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Please submit all new problem proposals and corresponding solutions to the Problems Edi-
tor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State
University, 800 University Drive, Maryville, MO 64468. All solutions to others’ proposals
must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics, Northwest Missouri State University, 800 University Drive, Maryville, MO
64468.

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope.

Each problem and solution should be typed on separate sheets. Solutions to problems in
this issue must be received by March 15, 2005. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-981 Proposed by Steve Edwards, Southern Polytechnic State University
Marietta, GA

For all positive integers n, prove that

n∑
k=1

F6k = F6n+5 −
5
4
F 2

3n+3 +
(−1)n − 1

2
.

B-982 Proposed by Harris Kwong, SUNY Fredonia, Fredonia NY

For odd positive integers k, evaluate the sums

∞∑
n=2

Fkn

Fk(n−1)Fk(n+1)
and

∞∑
n=2

Lkn

Lk(n−1)Lk(n+1)
.
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B-983 Proposed by José Luis Díaz-Barrero, Universitat Politècnica
de Catalunya, Barcelona, Spain

Let n be a nonnegative integer. Prove that the system of equations

1
2

(x+ y + z) = Fn+2,

1
2

(x2 + y2 + z2) = F 2
n+2 − FnFn+1,

1
2

(x3 + y3 + z3) = F 3
n+2 −

3
2
FnFn+1Fn+2

has only integer solutions and determine them.
B-984 Proposed by Juan Pla, Paris, France

Find solutions related to Lucas and Fibonacci numbers to the Diophantine equation

x2 − 5y2 + 2z2 = ±1.

B-985 Proposed by Mario Catalani, University of Torino, Torino, Italy

Let P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn for n ≥ 0. Define Un = Fpn
and Vn = Lpn

.
For n ≥ 0, show that

(a) Un+2 = 1
2

(
Un(V 2

n+1 − 2(−1)n+1) + Un+1Vn+1

√
5U2

n + 4(−1)n
)

with U0 = 0 and U1 = 1;

(b) Vn+2 = 1
2

(
Vn(V 2

n+1 − 2(−1)n+1) + Un+1Vn+1

√
5V 2

n − 20(−1)n
)

with V0 = 2 and V1 = 1.
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SOLUTIONS

A Recurrence Relation

B-966 Proposed by Stanley Rabinowitz, Math Pro, Westford, MA
(Vol. 41, no. 5, Nov. 2003)

Find a recurrence relation for rn = 1
1+Fn

.

Solution by Steve Edwards, Southern Polytechnic State U., Marietta, GA

rn+1 =
1

1 + Fn+1
=

1
1 + Fn + Fn−1

=
1

(1 + Fn) + (1 + Fn−1)− 1
=

1
1
rn

+ 1
rn−1

− 1
,

which can also be written rnrn−1
rn+rn−1−rnrn−1

.

Also solved by Brian Beasley, José Luis Diaz-Barrero, Ovidiu Furdui, Pentti
Haukkanen, Russell Hendel, Gerald A. Heuer, H.-J. Seiffert, James Sellers, and
the proposer.

A Fibonacci Integral Pattern

B-967 Proposed by Juan Pla, Paris, France
(Vol. 41, no. 5, Nov. 2003)

Prove that 5
32F

2
6n is an integer of the form m(m+1)

2 .

Solution by H.-J. Seiffert, Berlin, Germany

Since 2 = F3 divides F3n,

m =
{ 5

4F
2
3n − 1 if n is odd

5
4F

2
3n if n is even

is an integer. From (I12) and (I7) of [1], we have 5F 2
3n + 4(−1)n = L2

3n and F3nL3n = F6n. It

follows that m(m+1)
2 = 5

32F
2
6n.

Reference
1. V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci

Association, 1979.

Also solved by Brian Beasley, Steve Edwards, Ovidiu Furdui, James Sellers, Harris
Kwong, and the proposer.
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Find its Limit!

B-968 Proposed by Mohammad K. Azarian, University of Evansville, Evansville
IN
(Vol. 41, no. 5, Nov. 2003)

Let F (n) =
∑n

i=2
4+1000Fi

Fi−1Fi+1
where Fi is the ith Fibonacci number. Find limn→∞ F (n).

Solution by Pentti Haukkanen, University of Tampere, Tampere, Finland

It is known that

∞∑
i=2

1
Fi−1Fi+1

= 1,

and
∞∑

i=2

Fi

Fi−1Fi+1
= 2,

see e.g. [1], Exercise 35, p. 442, and Exercise 25, p. 441. This shows that

lim
n→∞

F (n) = 2004.

Reference:
1. Thomas Koshy. Fibonacci and Lucas numbers with applications. Pure and Applied

Mathematics. Wiley-Interscience, New York, 2001.

Most other solvers actually verified the values of the two sums referred to in the featured
solutions.

Also solved by Charles Cook, Kenneth Davenport, José Luis Diaz-Barrero, Steve
Edwards, Ovidiu Furdui, Russell Hendel, Harris Kwong, H.-J. Seiffert, and the
proposer.

Much Ado About 4/3

B-969 Proposed by José Luis Díaz-Barrero, UPC, Barcelona, Spain
(Vol. 41, no. 5, Nov. 2003)

Evaluate the following sum

∞∑
n=1

Fn+1[F2n+3 + (−1)n+1]Fn+3

Fn+2[F2n+1 + (−1)n][F2n+5 + (−1)n+2]
.

A Composite Solution by Ovidiu Furdui, Western Michigan University, and H.-J.
Seiffert, Berlin, Germany
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¿From (I21) and (I23) of [1], we know that, for all positive integers n, F2n+1 + (−1)n =
Fn+1Ln, F2n+3 + (−1)n+1 = Fn+2Ln+1, and F2n+5 + (−1)n+2 = Fn+3Ln+2. Now notice that

Fn+1[F2n+3 + (−1)n+1]Fn+3

Fn+2[F2n+1 + (−1)n][F2n+5 + (−1)n+2]
=

Fn+1 · Fn+2Ln+1 · Fn+3

Fn+2 · Fn+1Ln · Ln+2Fn+3
=

Ln+1

LnLn+2
=

1
Ln
− 1
Ln+2

.

Let Sn =
∑n

k=1

(
1

Lk
− 1

Lk+2

)
= 1

L1
+ 1

L2
− 1

Ln+1
− 1

Ln+2
. Therefore Sn → 1

L1
+ 1

L2
=

1 + 1
3 = 4

3 as n→∞. It follows that the desired sum converges to 4
3 .

Also solved by Steve Edwards (Similar solution to the one above), Harris Kwong,
and the proposer.

Three Formulas

B-970 Proposed by Peter G. Anderson, Rochester Institute of Technology
Rochester, NY
(Vol. 41, no. 5, Nov. 2003)

Define a second-order and three third-order recursions by:

fn = fn−1 + fn−2, with f0 = 1, f1 = 1.
gn = gn−1 + gn−3, with g0 = 1, g1 = 1, g2 = 1.
hn = hn−2 + hn−3, with h0 = 1, h1 = 0, h2 = 1.

and
tn = tn−1 + tn−2 + tn−3, with t0 = 1, t1 = 1, t2 = 2.

Prove:
1. tn+3 = fn+3 +

∑
p+q=n fptq.

2. tn+2 = gn+2 +
∑

p+q=n gptq.
3. tn+1 = hn+1 +

∑
p+q=n hptq.

Solution by John F. Morrison, Baltimore, MD

The formulas can be proved by induction, but the sums in the formulas suggest using
generating functions. We first note that if sn = asn−1 + bsn−2 + csn−3 then the generating
function for the sn is

S(x) =
∞∑

m=0

smx
m =

x2(x2 − as1 − bs0) + x(s1 − as0) + s0
1− ax− bx2 − cx3

. (*)

To show this multiply out (
∑∞

m=0 smx
m) (1−ax− bx2− cx3) and note that all the terms after

the one containing x2 are zero because of the recurrence.
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Then, substituting the coefficients and the initial values in (*), we have

F (x) =
∞∑

m=0

fmx
m =

1
1− x− x2

G(x) =
∞∑

m=0

gmx
m =

1
1− x− x3

H(x) =
∞∑

m=0

hmx
m =

1
1− x2 − x3

T (x) =
∞∑

m=0

tmx
m =

1
1− x− x2 − x3

(**)

Since
∑

p+q=n sptq is the coefficient of xn in S(x)T (x) the formulas we wish to prove are
equivalent to
(1) T (x) = F (x) + x3F (x)T (x).
(2) T (x) = G(x) + x2G(x)T (x).
(3) T (x) = H(x) + xH(x)T (x).
But, from (**), we see

1
F (x)

=
1

T (x)
+ x3

1
G(x)

=
1

T (x)
+ x2

1
H(x)

=
1

T (x)
+ x

multiply these by F (x)T (x), G(x)T (x),H(x)T (x), respectively, to get the desired equalities.
It should be noted that similar equalities can be found, in the same way, for any recur-

rences, which differ in one term if the initial values are chosen so that the munerator in (*) is
1,
i.e. if

1
U(x)

=
1

V (x)
+ kxm

then
V (x) = U(x) + kxmU(x)V (x)

and
vn+m = un+m + k

∑
p+q=n

upvq.

Also solved by Harris Kwong, H.-J. Seiffert and the proposer.
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