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1. INTRODUCTION

Consider the Fibonacci and Lucas functions F (x) and L(x) introduced by

F (x) =
µx − eiπxµ−x√

5
(1)

and
L(x) = µx + eiπxµ−x, (2)

respectively, where x is a real variable and µ = (1+
√

5)/2, see [5]. In the following, we assume
that x > 0. It is clear that, for a nonnegative integer n, F (n) and L(n) are the nth terms of
the well-known Fibonacci and Lucas sequences, which play an important role in many subjects
such as algebra, geometry, and number theory itself.

For the summation of reciprocal series involving Fibonacci and Lucas numbers, it is dif-
ficult to compute. Up to now, one cannot find an effective method. Recently, there are a
number of publications dealing with this kind of work, see [2-4, 6-10], and the summation of
reciprocal series related to the Fibonacci and Lucas functions, see [1, 11]. In this paper, we
consider the generalized Fibonacci and Lucas functions given by

W (x) =
Aαx −Beiπxα−x

∆1/2
, (3)

where A and B are two constants and

α =
p+
√

∆
2

, ∆ = p2 + 4,

with p > 0. We will establish some identities involving reciprocals of the products of these
generalized functions.

2. MAIN RESULTS

Note that, from the definition of the function W (x),

W (x) =
{
F (x), A = B = p = 1
L(x), A = −B = ∆1/2 and p = 1.

In what follows, when A = B = 1, we write W (x) = U(x). Then, the main conclusion can be
stated as follows.
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Theorem: Suppose that m is a positive integer. Then we have

m∑
n=1

αnxeinπx

W (nx)W (nx+ x)W (nx+ 2x)
=
X1 +X2 −Xm+1 −Xm+2

A2U(x)U(2x)
− X2 −Xm+2

A2αxU2(x)
, (4)

∞∑
n=1

αnxeinπx

W (nx)W (nx+ x)W (nx+ 2x)
=

X1 +X2

A2U(x)U(2x)
− X2

A2αxU2(x)
, (5)

m∑
n=1

α2nxeinπx

W (nx)W (nx+ x)W (nx+ 2x)W (nx+ 3x

=
X1 +X2 +X3 −Xm+1 −Xm+2 −Xm+3

A3U(x)U(2x)U(3x)

+
X3 −Xm+3

A3α3xU3(x)
− 2(X3 −Xm+3) +X2 −Xm+2

A3α2xU2(x)U(2x)
, (6)

∞∑
n=1

α2nxeinπx

W (nx)W (nx+ x)W (nx+ 2x)W (nx+ 3x)

=
X1 +X2 +X3

A3U(x)U(2x)U(3x)
+

X3

A3α3xU3(x)
− 2X3 +X2

A3α2xU2(x)U(2x)
, (7)

where Xn = einπx

αnxW (nx) .

Proof: We only demonstrate the proof of identities (4) and (5). In a similar way, the
other two equalities can be proved. In fact, from(3), we have

einπx

W (nx)W (nx+ kx)
=

1
AU(kx)

(
einπx

αnxW (nx)
− ei(n+k)πx

α(n+k)xW (nx+ kx)

)
. (8)

It then follows that

αnxeinπx

W (nx)W (nx+ x)W (nx+ 2x)

=
1

A2U(x)U(2x)

(
einπx

αnxW (nx)
− ei(n+2)πx

α(n+2)xW (nx+ 2x)

)

− 1
A2αxU2(x)

(
ei(n+1)πx

α(n+1)xW (nx+ x)
− ei(n+2)πx

α(n+2)xW (nx+ 2x)

)
. (9)
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Summing on both sides of (9), we obtain identity (4). On the other hand, since lim
m→∞

Xm = 0,

there holds equality (5). This completes the proof.
According to the particular choices of A,B, and p in (4-7), we can work out some identities

related to F (x) and L(x). For example, in (4),
(I) If A = B = p = 1, we have

m∑
n=1

µnxeinπx

F (nx)F (nx+ x)F (nx+ 2x)
=

1
F (x)F (2x)

(
eiπx

µxF (x)
+

e2iπx

µ2xF (2x)

− ei(m+1)πx

µ(m+1)xF (mx+ x)
− ei(m+2)πx

µmx+2xF (mx+ 2x)

)

− 1
µxF 2(x)

(
e2iπx

µ2xF (2x)
− ei(m+2)πx

µmx+2xF (mx+ 2x)

)
;

(II) if A = −B = ∆1/2 and p = 1, we obtain

m∑
n=1

µnxeinπx

L(nx)L(nx+ x)L(nx+ 2x)
=

1
5F (x)F (2x)

(
eiπx

µxL(x)
+

e2iπx

µ2xL(2x)

− ei(m+1)πx

µmx+xL(mx+ x)
− ei(m+2)πx

µmx+2xL(mx+ 2x)

)

− 1
5µxF 2(x)

(
e2iπx

µ2xL(2x)
− ei(m+2)πx

µmx+2xL(mx+ 2x)

)
.
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