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PROBLEMS PROPOSED IN THIS ISSUE

H-606 Proposed by Mario Catalani, University of Torino, Italy
Let us consider, for a nonnegative integer n, the following sum

Sn =
bn

2 c∑
k=0

(
n− k
2bk

2 c

)
−
bn

2 c−1∑
k=0

(
n− 1− k
2bk

2 c+ 1

)
.

A summation with a negative upper limit is taken to be equal to zero. Express Sn both in
closed form and as a recurrence.

H-607 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
Let n be a positive integer greater than or equal to 3. Evaluate the sum

n∑
i=1

[(Fi+1 − Fi−1

F 2
i+2 − F 2

i−2

)n−2 ∏
j=1
j 6=i

(
1− Fj+2 − Fj−2

Fi+2 − Fi−2

)−1]
.

H-608 Proposed by Mario Catalani, University of Torino, Italy
Let Pn denote the Pell numbers

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1.

Find

lim
n→∞

n∏
k=1

(
1 +

1√
2P 2

2k + 1

)
.
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SOLUTIONS

Fibonacci Polynomials and Binomial Coefficients

H-594 Proposed by Mario Catalani, University of Torino, Italy
(Vol. 41, no. 1, February 2003)

Consider the generalized Fibonacci and Lucas polynomials:

Fn+1(x, y) = xFn(x, y) + yFn−1(x, y), F0(x, y) = 0, F1(x, y) = 1;

Ln+1(x, y) = xLn(x, y) + yLn−1(x, y), L0(x, y) = 2, L1(x, y) = x.

Assume y 6= 0, 2x2 − y 6= 0. We will write Fn and Ln for Fn(x, y) and Ln(x, y), respectively.
Show that:

1.
bn

2 c∑
k=0

(
n− k
k

)
xky−2kF3k =

xF2n+1 − yF2n + (−x)n+2Fn + (−x)n+1yFn−1

yn(2x2 − y)
;

2.
bn

2 c∑
k=0

(
n− k
k

)
xky−2kL3k =

xL2n+1 − yL2n + (−x)n+2Ln + (−x)n+1yLn−1

yn(2x2 − y)
.

Solution by H.-J. Seiffert, Berlin, Germany

Define the Fibonacci and Lucas polynomials by

F0(x) = 0, F1(x) = 1, and Fn+1(x) = xFn(x) + Fn−1(x) for n ≥ 1,

and
L0(x) = 2, L1(x) = x, and Ln+1(x) = xLn(x) + Ln−1(x) for n ≥ 1,

respectively. It is known (see [1]) that

bn
2 c∑

k=0

(
n− k
k

)
xkF3k(x) =

xF2n+1(x)− F2n(x) + (−x)n+2Fn(x) + (−x)n+1Fn−1(x)
(2x2 − 1)

(1)

and

bn
2 c∑

k=0

(
n− k
k

)
xkL3k(x) =

xL2n+1(x)− L2n(x) + (−x)n+2Ln(x) + (−x)n+1Ln−1(x)
(2x2 − 1)

. (2)

Simple induction arguments, show that, for all integers n, Fn = Fn(x, y) = (
√
y)n−1Fn(x/

√
y)

and Ln = Ln(x, y) = (
√
y)nLn(x/

√
y), where

√
y can be any of the two possible square roots
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of y. Now, it is easily verified that 1 follows from (1) when replacing x by x/
√
y and dividing

the resulting equation by
√
y, and that 2 follows from (2) with x replaced by x/

√
y.

1. H.-J. Seiffert. “Problem H-586.” The Fibonacci Quarterly 40.4 (2002): 379.

Also solved by Paul Bruckman, Kenneth Davenport, Walther Janous, Vincent
Mathe and the proposer.

Binomial Coefficients and Pell Numbers

H-595 Proposed by José Dı́az-Barrero & Juan Egozcue, Barcelona, Spain
(Vol. 41, no. 1, February 2003)

Let `, n be positive integers. Prove that

n∑
k=0

(
k + `+ 1
k + 1

){k+1∑
j=0

(−1)k+1−j

(
k + 1
j

)
P j−k−1

n

}
≤ P `+1

n − 1,

where Pn is the nth Pell number, i.e., P0 = 0, P1 = 1, and Pn+2 = 2Pn+1 + Pnfor n ≥ 0.
Solution by Kenneth Davenport, Frackville, PA

The inner sum is, by the well-known binomial formula,

k+1∑
j=0

(−1)k+1−j

(
k + 1
j

)
P j−k−1

n =
(−1)k+1

P k+1
n

k+1∑
j=0

(
k + 1
j

)
(−Pn)j

=
(−1)k+1

P k+1
n

· (1− Pn)k+1 =
(

1− 1
Pn

)k+1

.

We are then led to consider the sum

n∑
k=0

(
k + `+ 1
k + 1

)(
1− 1

Pn

)k+1

.

Substituting m = k + 1, we simplify the above expression to get

n∑
m=1

(
m+ `

m

)(
1− 1

Pn

)m

.
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Next, we make use of the power series

1
(1− x)k+1

=
∞∑

n=0

(
n+ k

n

)
xn, for − 1 < x < 1.

We let x = 1− 1/Pn obtaining that

P `+1
n − 1 =

∞∑
m=1

(
m+ `

m

)(
1− 1

Pn

)m

,

which implies the desired inequality.
Note that the only feature of Pn that the above proof used is the fact that Pn > 1. In

particular, the above inequality holds with Pn replaced by any real number x > 1.

Also solved by Paul Bruckman, Mario Catalani, Walther Janous, Vincent Mathe,
Angel Plaza and Sergio Fálcon, Ling-Ling Shi, and the proposers.

Prime Factors of Fibonacci Numbers

H-596 Proposed by the Editor
(Vol. 41, no. 2, May 2003)

A beautiful result of McDaniel (The Fibonacci Quarterly 40.1, 2002) says that Fn has
a prime divisor p ≡ 1 (mod 4) for all but finitely many positive integers n. Show that
the asymptotic density of the set of positive integers n for which Fn has a prime divisor
p ≡ 3 (mod 4) is 1/2. Recall that a subset N of all the positive integers is said to have
anasymptotic density λ if the limit

lim
x→∞

#{1 ≤ n < x | n ∈ N}
x

exists and equals λ.
Solution by the Editor

Suppose that n > 3 is odd. Then Fn is either congruent to 2 modulo 4 or it is odd
according to whether n is a multiple of 3 or not. In particular, Fn has odd prime factors and
if q denotes anyone of these then reducing the relation

L2
n − 5F 2

n = (−1)n · 4 = −4

modulo q, we read that (−4|q) = 1, therefore (−1|q) = 1, and thus q ≡ 1 (mod 4). Here, for
any integer a we used (a|q) to denote the Legendre symbol of a in respect to q. This argument
shows that Fn is never a multiple of a prime q ≡ 3 (mod 4) if n is odd, so the set of positive
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integers n for which Fn might have a prime divisor q ≡ 3 (mod 4) is contained in the set of
even numbers, and as such it can have asymptotic density at most 1/2. To prove the result, it
suffices to show therefore that most even numbers n have the property that Fn is a multiple
of some prime q ≡ 3 (mod 4). Write n = 2m. Assume that there exists a prime factor p of
m with p ≡ 2 (mod 3). Then, 2p ≡ 4 (mod 6). The Fibonacci sequence is periodic modulo 4
with period 6, and if k ≡ 4 (mod 6), then Fk ≡ F4 (mod 4). In particular, F2p ≡ 3 (mod 4),
therefore there must exist a prime factor q ≡ 3 (mod 4) of F2p. Since 2p|n, it follows that
F2p|Fn, therefore q divides Fn as well. Thus, if n = 2m, then Fn is always divisible by a prime
q ≡ 3 (mod 4), except, eventually, when m is not divisible by any prime number p ≡ 2 (mod 3).
But it is known that these last numbers form a set of asymptotic density zero. In fact, a result
of Landau (see [1]) shows that if x is a large positive real number, then the set of positive
integers m ≤ x such that m is not a multiple of any prime p ≡ 2 (mod 3) has cardinality
O(x/

√
log x) = o(x), which completes the proof.

1. E. Landau. “Handbuch der Lehre von der verteilung der Primzahlen.” 3rd Edition. Chelsea
Publ. Co. (1974): 668-669.

Please Send in Proposals!
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