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Consider the infinite product

A(z) = H(l —2fy =1 -2)1-2>)1—2®)(1—2%)(1—2%)...
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regarded as a formal power series. In [4], N. Robbins proved that the coefficients of A(z) are
all equal to —1,0 or 1. We shall give a short proof of this fact, and a very simple recursive
description of the coefficients of A(z).

Following the notation of [4], let a(m) be the coefficient of 2™ in A(x). It is clear that
a(m) = rg(m) — ro(m), where rg(m) is equal to the number of partitions of m into an even
number of distinct positive Fibonacci numbers, and ro(m) is equal to the number of m into
an odd number of distinct positive Fibonacci numbers. We call these partitions “even” and
“odd” respectively.

Proposition 1: Let n > 5 be an integer. Consider the coefficients a(m) for m in the interval
[Fy, Frt1). Split this interval into the three subintervals [F,, F), + Fj,_3 — 2], [F), + Fj,—3 —
]_,Fn + Fn,Q — ]_] and [Fn + Fn,Q, Fn+1 — 1]

1. The numbers a(F,),a(F, + 1),...,a(F, + F,—_3 — 2) are equal to the numbers

(-1 ta(F,_3 —2),(=1)"La(F,—3 —3),...,(=1)""1a(0) in that order.

2. The numbers a(F,, + F,—3 — 1),a(F,, + Fr_3),...,a(F, + F,,—2 — 1) are equal to 0.
3. The numbers a(F,, + F,,—2),a(F, + F—2+1),...,a(F,+1 — 1) are equal to the numbers
a(0),a(l),...,a(F,—3 — 1) in that order.

This description gives a very fast method for computing the coefficients a(m) recursively.
Once we have computed them for 0 < m < F,, we can immediately compute them for F, <
m < F,+1 using Proposition 1.

Also, since the coefficient of 2™ in A(x) is equal to —1,0 or 1 for all non-negative integers
m < F5, it follows inductively that the coefficients in each interval [F,,, F},;+1) are also all equal
to —1,0 or 1. This will prove Robbins’s result.

Proof of Proposition 1: It will be convenient to prove Proposition 1.2 first. Let F, +
F, 3—1<m < F,+ F,_o— 1, and consider the partitions of m into distinct positive
Fibonacci numbers. It is clear that the largest part in such a partition cannot be Fj, ;1 or
larger. It cannot be Fj,_5 or smaller either, because F,, o+ F,,_ 3+ ---+ Fo = F, —2 < m.
Therefore, it must be F), or F,_.

If the largest part is F},, then the second largest part cannot be F,,_; or F,_5. If, on the
other hand, it is F,_1, then the second largest part must be F),,_o, because F,,_1 + F,,_3 +
Fo s+ +F =2F, 1—-2=F,+F,_3—2<m.

This means that we can split the set of partitions into pairs. Each pair consists of two
partitions of the form F,,+F,+Fp+--- and F,_1+F,,_o+Fy,+F,+---, wheren—3>a > b >
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--+. In each pair, one of the partitions is even and the other is odd. Therefore rg(m) = ro(m)
and a(m) = 0 as claimed.

Now we use a similar analysis to prove Proposition 1.3. Let F}, + F,_o < m < Fj, 41 — 1.
As before, the largest part of a partition of m must be F,, or F,,_;. If it is F},, the second
largest part cannot be F,,_;. If, on the other hand, it is F,,_1, then the second largest part
must be Fj,_s.

Again, we can split a subset of the set of partitions into pairs. Each pair consists of
two partitions of the form F,, + F, + F, + ... and F,,_1 + F,,_o + F, + F, + ..., where

n—32>a>b>.... In each pair there is an even and an odd partition.
The remaining partitions are of the form F,, + F,, o+ F, + Fp + ..., where n —3 > a >
b > .... To each one of these partitions we can assign a partition of m" = m — F,, — F,,_o,

by just removing the parts F;, and F,,_5. This is in fact a bijection. Since m’ < F,,_o, any
partition of m’ has largest part less than or equal to F;,_3; therefore it can be obtained in that
way from a partition of m.

It is clear that, under this bijection, odd partitions of m go to odd partitions of m’ and
even partitions of m go to even partitions of m’. It follows that a(m) = a(m — F,, — F,,_»), as
claimed.

Finally we prove Proposition 1.1. Consider F,, < m < F,, + F,,_3 — 2. The parts of a
partition of m come from the list F5, F3, ..., F,. To each partition 7 of m, assign the partition
7’ of m" = F,,15 — 2 — m consisting of all the numbers on the above list that do not appear in
. Any partition of m’ can be obtained in such a way from a partition of m: the partitions of
m/ also have all their parts less than or equal to Fj,, because it is easily seen that m’ < F, ;.

So the partitions of m are in bijection with the partitions of m’. If a partition 7 of m
has k parts, the corresponding partition 7’ of m’ has n — 1 — k parts. Therefore, if n is odd,
the bijection takes odd partitions to odd partitions and even partitions to even partitions, and
a(m) = a(m’). If n is even, the bijection takes odd partitions to even partitions, and even
partitions to odd partitions, and a(m) = —a(m/). In any case, a(m) = (—=1)""ta(m’).

Now, it is easily seen that F,, + F,,_o < m’ < F,,11 — 2. Therefore Proposition 1.3 applies,
and a(m’) = a(m’ — F, — F,_2) = a(F, + F,_3 — 2 —m). Hence a(m) = (=1)""ta(F, +
F,_3 — 2 —m), which is what we wanted to show.

Proposition 2: Given an integer n, pick an integer m uniformly at random from the interval
[0,n]. Let p,, be the probability that a(m) = 0 or, equivalently, that rg(m) = ro(m).

Then lim,,_, o p, = 1.

Proof: Let a,, be the number of non-zero coefficients among the first F;, coefficients
a(0),a(1),...,a(F, — 1), so that p(p,_1) = 1 — a,/F,,. Notice that for Fy,_; < m < F, there
are at most «,, non-zero coefficients among a(0),a(1),...,a(m), so pm > 1 — a,/(m+1) >
1 — 2w, /F,. We shall now prove that lim, o a,/F, = 0, from which Proposition 2 follows.

First we obtain a recurrence relation for c,,. Consider the non-zero coefficients a(m) for
F, <m < F,11—1. We know that there are a,,+1 — o, such coefficients. Now split the interval
[F, Frr1 — 1] into the three subintervals [F,, F,, + F,_3 — 2], [Fy, + Fris — 1, F, + Fp_o — 1]
and [F,, + F,,_o, F, 11 — 1]. Proposition 1.2 shows that there are no non-zero coefficients in
the second subinterval, and Proposition 1.3 shows that there are «,,_3 non-zero coefficients in
the third subinterval. Because a(F,_3 — 1) is non-zero for all n > 5 (this follows inductively
from Proposition 1.3), Proposition 1.1 shows that there are «,,_3 — 1 non-zero coefficients in
the first subinterval. We conclude that o, 11 — o, = 20,3 — 1.
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The characteristic polynomial of this recurrence relation is z* — 23 — 2 = 0, and its
roots are approximately r1 ~ 1.54,r7 = —1,r3 =~ 0.23 4+ 1.12¢ and r4 ~ 0.23 — 1.12;. It
follows from standard results on linear recurrences that «,, = O(r}"), while F,, = O(\"), where
A= (V5 +1)/2~1.62. Since r; < A, we conclude that lim,, .. a,/F, = 0.
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