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In [1] I gave a method for generating solutions for a special class of Diophantine equations.
In this note I will give a method for generating solutions for another special class of Diophantine
equations.

In [2] Carmichael gives a method for generating solutions for the Diophantine equation:

kx3 + ax2y + bxy2 + cy3 = t2 (1)

If one examines equation (1) carefully one will note that kx3 + ax2y + bxy2 + cy3 is a
homogeneous polynomial of degree 3 and that t2 has degree 2. Note that 3 and 2 are relatively
prime. In this note we shall show how to generate solutions for a class of Diophantine equations
of which (1) is a special case.

We begin with p(x1, x2, . . . , xk) a polynomial with positive integer coefficients, homoge-
neous of degree n, where n is an integer, and n > 1. Let b be a positive integer and m an
integer, m > 1. Suppose that (m, n) = 1. I.e. m and n are relatively prime. The class of
Diophantive equations we consider is given by:

p(x1, x2, . . . , xk) = btm. (2)

Let (a1, a2, . . . , ak) be a k-tuple of positive integers and p(a1, a2, . . . , ak) = a. There are three
possibilities:
(i) a = bcm for some positive integer c,

(ii) a = bc, i.e. a is divisible by b,
(iii) a = c, i.e. b does not divide a.

In case (i) we were lucky to guess a solution of (2).
In case (ii) there exists positive integers e1 and e2 such that me1 = ne2 + 1. (Remember

that (m, n) = 1).
Now cne2a = bccne2 = bcme1 .
Hence (ce2)n(p(a1, a2, . . . , ak) = b(ce1)m.
Therefore p(ce2a1, c

e2a2, . . . , c
e2ak) = b(ce1)m or xi = ce2ai, i = 1 to k and

t = cei

is a solution of (2).
The following example illustrates the method described above.

Example: Starting with the equation

2x3 + x2y + 2xy2 + y3 = 3t2

we substitute x = 1 and y = 1 to obtain a = 6. In this case b = 3 and c = 2. Further m = 2
and n = 3. Now 2 · 2 = 3 · 1 + 1. Hence e1 = 2 and e2 = 1. Therefore (21)3[2(1)3 + (1)2(1) +
2(1)(1)2 + (1)3] = 3 · 2 · 23 = 3(22)2. Hence 2(2)3 + (2)2(2) + 2(2)(2)2 + (2)3 = 3(4)2.

Our solution is x = 2, y = 2 and t = 4.
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In case (iii) there exists positive integers d1, d2, e1 and e2 such that me1 = ne2 + 1 and
nd2 = md1 + 1.

Now bnd2cne2a = bnd2cne2c.
Hence (bd2ce2)np(a1, a2, . . . , ak) = b(bd1ce1)m.
Therefore p(bd2ce2a1, b

d2ce2a2, . . . , b
d2ce2ak) = b(bd1ce1)m or xi = bd2ce2ai, i = 1 to k and

t = bd1ce1

is a solution of (2).
The following example illustrates the method described above.

Example: Starting with the equation

2x3 + x2y + 2xy2 + y3 = 3t2

we substitute x = 1 and y = 2 to obtain a = 20. In this case c = 20. Further m = 2 and
n = 3. Now, as before, 2 · 2 = 3 · 1 + 1. Hence e1 = 2 and e2 = 1. Further 1 · 3 = 1 · 2 + 1.
Hence d2 = 1 and d1 = 1. Therefore (31 · 201)3[2(1)3 + (1)2(2) + 2(1)(2)2 + (2)3] = 3(31 · 202)2.
Hence 2(3 · 20)3 + (3 · 20)2(2 · 3 · 20) + 2(3 · 20)(2 · 3 · 20)2 + (2 · 3 · 20)3 = 3(3 · 202)2. Our solution
is x = 60, y = 120 and t = 1200.

Of course in applying this method we can fine tune it depending on the value of a. For
example if in case (ii) a = bc = bdnc1 we need only multiply by cne2

1 . And similarly for case
(iii) if b = b1b2 and c = b1c1, i.e. (b, c) = b1, we need only multiply by bnd2

2 and then proceed
as in case (ii).

Finally, if m is odd, we can extend the class of equations to p(x1, x2, . . . , xk), a polynomial
with non-zero integer coefficents, b a non-zero integer, and (a1, a2, . . . , ak) a k-tuple of non-zero
integers, with all other conditions remaining the same.
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