EXTENDING THE BERNOULLI-EULER METHOD FOR FINDING ZEROS OF HOLOMORPHIC FUNCTIONS

Benaissa Bernoussi

Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

e-mail: Benaissa@fstt.ac.ma
Mustapha Rachidi
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed V, B.P. 1014, Rabat, Morocco e-mail: rachidi@fsr.ac.ma

Osamu Saeki

Faculty of Mathematics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
e-mail: saeki@math.kyushu-u.ac.jp
(Submitted July 2001-Final Revision May 2002)

1. INTRODUCTION

Let $a_{0}, a_{1}, \ldots, a_{r-1}\left(a_{r-1} \neq 0\right)$ and $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{r-1}(r \geq 1)$ be two sequences of real or complex numbers. The sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ defined by $V_{n}^{(r)}=\alpha_{-n}$ for $-r+1 \leq n \leq 0$ and the linear recurrence of order r

$$
\begin{equation*}
V_{n+1}^{(r)}=a_{0} V_{n}^{(r)}+a_{1} V_{n-1}^{(r)}+\cdots+a_{r-1} V_{n-r+1}^{(r)} \quad(n \geq 0) \tag{1.1}
\end{equation*}
$$

is called a weighted r-generalized Fibonacci sequence. Such sequences have been extensively studied in the literature (see $[6,10,11,13]$ for example). In this paper we shall refer to such an object as a sequence of type (1.1). Such sequences have interested many authors because of their various applications. For example, in numerical analysis some discretization by finite divisions gives such a linear recurrence relation (for example, see [2, 4, 8, 9]).

Sequences of type (1.1) have been generalized in [14, 15] as follows. Let $\left\{a_{j}\right\}_{j \geq 0}$ and $\left\{\alpha_{j}\right\}_{j \geq 0}$ be two sequences of real or complex numbers. The sequence $\left\{V_{j}\right\}_{j \in \boldsymbol{Z}}$ defined by $V_{n}=\alpha_{-n}(n \leq 0)$ and the linear recurrence of order ∞

$$
\begin{equation*}
V_{n+1}=a_{0} V_{n}+a_{1} V_{n-1}+\cdots+a_{m} V_{n-m}+\ldots \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

is called an ∞-generalized Fibonacci sequence. Such sequences have been studied under some hypotheses on the two sequences $\left\{a_{j}\right\}_{j \geq 0}$ and $\left\{\alpha_{j}\right\}_{j \geq 0}$ which guarantee the existence of the terms V_{n} for every $n \geq 1$ (see $[3,14,15,17]$). The origin of r - or ∞-generalized Fibonacci sequences goes back to Euler. In [7, Chapter XVII] he discussed Daniel Bernoulli's method of using linear recurrences to approximate zeros of (mainly polynomial) functions.

In this paper, we first study the relationship between a given polynomial function and the associated sequence of type (1.1), and then we use it to approximate and find a zero of the polynomial through Bernoulli's method (§2). Our results will be a bit weaker than the usual ones; nevertheless, we have included them in the aim to generalize them to the case of general holomorphic functions. In $\S \S 3$ and 4 , this will be carried out through the use of ∞-generalized Fibonacci sequences. These results are very important, since, as far as the authors know, there has been practically no method for approximating or finding a zero of an arbitrary holomorphic
function using the coefficients in their power series expansions. Furthermore, in $\S 4$, we will discuss the approximation process by using r-generalized Fibonacci sequences with r finite (see [3]), which will enable us to obtain more precise results.

2. BERNOULLI'S METHOD FOR POLYNOMIAL FUNCTIONS

In order to approximate a root of a polynomial $P_{r}(X)$ of degree r, Bernoulli considered a sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ of type (1.1) such that $P_{r}(X)$ is its characteristic polynomial. More precisely, he used the initial values $V_{0}^{(r)}=1$ and $V_{-1}^{(r)}=\cdots=V_{-r+1}^{(r)}=0$. It is well known that under certain conditions, if

$$
q=\lim _{n \rightarrow \infty} \frac{V_{n+1}^{(r)}}{V_{n}^{(r)}}
$$

exists, then it is a root of $P_{r}(X)$ such that $\left|q^{\prime}\right| \leq|q|$ for any other root q^{\prime} of $P_{r}(X)$ (see [8, 9] or [6, Theorem 7], for example). The aim of this section is to establish similar results by using the theory of holomorphic functions.

Let $Q_{r}(z)=1-a_{0} z-\cdots-a_{r-2} z^{r-1}-a_{r-1} z^{r}$ be a complex polynomial of degree $r(r \geq$ $1, a_{r-1} \neq 0$), and consider the complex function $f_{r}(z)=1 / Q_{r}(z)$. Since $Q_{r}(0)=1 \neq 0$, the Taylor expansion of $f_{r}(z)$ in a disk centred at 0 can be written as

$$
\begin{equation*}
f_{r}(z)=\sum_{n=0}^{\infty} V_{n}^{(r)} z^{n} \tag{2.1}
\end{equation*}
$$

for some complex numbers $V_{0}^{(r)}, V_{1}^{(r)}, \ldots$. The identity $Q_{r}(z) f(z)=1$ implies that

$$
V_{n+1}^{(r)}=\sum_{j=0}^{r-1} a_{j} V_{n-j}^{(r)}
$$

for all $n \geq 0$, where $V_{0}^{(r)}=1$ and $V_{-1}^{(r)}=\cdots=V_{-r+1}^{(r)}=0$. Hence, $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ is a sequence of type (1.1) and its characteristic polynomial coincides with $P_{r}(X)=X^{\bar{r}}-a_{0} X^{r-1}-\cdots-$ $a_{r-2} X-a_{r-1}$.

Remark 2.1: Conversely, suppose that $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ is a sequence of type (1.1) such that $V_{0}^{(r)}=1$ and $V_{-1}^{(r)}=\cdots=V_{-r+1}^{(r)}=0$. Then we have

$$
f_{r}(z)=\sum_{n=0}^{\infty} V_{n}^{(r)} z^{n}=\frac{1}{Q_{r}(z)}
$$

where $Q_{r}(z)=1-a_{0} z-\cdots-a_{r-2} z^{r-1}-a_{r-1} z^{r}$.
The polynomial function Q_{r} has a root and $Q_{r}(0) \neq 0$. Hence, the function $f_{r}=1 / Q_{r}$ has a Taylor expansion near 0 and it is defined in the open disk of radius

$$
R=\min \left\{|\lambda| ; \lambda \text { is a root of } Q_{r}\right\}
$$

Note that we always have $0<R<\infty$. Thus, by using the standard theory of power series (for example, see [1]), we can prove the following (for more details, see the proof of Theorem 3.2 in the next section).
Proposition 2.2: Let $Q_{r}(z)=1-a_{0} z-\cdots-a_{r-2} z^{r-1}-a_{r-1} z^{r}\left(a_{r-1} \neq 0\right)$ be a complex polynomial of degree r. Consider the sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ of type (1.1) whose coefficients and initial values are given by $a_{0}, a_{1}, \ldots, a_{r-1}$ and $V_{0}^{(r)}=1, V_{-1}^{(r)}=\cdots=V_{-r+1}^{(r)}=0$ respectively. We suppose that $V_{n}^{(r)} \neq 0$ for all sufficiently large n. Then the radius of convergence R of the series (2.1) satisifies

$$
\liminf _{n \rightarrow \infty}\left|\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right| \leq R \leq \limsup _{n \rightarrow \infty}\left|\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right|
$$

and $R=\min \left\{|\lambda|_{i} \lambda\right.$ is a root of $\left.Q_{r}\right\}$. In particular, we have $Q_{r}\left(R e^{i \theta}\right)=0$ for some $\theta \in[0,2 \pi)$, and $R \leq|\mu|$ for all other roots μ of Q_{r}.

As an immediate corollary, we have the following.
Corollary 2.3: In the above proposition, if

$$
\Lambda^{(r)}=\lim _{n \rightarrow \infty}\left|\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right|
$$

exists, then $\Lambda^{(r)}$ is the smallest among the moduli of the roots of Q_{r}.
Remark 2.4: As we noted before, if

$$
\lambda^{(r)}=\lim _{n \rightarrow \infty} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}
$$

exists, then actually $\lambda^{(r)}$ itself is a root of Q_{r} with the smallest modulus (for example, see [6]). In fact, we can easily show that $Q_{r}\left(\lambda^{(r)}\right)=0$ as follows:

$$
\begin{aligned}
Q_{r}\left(\lambda^{(r)}\right) & =\lim _{n \rightarrow \infty}\left(1-a_{0} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}-a_{1}\left(\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)^{2}-\cdots-a_{r-1}\left(\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)^{r}\right) \\
& =\lim _{n \rightarrow \infty}\left(1-a_{0} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}-a_{1} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}} \frac{V_{n-1}^{(r)}}{V_{n}^{(r)}}-\cdots-a_{r-1} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}} \cdots \frac{V_{n-(r-1)}^{(r)}}{V_{n+1-(r-1)}^{(r)}}\right) \\
& =\lim _{n \rightarrow \infty}\left(1-a_{0} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}-a_{1} \frac{V_{n-1}^{(r)}}{V_{n+1}^{(r)}}-\cdots-a_{r-1} \frac{V_{n-(r-1)}^{(r)}}{V_{n+1}^{(r)}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{V_{n+1}^{(r)}-a_{0} V_{n}^{(r)}-a_{1} V_{n-1}^{(r)}-\cdots-a_{r-1} V_{n-(r-1)}^{(r)}}{V_{n+1}^{(r)}}=0 .
\end{aligned}
$$

Example 2.5: Consider the usual Fibonacci sequence $\left\{F_{n+1}\right\}_{n \geq-1}$, which is a sequence of type (1.1) with $r=2$. In this case, the corresponding polynomial is $Q_{2}(z)=1-z-z^{2}$. Furthermore, it is well known that

$$
\lambda^{(2)}=\lim _{n \rightarrow \infty} \frac{F_{n-1}}{F_{n}}=\frac{\sqrt{5}-1}{2} .
$$

It is easy to verify that λ is the root of Q_{2} with the smallest modulus.
Remark 2.6: In the above results, the condition that $V_{n}^{(r)} \neq 0$ for all sufficiently large n is essential. For example, if r is even and $Q_{r}(z)$ is a polynomial of z^{2}, then in the power series expansion of $f_{r}(z)$, the coefficients $V_{n}^{(r)}$ with n odd are all zero. Thus we cannot consider $V_{n}^{(r)} / V_{n+1}^{(r)}$ for even n.

We have a combinatorial expression for sequences of type (1.1) as follows.
Proposition 2.7: Let $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ be a sequence of type (1.1) whose coefficients and initial values are $a_{0}, a_{1}, \ldots, a_{r-1}$ and $V_{0}^{(r)}=1, V_{-1}^{(r)}=\cdots=V_{-r+1}^{(r)}=0$ respectively. Then we have

$$
\begin{equation*}
V_{n}^{(r)}=\sum_{k_{0}+2 k_{1}+\cdots+r k_{r-1}=n} \frac{\left(k_{0}+k_{1}+\cdots+k_{r-1}\right)!}{k_{0}!k_{1}!\ldots k_{r-1}!} a_{0}^{k_{0}} a_{1}^{k_{1}} \ldots a_{r-1}^{k_{r-1}} \tag{2.2}
\end{equation*}
$$

for all $n \geq-r+1$, where $k_{0}, k_{1}, \ldots, k_{r-1}$ run over nonnegative integers.
Proof: Let us prove the assertion by induction on n. It is easy to see that it is true for $n \leq 0$. Suppose that $n \geq 0$ and that the assertion is true for all integers less than or equal to n. It is easy to see that

$$
\sum_{j=0}^{r-1} \frac{\left(k_{0}+k_{1}+\cdots+k_{r-1}-1\right)!}{k_{0}!k_{1}!\ldots k_{j-1}!\left(k_{j}-1\right)!k_{j+1}!\ldots k_{r-1}!}=\frac{\left(k_{0}+\cdots+k_{r-1}\right)!}{k_{0}!\ldots k_{r-1}!}
$$

holds, where we ignore the terms corresponding to those j with $k_{j}=0$. Then, using this, we
see that

$$
\begin{aligned}
V_{n+1}^{(r)} & =\sum_{j=0}^{r-1} a_{j} V_{n-j}^{(r)} \\
& =\sum_{j=0}^{r-1} a_{j} \sum_{k_{0}+2 k_{1}+\cdots+r k_{r-1}=n-j} \frac{\left(k_{0}+k_{1}+\cdots+k_{r-1}\right)!}{k_{0}!k_{1}!\ldots k_{r-1}!} a_{0}^{k_{0}} a_{1}^{k_{1}} \ldots a_{r-1}^{k_{r-1}} \\
& =\sum_{j=0}^{r-1} a_{j} \sum_{k_{0}+2 k_{1}+\cdots+r k_{r-1}=n+1, k_{j} \geq 1} \frac{\left(k_{0}+\cdots+k_{r-1}-1\right)!}{k_{0}!\ldots\left(k_{j}-1\right)!\ldots k_{r-1}!} a_{0}^{k_{0}} \ldots a_{j}^{k_{j}-1} \ldots a_{r-1}^{k_{r-1}} \\
& =\sum_{k_{0}+2 k_{1}+\cdots+r k_{r-1}=n+1} \sum_{j=0}^{r-1} \frac{\left(k_{0}+\cdots+k_{r-1}-1\right)!}{k_{0}!\ldots\left(k_{j}-1\right)!\ldots k_{r-1}!} a_{0}^{k_{0}} \ldots a_{j}^{k_{j}} \ldots a_{r-1}^{k_{r-1}} \\
& =\sum_{k_{0}+2 k_{1}+\cdots+r k_{r-1}=n+1} \frac{\left(k_{0}+k_{1}+\cdots+k_{r-1}\right)!}{k_{0}!k_{1}!\ldots k_{r-1}!} a_{0}^{k_{0}} a_{1}^{k_{1}} \ldots a_{r-1}^{k_{r-1}} .
\end{aligned}
$$

This completes the proof.
Compare the above proposition with $[5,12,16]$.
Let us denote the right hand side of the equation (2.2) by $\rho(n, r)$. Then by Corollary 2.3, if

$$
\Lambda^{(r)}=\lim _{n \rightarrow \infty}\left|\frac{\rho(n, r)}{\rho(n+1, r)}\right|
$$

exists, then $\left(\Lambda^{(r)}\right)^{-1}$ is the largest among the moduli of the roots of the characteristic polynomial $P_{r}(X)$, and the radius of convergence R of the Taylor series (2.1) of $f_{r}(z)=1 / Q_{r}(z)$ coincides with $\Lambda^{(r)}$. Furthermore, if

$$
\lambda^{(r)}=\lim _{n \rightarrow \infty} \frac{\rho(n, r)}{\rho(n+1, r)}
$$

exists, then $\lambda^{(r)}$ is a root of Q_{r} as we have seen in Remark 2.4. In other words, we can approximate a root of Q_{r} with the smallest modulus by using $a_{0}, a_{1}, \ldots, a_{r-1}$ together with the combinatorial formula (2.2).
Remark 2.8: The Taylor expansion of the complex function $f_{r}(z)=1 / Q_{r}(z)$ in the open disk $D(0 ; R)$, with R being as above, is given by

$$
f_{r}(z)=\sum_{n=0}^{\infty} \frac{1}{n!} f_{r}^{(n)}(0) z^{n}
$$

Thus, from the expression (2.1) we derive that $f_{r}^{(n)}(0)=n!V_{n}^{(r)}$ for all $n \geq 0$.

3. THE BERNOULLI-EULER METHOD FOR HOLOMORPHIC FUNCTIONS

In this section, we show that Bernoulli's method for approximating and finding a root of a polynomial function presented in $\S 2$ can be extended to the case of holomorphic functions.

Let $Q(z)$ be a complex function which is holomorphic in a neighbourhood of 0 . Let $R_{1}>0$ be the largest positive number such that Q is holomorphic in the open disk $D\left(0 ; R_{1}\right)$. In order to study the zeros of Q in $D\left(0 ; R_{1}\right)-\{0\}$, we may only consider the case where Q takes the form

$$
\begin{equation*}
Q(z)=1-\sum_{j=0}^{\infty} a_{j} z^{j+1} \tag{3.1}
\end{equation*}
$$

Since $Q(0)=1 \neq 0, f(z)=1 / Q(z)$ has a Taylor expansion in a certain disk centred at 0 , which is of the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} V_{n} z^{n} \tag{3.2}
\end{equation*}
$$

The identity $Q(z) f(z)=1$ implies that we have

$$
V_{n+1}=\sum_{j=0}^{\infty} a_{j} V_{n-j}
$$

for all $n \geq 0$, where $V_{0}=1$ and $V_{-j}=0$ and for all $j \geq 1$. Hence, $\left\{V_{n}\right\}_{n \in Z}$ is an ∞-generalized Fibonacci sequence as in (1.2) whose initial values are given by $V_{0}=1$ and $V_{-j}=0$ for all $j \geq 1$.
Remark 3.1: Conversely, suppose that $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$ is a sequence as in (1.2) such that $V_{0}=1$ and $V_{-j}=0$ for all $j \geq 1$. Then, we have

$$
f(z)=\sum_{n=0}^{\infty} V_{n} z^{n}=\frac{1}{Q(z)}
$$

formally, where $Q(z)$ is given by (3.1).
As a direct generalization of Proposition 2.2, we have the following.
Theorem 3.2: Let

$$
Q(z)=1-\sum_{j=0}^{\infty} a_{j} z^{j+1}
$$

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence $R_{1}>0$. Consider the sequence $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$ as in (1.2) whose coefficients and initial values are given by $\left\{a_{j}\right\}_{j \geq 0}$ and $V_{0}=1, V_{-j}=0$ for all $j \geq 1$, respectively. We suppose that $V_{n} \neq 0$ for all sufficiently large n and that the radius of convergence R of the series (3.2) satisfies $R<R_{1}$. Then, we have

$$
\liminf _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right| \leq R \leq \limsup _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right|
$$

and $R=\min \{|\lambda| ; \lambda$ is a zero of $Q\}$. In particular, we have $Q\left(R e^{i \theta}\right)=0$ for some $\theta \in[0,2 \pi)$, and $R \leq|\mu|$ for all other zeros μ of Q.

Proof: It is well known that $R=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|V_{n}\right|}\right)^{-1}$ (for example, see [1]). Let L be an arbitrary real number such that $0<L<\liminf _{n \rightarrow \infty}\left|V_{n} / V_{n+1}\right|$. Then there exists an N such that $\left|V_{n} / V_{n+1}\right|>L$ for all $n \geq N$. Therefore, $\left|V_{N+k}\right|<\left|V_{N}\right| L^{-k}$ for $k=1,2,3, \ldots$, and hence $\sqrt[N+k]{\left|V_{N+k}\right|}<\sqrt[N+k]{\left|V_{N}\right| L^{-k}}=L^{-1} \sqrt[N+k]{\left|V_{N}\right| L^{N}}$. This implies that $R^{-1}=$ $\limsup _{k \rightarrow \infty} \sqrt[N+k]{\left|V_{N+k}\right|} \leq L^{-1}$. Since L is arbitrary, we conclude that $\liminf _{n \rightarrow \infty}\left|V_{n} / V_{n+1}\right| \leq R$.

By a similar argument, we can show that $R \leq \limsup _{n \rightarrow \infty}\left|V_{n} / V_{n+1}\right|$.
For the second part, first note that $Q(z)$ has no zero in the open disk $|z|<R$, since otherwise the radius of convergence R of $f(z)=1 / Q(z)$ would be strictly smaller than R. Suppose that $Q(z)$ has no zero on the circle $|z|=R$. Then it has no zero in the open disk $D(0, R+\varepsilon)$ for some $\varepsilon>0$ (recall that $R<R_{1}$). It follows that the radius of convergence R of $f(z)=1 / Q(z)$ is strictly greater than R, which is a contradiction. Therefore, we have $R=$ $\min \{|\lambda| ; Q(\lambda)=0\}$ and we have $Q\left(R e^{i \theta}\right)=0$ for some $\theta \in[0,2 \pi)$.

As an immediate corollary, we have the following.
Corollary 3.3: In the above theorem, if

$$
\Lambda=\lim _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right|
$$

exists and $\Lambda<R_{1}$, then Λ is the smallest among the moduli of the zeros of Q.
Remark 3.4: Even if we assume that $V_{n} \neq 0$ for all n, we do not have

$$
R=\liminf _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right| \text { or } R=\limsup _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right|
$$

in general. For example, set

$$
\begin{aligned}
& g(z)=1+z^{2}+z^{4}+z^{6}+\cdots \\
& h(z)=z+z(2 z)^{2}+z(2 z)^{4}+\cdots=z g(2 z),
\end{aligned}
$$

and

$$
f(z)=g(z)+h(z)=\sum_{n=0}^{\infty} V_{n} z^{n}
$$

The radius of convergence of g is equal to 1 , while that of h is equal to $1 / 2$. Hence the radius of convergence of f is equal to $R=1 / 2$. However, we have

$$
\frac{V_{n}}{V_{n+1}}= \begin{cases}2^{-n}, & \text { if } n \text { is even } \\ 2^{n-1}, & \text { if } n \text { is odd }\end{cases}
$$

Thus we have

$$
\limsup _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right|=+\infty, \quad \liminf _{n \rightarrow \infty}\left|\frac{V_{n}}{V_{n+1}}\right|=0
$$

So, neither of them gives R in this example.
Remark 3.5: Suppose that

$$
\lambda=\lim _{n \rightarrow \infty} \frac{V_{n}}{V_{n+1}}
$$

exists. Then we do not know if λ itself is a zero of Q with the smallest modulus. Compare this with Remark 2.4. In $\S 4$ we will give a partial answer to this question.
Remark 3.6: In Corollary 3.3, if $\Lambda \geq R_{1}$, then Q does not have a zero in the open disk $D\left(0 ; R_{1}\right)$.

By using Proposition 2.7, we can prove the following combinatorial expression for $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$.
Proposition 3.7: Let $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$ be a sequence as in (1.2) whose coefficients and initial values are $\left\{a_{j}\right\}_{j \geq 0}$ and $V_{0}=1, V_{-j}=0$ for all $j \geq 1$, respectively. Then we have

$$
\begin{equation*}
V_{n}=\rho(n, n)=\sum_{k_{0}+2 k_{1}+\cdots+n k_{n-1}=n} \frac{\left(k_{0}+k_{1}+\cdots+k_{n-1}\right)!}{k_{0}!k_{1}!\ldots k_{n-1}!} a_{0}^{k_{0}} a_{1}^{k_{1}} \ldots a_{n-1}^{k_{n-1}} \tag{3.3}
\end{equation*}
$$

for all $n \in \boldsymbol{Z}$.
By Corollary 3.3, if

$$
\Lambda=\lim _{n \rightarrow \infty}\left|\frac{\rho(n, n)}{\rho(n+1, n+1)}\right|
$$

exists and is strictly smaller than R_{1}, then Λ is the smallest among the moduli of the zeros of Q. Furthermore, the radius of convergence R of the Taylor series (3.2) of $f(z)=1 / Q(z)$ coincides with Λ. We also have $f^{(n)}(0)=n!V_{n}^{(r)}$ for all $n \geq 0$ as in Remark 2.8.

4. THE BERNOULLI-EULER METHOD BY APPROXIMATION PROCESS

In this section, we will use the results of $\S 2$ in order to approximate a zero of a holomorphic function by using r-generalized Fibonacci sequences with r finite. The idea is very similar to that of [3].

Let $Q(z)$ be a complex function which is holomorphic in a neighbourhood of the origin. Let $R_{1}>0$ be the largest positive real number such that Q is holomorphic in the open disk $D\left(0 ; R_{1}\right)$. As in the previous section, we suppose that its Taylor series expansion takes the form (3.1).

Let $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$ be an ∞-generalized Fibonacci sequence as in (1.2) whose coefficients and initial values are $\left\{a_{j}\right\}_{j \geq 0}$ and $V_{0}=1, V_{-j}=0$ for all $j \geq 1$, respectively. Note that V_{n} exists for all $n \in \boldsymbol{Z}$. The following approximation has been established in [3]:

$$
\begin{equation*}
V_{n}=\lim _{r \rightarrow \infty} V_{n}^{(r)} \tag{4.1}
\end{equation*}
$$

for all $n \geq 1$, where for each $r \geq 1$, the sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1}$ is a type (1.1) defined by $V_{0}^{(r)}=1, V_{n}^{(r)}=0$ for $-r+1 \leq n \leq-1$, and $V_{n+1}^{(r)}=a_{0} V_{n}^{(r)}+\cdots+a_{r-1} V_{n-r+1}^{(r)}$ for $n \geq 0$.
However, in our case, (4.1) is trivial, since we have $V_{n}^{(r)}=V_{n}$ for $r \geq n$.
Our first result of this section is the following.
Theorem 4.1: Let

$$
Q(z)=1-\sum_{j=0}^{\infty} a_{j} z^{j+1}
$$

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence $R_{1}>0$. Consider the doubly indexed sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1, r \geq 1}$ as above. We suppose the following.
(1) $V_{n}^{(r)} \neq 0$ for all sufficiently large n and r.
(2) For all sufficiently large r,

$$
\lambda^{(r)}=\lim _{n \rightarrow \infty} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}
$$

exists.
(3) $\lambda=\lim _{r \rightarrow \infty} \lambda^{(r)}$ exists and we have $|\lambda|<R_{1}$.

Then λ is a zero of Q.
Proof: Set $Q_{r}(z)=1-a_{0} z-\cdots-a_{r-2} z^{r-1}-a_{r-1} z^{r}$. By Remark 2.4, we have

$$
\lim _{n \rightarrow \infty} Q_{r}\left(\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)=Q_{r}\left(\lim _{n \rightarrow \infty} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)=Q_{r}\left(\lambda^{(r)}\right)=0
$$

for all sufficiently large r. Set $T_{r}(z)=Q(z)-Q_{r}(z)$. Note that for every R_{1}^{\prime} with $0<R_{1}^{\prime}<R_{1}$, we have

$$
\lim _{r \rightarrow \infty} T_{r}(z)=0
$$

uniformly for $|z| \leq R_{1}^{\prime}$. We have

$$
Q\left(\lambda^{(r)}\right)=\lim _{n \rightarrow \infty} Q\left(\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)=\lim _{n \rightarrow \infty} T_{r}\left(\frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}\right)=T_{r}\left(\lambda^{(r)}\right)
$$

for all sufficiently large r. Hence we have

$$
Q(\lambda)=\lim _{r \rightarrow \infty} Q\left(\lambda^{(r)}\right)=\lim _{r \rightarrow \infty} T_{r}\left(\lambda^{(r)}\right)=0
$$

This completes the proof.
As a corollary, we have the following.

Corollary 4.2: Let

$$
Q(z)=1-\sum_{j=0}^{\infty} a_{j} z^{j+1}
$$

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence $R_{1}>0$. Consider the doubly indexed sequence $\left\{V_{n}^{(r)}\right\}_{n \geq-r+1, r \geq 1}$ and the sequence $\left\{V_{n}\right\}_{n \in \boldsymbol{Z}}$ as above. We suppose the following.
(1) $V_{n}^{(r)}, V_{n} \neq 0$ for all sufficiently large n and r.
(2) For all sufficiently large r,

$$
\lambda^{(r)}=\lim _{n \rightarrow \infty} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}
$$

exists and converges uniformly with respect to r.
(3) $\lambda=\lim _{r \rightarrow \infty} \lambda^{(r)}$ exists and we have $|\lambda|<R_{1}$.

Then we have

$$
\lambda=\lim _{n \rightarrow \infty} \frac{V_{n}}{V_{n+1}}
$$

and it is a zero of Q.
Proof: By our assumptions, we see that

$$
\lim _{n, r \rightarrow \infty} \frac{V_{n}^{(r)}}{V_{n+1}^{(r)}}=\lambda
$$

Then the result follows from (4.1) together with Theorem 4.1.
Example 4.3: Let us consider the example in $[3, \S 7]$. We shall use the same notation. In this example, since the coefficients a_{i} are all strictly positive real numbers, we have $V_{n}^{(r)} \neq 0$ for all $n \geq 0$ and $r \geq 1$. It has been shown that the sequences $\left\{V_{n}^{(r)} / q_{r}^{n}\right\}_{n \geq 1}$ are uniformly convergent for $r \geq 1$ and that

$$
\lim _{n \rightarrow \infty} \frac{V_{n}^{(r)}}{q_{r}^{n}}=1
$$

Since the sequence $\left\{q_{r}\right\}_{r \geq 1}$ converges to $q>0$, the sequences $\left\{V_{n}^{(r)} / V_{n+1}^{(r)}\right\}_{n \geq 1}$ are also uniformly convergent and converge to $q_{r}^{-1}=p_{r}$ for $r \geq 1$. Furthermore, we have

$$
\lim _{r \rightarrow \infty} p_{r}=p
$$

and $0<p<R_{1}$, where R_{1} is the radius of convergence of Q (in $[3, \S 7], R_{1}$ is written as R). Thus all the assumptions of Corollary 4.2 are satisfied and p is a root of Q.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to the referee for many useful suggestions. The third author has been partially supported by Grant-in-Aid for Scientific Research (No. 13640076), Ministry of Education, Science and Culture, Japan.

REFERENCES

[1] L.V. Ahlfors. Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. Third edition, International Series in Pure and Applied Math., McGraw-Hill Book Co., New York, 1978.
[2] R. Ben Taher and M. Rachidi. "Application of the ε-Algorithm to the Ratios of r Generalized Fibonacci Sequences." The Fibonacci Quarterly 39 (2001): 22-26.
[3] B. Bernoussi, W. Motta, M. Rachidi and O. Saeki. "Approximation of ∞-Generalized Fibonacci Sequences and Their Asymptotic Binet Formula." The Fibonacci Quarterly 39 (2001): 168-180.
[4] C. Brezinski and M. Redivo Zaglia. Extrapolation Methods. Theory and Practice. Studies in Computational Math. 2, North-Holland Publishing Co., Amsterdam, 1991.
[5] W.Y.C. Chen and J.D. Louck. "The Combinatorial Power of the Companion Matrix." Linear Algebra Appl. 232 (1996): 261-278.
[6] F. Dubeau, W. Motta, M. Rachidi and O. Saeki. "On Weighted r-Generalized Fibonacci Sequences." The Fibonacci Quarterly 35 (1997): 102-110.
[7] L. Euler. Introduction to the Analysis of the Infinite, Book 1. Springer-Verlag, 1988.
[8] J. Gill and G. Miller. "Newton's Method and Ratios of Fibonacci Numbers." The Fibonacci Quarterly 19 (1981): 1-4.
[9] A.S. Householder. Principles of Numerical Analysis. McGraw-Hill Book Company Inc., 1953.
[10] J.A. Jeske. "Linear Recurrence Relations, Part I." The Fibonacci Quarterly 1 (1963): 69-74.
[11] W.G. Kelley and A.C. Peterson. Difference Equations. An Introduction with Applications. Academic Press, Inc., Boston, MA, 1991.
[12] C. Levesque. "On m-th Order Linear Recurrences." The Fibonacci Quarterly 23 (1985): 290-295.
[13] E.P. Miles. "Generalized Fibonacci Sequences by Matrix Methods." The Fibonacci Quarterly 20 (1960): 73-76.
[14] W. Motta, M. Rachidi and O. Saeki. "On ∞-Generalized Fibonacci Sequences." The Fibonacci Quarterly 37 (1999): 223-232.
[15] W. Motta, M. Rachidi and O. Saeki. "Convergent ∞-Generalized Fibonacci Sequences." The Fibonacci Quarterly 38 (2000): 326-333.
[16] M. Mouline and M. Rachidi. "Application of Markov Chains Properties to r-Generalized Fibonacci Sequences." The Fibonacci Quarterly 37 (1999): 34-38.
[17] M. Mouline and M. Rachidi. " ∞-Generalized Fibonacci Sequences and Markov Chains." The Fibonacci Quarterly 38 (2000): 364-371.

AMS Classification Numbers: 40A05, 30C15, 40A25, 41A60

必事

