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1. INTRODUCTION

For given nonsquare positive integers C ≡ 5(mod 8), we investigate families {Dk(X)}k∈N

of integral polynomials of the form Dk(X) = A2
kX

2+2BkX+C where (Bk/2)2−(Ak/2)2C = 4,
and show that the period length of the simple continued fraction expansion of (1+

√
Dk(X))/2

is a multiple of k, and independent ofX. For each member of the families involved, we show how
to easily determine the fundamental unit of the underlying quadratic order Z[(1+

√
Dk(X))/2].

We also demonstrate how the simple continued fraction expansion of (1+
√
Dk(X))/2 is related

to that of (1 +
√
C)/2. As applications, we present infinite families of continued fractions

related to the Fibonacci numbers. This continues work in [11]-[12] and corrects errors in [15]
(see Theorem 3.1).

In 1949, Nyberg [14] found the first example of a parametric family in which a fundamental
unit can be easily produced even though the period length of the continued fraction gets
arbitrarily large. Since this discovery, there have been a number of generalizations: Dan
Shanks [16]-[17] (see also Yamamoto [22]) in 1969 - 1971, Hendy [5] in 1974, Bernstein [2]-[3]
in 1976, Williams [20] in 1985, Levesque and Rhin [7] in 1986, Azuhata [1] in 1987, Levesque
[6] in 1988, Halter-Koch [4] in 1989, Mollin and Williams [13] in 1992, Williams [19] in 1995,
and van der Poorten and Williams in [15] in 1999.

In [12], we found infinite families of quadratic Pellian polynomials Dk(X) such that the
continued fraction expansions

√
Dk(X) have unbounded period length for arbitrary k, while

for fixed k and arbitrary X > 0, have constant period length. In this paper, we continue
the investigation for simple continued fraction expansions of (1 +

√
Dk(x))/2, where Dk(X)

are quadratic polynomials of Eisenstein type (see Section 3 below). We are also able to find
explicit fundamental units of the order Z[(1 +

√
Dk(X))/2]. A consequence of the result is

an infinite family of continued fraction expansions whose fundamental units and discriminant
are related to Fibonacci numbers. Ostensibly the first such finding of these types of continued
fractions was given in [21], and the findings herein appear to be the second, albeit distinctly
different from those given in [21].

The relatively “small” fundamental units for the underlying quadratic order which we
explicitly determine means that we have “large” class numbers hD(X) for Z[(1 +

√
D(X))/2].

The reason behind this fact is Siegel’s class number result [18] which tells us that for positive
discriminants ∆,

lim
∆→∞

log(h∆R)/ log(
√

∆) = 1
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where h∆ is the class number of Q(
√

∆), ε∆ is its fundamental unit, and R = log(ε∆) is the
regulator of Q(

√
∆). Hence, a “small” fundamental unit will necessarily mean a large class

number.

2. NOTATION AND PRELIMINARIES

The background for the following together with proofs and details may be found in most
standard introductory number theory texts (see for example [9], and for a more advanced
exposition with detailed background on quadratic orders, see [8]).

Let ∆ = d2D0(d ∈ N, D0 > 1 squarefree) be the discriminant of a real quadratic order
O∆ = Z + Z[

√
∆] = [1,

√
∆] in Q(

√
∆), U∆ the group of units of O∆, and ε∆ the fundamental

unit of O∆.
Now we introduce the notation for continued fractions. Let α ∈ O∆. We denote the

simple continued fraction expansion of α (in terms of its partial quotients) by:

α = 〈q0; q1, · · · , qn, · · · 〉.

If α is periodic, we use the notation:

α = 〈q0; q1 · q2 · · · , qk−1, qk, qk+1, . . . , p`+k−1〉,

to denote the fact that qn = qn+` for all n ≥ k. The smallest such ` = `(α) ∈ N is called
the period length of α. If k = 0 is the least such nonnegative value, then α is purely periodic,
namely

α = 〈q0; q1, . . . , q`−1〉.

The convergents (for n ≥ 0) of α are denoted by

xn

yn
= 〈q0; q1, . . . , qn〉 =

qnxn−1 + xn−2

qnyn−1 + yn−2
. (2.1)

We will need the following facts.

xj = qjxj−1 + xj−2 (for j ≥ 0 with x−2 = 0, and x−1 = 1), (2.2)

yj = qjyj−1 + yj−2 (for j ≥ 0 with y−2 = 1, and y−1 = 0), (2.3)

and
xjyj−1 − xj−1yj = (−1)j−1 (j ∈ N). (2.4)

In particular, we will be dealing with α = (1 +
√
D)/2 where D is a radicand. In this

case, the complete quotients are given by (Pj +
√
D)/Qj where the Pj and Qj are given by the

recursive formulae as follows for any j ≥ 0 (with P0 = 1 and Q0 = 2):

qj =

⌊
Pj +

√
D

Qj

⌋
, (2.5)

Pj+1 = qjQj − Pj , (2.6)
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and
D = P 2

j+1 +QjQj+1. (2.7)

Thus, we may write:

(1 +
√
D)/2 = 〈qo; q1, . . . , qn, (Pn+1 +

√
D)/Qn+1〉. (2.8)

We will also need the following facts for α = (1 +
√
D)/2. For any integer j ≥ −1, let

gj−1 = 2xj−1 − yj−1, (2.9)

then for any nonnegative integer j,
gj−1 = Pjyj−1 +Qjyj−2, (2.10)

Dyj−1 = Pjyj−1 +Qjyj−2, (2.11)

and if ` = `((1 +
√
D)/2), then

P1 = Pj` = 2q0 − 1 and Q0 = Qj` = 2, (2.12)

and for any j ∈ N,
g2

j`−1 − y2
j`−1D = 4(−1)j`. (2.13)

Also, for any 1 ≤ j ≤ `− 1,
qj < 2q0. (2.14)

We close this section with a result on Eisenstein’s equation, which will be quite useful in
establishing results in the next section. In fact, this gives more detail to the fact exhibited in
(2.13) for this case. It is know that the Diophantine Equation:

|x2 −Dy2| = 4 with gcd(x, y) = 1 (2.15)

was studied by Eisenstein in search of a criterion for its solvability, a question already asked
by Gauss. Several criteria are known (for instance, see [8, pp. 59-61]). In particular, when
D ≡ 5(mod 8), it is known that (2.15) has a solution if and only if the fundamental unit of
Z[(1 +

√
D)/2] is not in the order Z[

√
D]. Moreover, it can be shown that (2.15) is solvable

if and only if the ideal I = [4, 1 +
√
D] is principal in Z[

√
D]. For instance, if D = 37, there

is no solution to (2.15) since εD = 6 +
√

37 ∈ Z[
√
D], whereas for D = 13, there is a solution

since ε13 = (3 +
√

13)/2 6∈ Z[
√

13].
Theorem 2.1: Let D ≡ 5(mod 8) be a nonsquare positive integer such that εD 6∈ Z[

√
D]. For

j ≥ 0, let xj and yj be as above in the simple continued fraction expansion of (1 +
√
D)/2 and

let ` = `((1 +
√
D)/2). If ` is even, then all solutions of

x2 −Dy2 = 4 with gcd(x, y) = 1, (2.16)

are given by
(x, y) = (gj`−1, yj`−1) (2.17)
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for j ≥ 1, whereas there are no integer solutions of

x2 −Dy2 = −4, with gcd(x, y) = 1. (2.18)

If ` is odd, then all positive solutions of (2.16) are given by

(x, y) = (g2j`−1, y2j`−1)

for j ≥ 1, whereas all positive solutions of (2.18) are given by

(x, y) = (g(2j−1)`−1, y(2j−1)`−1).

Proof: See [9, Theorem 5.3.4, p. 246].
For an algorithm, relying only on continued fraction expansions, which finds all primitive

solutions of x2 −Dy2 = a for any integer a and any nonsquare D > 0, see [10].

3. RESULTS

We make the following assumptions throughout. We let A,B,C, k,X ∈ N and C ≡ 5(mod
8) not a perfect square. Suppose that (x, y) is the smallest positive solution of x2 − Cy2 = 4
with gcd(x, y) = 1. Set A = 2y and B = 2x and define, for each k ∈ N,

Bk +Ak

√
C = (B +A

√
C)k/4k−1.

Also, set

1 +
√
C

2
= 〈c0; c1, . . . , cn, 2c0 − 1〉,

and for m ∈ N define

wm = c1, . . . , cn, 2c0 − 1, c1, . . . , cn, 2c0 − 1, . . . , c1, . . . , cn,

which is m iterations of c1, . . . , cn, 2c0 − 1 followed by one iteration of c1, . . . , cn.
Theorem 3.1: Let Dk(X) = A2

kX
2 + 2BkX + C. Then the fundamental solutions of u2 −

Dk(X)v2 = 4 is (u, v) = ((A2
kX +Bk)/2, Ak/2). In other words,

εDk(X) =
A2

kX +Bk +Ak

√
Dk(X)

4
.

If q0 = AkX/2 + c0, then:
(a) if n ≥ 0 is even,

1 +
√
Dk(X)
2

= 〈q0;w2k−1, 2q0 − 1〉

with

`

(
1 +

√
Dk(X)
2

)
= 2k(n+ 1);
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(b) and if n is odd,

1 +
√
Dk(X)
2

= 〈q0;wk−1, 2q0 − 1〉

with

`

(
1 +

√
Dk(X)
2

)
= k(n+ 1).

Proof: We observe that

(Ak/2)2Dk(X) = ((A2
kX +Bk))/2)2 − 4,

which is not a perfect square. Thus, by [8, Theorem 3.2.1, p. 78],

ε(Ak/2)2Dk(X) =
A2

kX +Bk

4
+

1
4

√
A2

kDk(X) =
A2

kX +Bk

4
+
Ak

4

√
Dk(X).

Let Xj/Yj be the jth convergent of (1 +
√
Dk(x))/2, so from (2.9), Gj = 2Xj − Yj . Since

(
A2

kX +Bk

2

)2

−
(
Ak

2

)2

Dk(X) = 4,

then by Theorem 2.1, there is a j ∈ N such that

A2
kX +Bk

Ak
=
Gj`−1

Yj`−1
.

We now show that j = 1, namely, via Theorem 2.1, that ε(Ak/2)2Dk(X) = εDk(X), since ` will
be shown to be even, and by so doing that the continued fraction expansions in (a)-(b) hold.
First, we deal with part (a).

If xj/yj is the jth convergent of (1 +
√
C)/2, then by (2.1),

〈AkX/2 + c0;w2k−1〉 = 〈AkX/2 + c0, wk−1, 2c0 − 1 + yk(n+1)−2/yk(n+1)−1〉 =

AkX

2
+

(2c0 − 1 + yk(n+1)−2/yk(n+1)−1)xk(n+1)−1 + xk(n+1)−2

(2c0 − 1 + yk(n+1)−2/yk(n+1)−1)yk(n+1)−1 + yk(n+1)−2
=

165



PERIOD LENGTHS OF CONTINUED FRACTIONS INVOLVING FIBONACCI NUMBERS

AkX

2
+

((2c0 − 1)yk(n+1)−1 + yk(n+1)−2)xk(n+1)−1 + xk(n+1)−2yk(n+1)−1

((2c0 − 1)yk(n+1)−1 + yk(n+1)−2)yk(n+1)−1 + yk(n+1)−2yk(n+1)−1
,

and using the facts:
gk(n+1)−1 = (2c0 − 1)yk(n+1)−1 + 2yk(n+1)−2

(see (2.10) and (2.12)) and

xk(n+1)−1yk(n+1)−2 − xk(n+1)−2yk(n+1)−1 = (−1)k(n+1)−2 = (−1)k

(see (2.4)), this equals:

AkX

2
+
xk(n+1)−1(gk(n+1)−1 − yk(n+1)−2) + xk(n+1)−2yk(n+1)−1

(gk(n+1)−1 − yk(n+1)−2)yk(n+1)−1 + xk(n+1)−1yk(n+1)−1
=

AkX

2
+
xk(n+1)−1gk(n+1)−1 + (−1)k+1

gk(n+1)−1yk(n+1)−1
. (3.19)

However, by Theorem 2.1, since n is even and (Bk/2)2−(Ak/2)2C = 4, then Bk/2 = g2k(n+1)−1

and Ak/2 = y2k(n+1)−1. Moreover,

g2k(n+1)−1 + y2k(n+1)−1

√
C = (gn + yn

√
C)2k/22k−1 = (gk(n+1)−1 + yk(n+1)−1

√
C)2/2 =

(g2
k(n+1)−1 + y2

k(n+1)−1C + 2gk(n+1)−1yk(n+1)−1

√
C)/2 =

g2
k(n+1)−1 + 2(−1)k+1 + gk(n+1)−1yk(n+1)−1

√
C

where the last equality follows from Equation (2.13) given that `((1 +
√
C)/2) = n+ 1. Hence,

Bk = 2g2
k(n+1)−1 + 4(−1)k+1 and Ak = 2gk(n+1)−1yk(n+1)−1. Thus

Ak +Bk = 2gk(n+1)−1yk(n+1)−1 + 2g2
k(n+1)−1) + 4(−1)k+1 =

2gk(n+1)−1(yk(n+1)−1 + gk(n+1)−1 + 4(−1)k+1 =

4gk(n+1)−1xk(n+1)−1 + 4(−1)k+1

by (2.9) so

Ak +Bk

4
= gk(n+1)−1xk(n+1)−1 + (−1)k+1.
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Plugging this into (3.19), we get,

〈AkX/2 + c0;w2k−1〉 =
AkX

2
+
Ak +Bk

2Ak
=

(A2
kX +Ak +Bk)/4

Ak/2
.

By (2.14), 2q0 − 1 = AkX + 2c0 − 1 6= cj for any 0 < j < `. Thus, since a convergent
Xj`−1/Yj`−1 can only occur at the end of the jth multiple of a complete period, then j = 1.
In other words,

〈AkX/2 + c0, w2k−1〉 =
X`−1

Y`−1
.

Since we have achieved the (`− 1)th convergent of
√
Dk(X), then

√
D is as given in (a),

and ` = `((1 +
√
Dk(X))/2) = 2k(n + 1) for all k ∈ N and all even n ∈ N. Moreover, since

X`−1 = (A2
kX +Ak +Bk)/4 and Y`−1 = Ak/2, then by (2.9),

G`−1 = 2X`−1 − Y`−1 = (A2
kX +Bk)/2,

which completes the proof of part (a).
To prove (b), we assume that n is odd. Then by Theorem 2.1, Bk/2 = gk(n+1)−1, Ak/2 =

yk(n+1)−1, and

〈AkX/2 + c0, wk−1〉 = AkX/2 + xk(n+1)−1/yk(n+1)−1 =

AkX/2 + (gk(n+1)−1 + yk(n+1)−1)/2yk(n+1)−1 =

A2
kX +Ak +Bk

2Ak
,

where the penultimate equality comes from (2.9). As in the proof of (a), X`−1 = (A2
kX+Ak+

Bk)/4 and Y`−1 = Ak/2, with the last equality as in the proof of (a). Hence, (1 +
√
Dk(X))/2

has the continued fraction expansion as given in (b) and `((1 +
√
Dk(X))/2) = k(n + 1).

Moreover, by (2.9), G`−1 = (A2
kX +Bk)/2. This completes the proof.

Remark 3.1: We observe that in the proof of Theorem 3.1, A2
kDk(X) = (A2

kX +Bk)2− 4, is
an RD-type, and we verified that

ε(Ak/2)2Dk(X) =
A2

kX +Bk

4
+

1
4

√
A2

kDk(X) =
A2

kX +Bk

4
+
Ak

4

√
Dk(X).

This is the underlying kernel of the proof and shows that, even though ERD types are avoided
for the Dk(X) since such types have period lengths no bigger than 12, we nevertheless exploit
the order Z[(1 +

√
(A2

k +Bk)2 − 4)/2] in Z[(1 +
√
Dk(X))/2] to achieve our goals.

167



PERIOD LENGTHS OF CONTINUED FRACTIONS INVOLVING FIBONACCI NUMBERS

Remark 3.2: We see that for a fixed C (and so a fixed n ∈ N), we may let k →∞ in which
case `((1 +

√
Dk(X))/2) = `((1 +

√
Dk(1))/2)→∞ for all X ∈ N. We also see that we

have infinitely many distinct radicands Dk(X) for a fixed k ∈ N with `((1 +
√
Dk(X))/2) =

`((1 +
√
Dk(X + 1))/2) for all X ∈ N.

Remark 3.3: It is well known that if a discriminant is of ERD-type, then log(ε∆) ∼ e(log
√

∆)
where e = 1 or 2 (for example see [8]). Since ε(Ak/2)2Dk(X) = εDk(X), (see Remark 3.1), then
we necessarily have “small” regulator R = log(εDk(X)) compared to log(

√
Dk(X)), and so

“large” class number hDk(X). For example, hD1(150) = h9507773061 = 1656, R = log(εD1(150)) =
16.76068 . . . , and log(

√
9507773061) = 11.48768 . . . .

We conclude with an application of Theorem 3.1 which motivated this paper’s title. In
[21], the authors found an infinite sequence of radicands Dk = (2F6k + 1)2 + (8F6k + 4), where
Fj is the jth Fibonacci number, such that `((1 +

√
Dk)/2) = 6k + 1. By employing Theorem

3.1(a), we get

Dk(X) = 4F 2
2kX

2 + (20F 2
k + 8(−1)k)X + 5 = 4L2

kF
2
kX

2 + (20F 2
k + 8(−1)k)X + 5

with `((1 +
√
Dk(X))/2) = 2k for any such k, where Lk is the kth Lucas number.
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