients of qα(x) and qβ(x) are conjugates in Q(

√
5), so they can vanish only together.

2.2. Specific Cases with Equal Degrees. In the sequel, suppose that the coefficient
polynomials are from Q, i.e., dα = dβ. Consequently dαβ = dα = dβ, and then d̃ = 2(dαβ + 1)
holds; moreover

cw(x) = (x2 − x− 1)dαβ+1.

We note in advance that the method we use in Cases 2.2.1–2.2.3 (and essentially in Section 3)
can be applied for other given coefficient polynomials pj(x). We always obtain a system of
parametric linear equations, where the unknowns are the coefficients of the polynomials pj(x)
and their multipliers come from the initial values of (wn). The evaluation of the solution leads
to the desired conditions.

2.2.1. Case s = 2, j1 = 0, j2 = 1, d1 = d2 = 1. Assume that a ̸= 0, b, c ̸= 0, and d are
rational numbers and

wn = (an+ b)Fn + (cn+ d)Fn−1. (2.3)

Following the list of equivalent transformations in (2.1) leads to

wn =
(aα+ c)n+ (bα+ d)

α
√
5

αn − (aβ + c)n+ (bβ + d)

β
√
5

βn; (2.4)
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the initial values are

w0 = d,

w1 = a+ b,

w2 = 2a+ b+ 2c+ d,

w3 = 6a+ 2b+ 3c+ d.

The characteristic polynomial of (wn) is

cw(x) = (x− α)2(x− β)2 = (x2 − x− 1)2 = x4 − 2x3 − x2 + 2x+ 1;

hence, the recurrence relation

wn = 2wn−1 + wn−2 − 2wn−3 − wn−4 (2.5)

holds for n ≥ 4.
Now, we investigate what rational coefficients a, b, c, and d guarantee that (wn) is integral.

Clearly, the initial values w0, w1, w2, and w3 must be integers. Consequently, d = w0 must be
an integer, further solving the system

z1 = a+ b,

z2 = 2a+ b+ 2c,

z3 = 6a+ 2b+ 3c

in a, b, and c with arbitrary integer parameters z1 = w1, z2 = w2 − d, and z3 = w3 − d, we
obtain

a =
−z1 − 3z2 + 2z3

5
, b =

6z1 + 3z2 − 2z3
5

, c =
−2z1 + 4z2 − z3

5
.

This result, together with (2.5), guarantees that (wn) is an integer sequence. Hence, we have
proved:

Theorem 2.1. The terms

wn = (an+ b)Fn + (cn+ d)Fn−1

form an integer sequence (wn) if and only if d is an integer and

a =
−z1 − 3z2 + 2z3

5
, b =

6z1 + 3z2 − 2z3
5

, c =
−2z1 + 4z2 − z3

5
,

where z1, z2, and z3 are integers, too.

Note that once we have d ∈ Z and a, b, c ∈ Q, as given in the theorem above, then the initial
values of the recurrence (wn) of order four are w0 = d, w1 = z1, w2 = z2 + d, and w3 = z3 + d.
Thus, the integer sequence (2.5) with suitable initial values has another interpretation given
by (2.3). For example, let d = 0; also, z1 = z2 = 1 and z3 = 3. In this case, we get the integer
sequence

wn =
2n+ 3

5
Fn − n

5
Fn−1,

which is the first example in the introduction.
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2.2.2. Case s = 2, j1 = 0, j2 = 1, d1 = d2 = 2. This subsection is devoted to the study of
the case when the coefficient polynomials are quadratic. The treatment is analogous to the
previous subsection; hence, we give only the results of computations.

Assume that a ̸= 0, b, c, d ̸= 0, e, and f are rational numbers, and

wn = (an2 + bn+ c)Fn + (dn2 + en+ f)Fn−1. (2.6)

Now, sequence (wn) satisfies

wn =
(aα+ d)n2 + (bα+ e)n+ (cα+ f)

α
√
5

αn − (aβ + d)n2 + (bβ + e)n+ (cβ + f)

β
√
5

βn, (2.7)

with initial values
w0 = f,

w1 = a+ b+ c,

w2 = 4a+ 2b+ c+ 4d+ 2e+ f,

w3 = 18a+ 6b+ 2c+ 9d+ 3e+ f,

w4 = 48a+ 12b+ 3c+ 32d+ 8e+ 2f,

w5 = 125a+ 25b+ 5c+ 75d+ 15e+ 3f.

(2.8)

The characteristic polynomial of (wn) is

cw(x) = (x− α)3(x− β)3 = (x2 − x− 1)3 = x6 − 3x5 + 5x3 − 3x− 1;

hence,
wn = 3wn−1 − 5wn−3 + 3wn−5 + wn−6. (2.9)

Clearly, f must be an integer, further eliminating f from system (2.8) and solving it in a, b,
c, d, and e, we obtain

a =
−z1 + 3z2 + z3 − 3z4 + z5

10
,

b =
−5z1 − 75z2 + 15z3 + 45z4 − 17z5

50
,

c =
30z1 + 30z2 − 10z3 − 15z4 + 6z5

25
,

d =
3z1 − 4z2 − 3z3 + 4z4 − z5

10
,

e =
−45z1 + 80z2 + 15z3 − 40z4 + 11z5

50
,

(2.10)

where z1 = w1, z2 = w2−f , z3 = w3−f , z4 = w4−2f , and z5 = w5−3f are arbitrary integer
parameters. A summary of the result of this subsection is:

Theorem 2.2. The rational coefficients a, b, c, d, e, and f determine integers sequences of
the form

wn = (an2 + bn+ c)Fn + (dn2 + en+ f)Fn−1

if and only if f ∈ Z and a, b, c, d, and e are as given in (2.10).

Thus, the integer sequences (2.9) with suitable initial values also have another interpretation
given by (2.6). For example, let f = 0, z1 = 0, z2 = 1, z3 = 4, z4 = 12, and z5 = 31. In this
particular case, we get the integer sequence

wn =
5n2 − n− 4

25
Fn +

5n2 + n

50
Fn−1,

which is equivalent to the result (1.3) given in OEIS [4].
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2.2.3. A Particular Case with Nonequal Degrees: s = 2, j1 = 0, j2 = 1, d1 = 2, d2 = 1. Now,
a ̸= 0, b, c, d ̸= 0, and e are all in Q, and

wn = (an2 + bn+ c)Fn + (dn+ e)Fn−1. (2.11)

Using the usual technique, we obtain that sequence (wn) satisfies

wn =
aαn2 + (bα+ d)n+ (cα+ e)

α
√
5

αn − aβn2 + (bβ + d)n+ (cβ + e)

β
√
5

βn, (2.12)

with initial values

w0 = e,

w1 = a+ b+ c,

w2 = 4a+ 2b+ c+ 2d+ e,

w3 = 18a+ 6b+ 2c+ 3d+ e,

w4 = 48a+ 12b+ 3c+ 8d+ 2e.

(2.13)

The characteristic polynomial of (wn) is

cw(x) = (x− α)3(x− β)3 = (x2 − x− 1)3 = x6 − 3x5 + 5x3 − 3x− 1;

hence,

wn = 3wn−1 − 5wn−3 + 3wn−5 + wn−6. (2.14)

Clearly, e must be an integer; further eliminating e from (2.13) and solving it in a, b, c, and
d, we obtain

a =
2z1 − z2 − 2z3 + z4

10
,

b =
−56z1 − 7z2 + 66z3 − 23z4

50
,

c =
48z1 + 6z2 − 28z3 + 9z4

25
,

d =
−6z1 + 18z2 − 9z3 + 2z4

25
,

(2.15)

where z1 = w1, z2 = w2 − e, z3 = w3 − e, and z4 = w4 − 2e are arbitrary integer parameters.
A summary of the result of this subsection is:

Theorem 2.3. The rational coefficients a, b, c, d, and e determine integer sequences of the
form

wn = (an2 + bn+ c)Fn + (dn+ e)Fn−1

if and only if e and zi (i = 1, . . . , 4) are integers and a, b, c, and d are as given in (2.15).

For example, let e = z1 = z2 = z3 = 1 and z4 = 2. In this particular case, we get the integer
sequence

wn =
5n2 − 43n+ 88

50
Fn +

14n+ 50

50
Fn−1.

This sequence (wn)
∞
0 = (1, 1, 2, 2, 4, 7, 15, 32, 69, 146, 303, . . .) does not appear in OEIS.
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3. A Modified Problem

In the introduction, (1.2) offers a further polynomial c(x). Németh [3] investigated a related
question, namely the problem of walks on tiled square boards, and proved, among others things,
that the tiling-walking sequence (rn) of the (2 × n)-board with only dominoes is recursively
given by a sixth order recurrence having explicit form

rn =
4n

5
Fn+1 +

3n+ 3

5
Fn +

1

2
+

1

2
(−1)n. (3.1)

This is sequence A054454 in [4].
Our purpose now is to examine the sequence

wn = (an+ b)Fn + (cn+ d)Fn−1 + e+ f(−1)n, (3.2)

where the coefficients a, b, . . . , f are rational numbers, again, to have integrity condition for
(wn).

Because the method is detailed in the previous parts of Section 2, we record the statement,
and compare it to Németh’s equality (3.1).

Theorem 3.1. Let the initial values w0, w1, . . . , w5 be integers. If

a =
3w0 + 2w1 − 7w2 − w3 + 4w4 − w5

5
, b =

−3w0 − 2w1 − 3w2 + 6w3 + 6w4 − 4w5

5
,

c =
−4w0 − w1 + 11w2 − 2w3 − 7w4 − 3w5

5
, d = 2w1 + w2 + 2w3 − w4,

e =
w0 + 3w1 + w2 − 3w3 − w4 + w5

2
, f =

w0 + w1 − 3w2 − w3 + 3w4 − w5

2
,

then wn = (an + b)Fn + (cn + d)Fn−1 + e + f(−1)n is an integer sequence. The converse of
this statement is also true.

As an example, let w0 = 0, w1 = 1, w2 = 2, w3 = 6, w4 = 12, and w5 = 26. Now, a = 4/5,
b = −4/5, c = 3/5, d = 0, e = 1/2, and f = −1/2. Then

wn =
4n− 4

5
Fn +

3n

5
Fn−1 +

1

2
− 1

2
(−1)n.

This coincides with (3.1) via rn = wn+1.
Finally, we give a well-known sequence for f = 0 in (3.2). The sequence of Leonardo

numbers is defined by L0 = 1, L1 = 1, and by Ln = Ln−1 + Ln−2 + 1 (cited as A001595 in
OEIS [4]). It is easy to see that

Ln = 2Fn + 2Fn−1 − 1.

Recently, Atanassov [1] defined some recurrence sequences as linear combinations of two
consecutive Fibonacci numbers. Moreover, the reader will find more special examples in its
references.
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