GENERATING SOLUTIONS FOR A SPECIAL CLASS OF DIOPHANTINE EQUATIONS II

Pasquale J. Arpaia

Department of Mathematics and Computer Science, St. John Fisher College, Rochester, NY 14618
(Submitted July 2001-Final Revision January 2002)
In [1] I gave a method for generating solutions for a special class of Diophantine equations. In this note I will give a method for generating solutions for another special class of Diophantine equations.

In [2] Carmichael gives a method for generating solutions for the Diophantine equation:

$$
\begin{equation*}
k x^{3}+a x^{2} y+b x y^{2}+c y^{3}=t^{2} \tag{1}
\end{equation*}
$$

If one examines equation (1) carefully one will note that $k x^{3}+a x^{2} y+b x y^{2}+c y^{3}$ is a homogeneous polynomial of degree 3 and that t^{2} has degree 2 . Note that 3 and 2 are relatively prime. In this note we shall show how to generate solutions for a class of Diophantine equations of which (1) is a special case.

We begin with $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ a polynomial with positive integer coefficients, homogeneous of degree n, where n is an integer, and $n>1$. Let b be a positive integer and m an integer, $m>1$. Suppose that $(m, n)=1$. I.e. m and n are relatively prime. The class of Diophantive equations we consider is given by:

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{k}\right)=b t^{m} \tag{2}
\end{equation*}
$$

Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a k-tuple of positive integers and $p\left(a_{1}, a_{2}, \ldots, a_{k}\right)=a$. There are three possibilities:
(i) $a=b c^{m}$ for some positive integer c,
(ii) $a=b c$, i.e. a is divisible by b,
(iii) $a=c$, i.e. b does not divide a.

In case (i) we were lucky to guess a solution of (2).
In case (ii) there exists positive integers e_{1} and e_{2} such that $m e_{1}=n e_{2}+1$. (Remember that $(m, n)=1)$.

Now $c^{n e_{2}} a=b c c^{n e_{2}}=b c^{m e_{1}}$
Hence $\left(c^{e_{2}}\right)^{n}\left(p\left(a_{1}, a_{2}, \ldots, a_{k}\right)=b\left(c^{e_{1}}\right)^{m}\right.$.
Therefore $p\left(c^{e_{2}} a_{1}, c^{e_{2}} a_{2}, \ldots, c^{e_{2}} a_{k}\right)=b\left(c^{e_{1}}\right)^{m}$ or $x_{i}=c^{e_{2}} a_{i}, i=1$ to k and

$$
t=c^{e_{i}}
$$

is a solution of (2).
The following example illustrates the method described above.
Example: Starting with the equation

$$
2 x^{3}+x^{2} y+2 x y^{2}+y^{3}=3 t^{2}
$$

we substitute $x=1$ and $y=1$ to obtain $a=6$. In this case $b=3$ and $c=2$. Further $m=2$ and $n=3$. Now $2 \cdot 2=3 \cdot 1+1$. Hence $e_{1}=2$ and $e_{2}=1$. Therefore $\left(2^{1}\right)^{3}\left[2(1)^{3}+(1)^{2}(1)+\right.$ $\left.2(1)(1)^{2}+(1)^{3}\right]=3 \cdot 2 \cdot 2^{3}=3\left(2^{2}\right)^{2}$. Hence $2(2)^{3}+(2)^{2}(2)+2(2)(2)^{2}+(2)^{3}=3(4)^{2}$.

Our solution is $x=2, y=2$ and $t=4$.

In case (iii) there exists positive integers d_{1}, d_{2}, e_{1} and e_{2} such that $m e_{1}=n e_{2}+1$ and $n d_{2}=m d_{1}+1$.

Now $b^{n d_{2}} c^{n e_{2}} a=b^{n d_{2}} c^{n e_{2}} c$.
Hence $\left(b^{d_{2}} c^{e_{2}}\right)^{n} p\left(a_{1}, a_{2}, \ldots, a_{k}\right)=b\left(b^{d_{1}} c^{e_{1}}\right)^{m}$.
Therefore $p\left(b^{d_{2}} c^{e_{2}} a_{1}, b^{d_{2}} c^{e_{2}} a_{2}, \ldots, b^{d_{2}} c^{e_{2}} a_{k}\right)=b\left(b^{d_{1}} c^{e_{1}}\right)^{m}$ or $x_{i}=b^{d_{2}} c^{e_{2}} a_{i}, i=1$ to k and

$$
t=b^{d_{1}} c^{e_{1}}
$$

is a solution of (2).
The following example illustrates the method described above.
Example: Starting with the equation

$$
2 x^{3}+x^{2} y+2 x y^{2}+y^{3}=3 t^{2}
$$

we substitute $x=1$ and $y=2$ to obtain $a=20$. In this case $c=20$. Further $m=2$ and $n=3$. Now, as before, $2 \cdot 2=3 \cdot 1+1$. Hence $e_{1}=2$ and $e_{2}=1$. Further $1 \cdot 3=1 \cdot 2+1$. Hence $d_{2}=1$ and $d_{1}=1$. Therefore $\left(3^{1} \cdot 20^{1}\right)^{3}\left[2(1)^{3}+(1)^{2}(2)+2(1)(2)^{2}+(2)^{3}\right]=3\left(3^{1} \cdot 20^{2}\right)^{2}$. Hence $2(3 \cdot 20)^{3}+(3 \cdot 20)^{2}(2 \cdot 3 \cdot 20)+2(3 \cdot 20)(2 \cdot 3 \cdot 20)^{2}+(2 \cdot 3 \cdot 20)^{3}=3\left(3 \cdot 20^{2}\right)^{2}$. Our solution is $x=60, y=120$ and $t=1200$.

Of course in applying this method we can fine tune it depending on the value of a. For example if in case (ii) $a=b c=b d^{n} c_{1}$ we need only multiply by $c_{1}^{n e_{2}}$. And similarly for case (iii) if $b=b_{1} b_{2}$ and $c=b_{1} c_{1}$, i.e. $(b, c)=b_{1}$, we need only multiply by $b_{2}^{n d_{2}}$ and then proceed as in case (ii).

Finally, if m is odd, we can extend the class of equations to $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, a polynomial with non-zero integer coefficents, b a non-zero integer, and ($a_{1}, a_{2}, \ldots, a_{k}$) a k-tuple of non-zero integers, with all other conditions remaining the same.

REFERENCES

[1] P.J. Arpaia. "Generating Solutions For a Special Class of Diophantine Equations." The Fibonacci Quarterly 32.2 (1994): 170-173.
[2] R.D. Carmichael. Diophantine Analysis. N.Y. John Wiley and Sons, 1915.
AMS Classification Numbers: 11D99

国豈

