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1. INTRODUCTION

Various generalizations of the Fibonacci numbers have been proposed, studied and applied
over the years (see [5] for a brief list). Probably the best known are the k-generalized
Fibonacci numbers F (k)

n (also known as the k-fold Fibonacci, k-th order Fibonacci, k-Fibonacci
or polynacci numbers), satisfying

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + . . .+ F

(k)
n−k , n ≥ k ,

F (k)
n = 0 , 0 ≤ n ≤ k − 2 ,

F
(k)
k−1 = 1 .

An exhaustive bibliography of papers on the k-generalized Fibonacci numbers would cover
pages, so we just give a few references. The paper of Miles [9] seems to be the oldest well-
known paper on the subject, though Knuth [6] (section 5.4.2) cites a work of Schlegel [13]
dating from 1894. Numerous interesting results can be found in the pages of the Fibonacci
Quarterly, see for example [2, 3, 7]. There are significant applications in computer science [6]
and probability theory [11, 4, 8], the latter of which will be important for our purposes. Also
much is known about “weighted” k-generalized Fibonacci numbers, with different coefficients
in the recursion relation, see for example[1].

In this paper we look at a particular case of weighted k-generalized Fibonacci numbers,
which we call the (k, p)-generalized Fibonacci numbers. We define these by

F (k,p)
n =

1− p
p

(F (k,p)
n−1 + F

(k,p)
n−2 + . . .+ F

(k,p)
n−k ) , n ≥ k , (1)

F (k,p)
n = 0 , 0 ≤ n ≤ k − 2 , (2)

F
(k,p)
k−1 =

p

1− p
. (3)

Here k ≥ 2 is an integer and p is a real with 0 < p < 1. For p = 1
2 we recover the k-generalized

Fibonacci numbers. The reader will have no trouble checking that
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F
(k,p)
k+n = p−n , n = 0, 1, . . . k − 1 . (4)

For fixed k, p we have a representation

F (k,p)
n =

k∑
i=1

Ciλ
n
i , (5)

where λ1, . . . , λk are the roots (presumed distinct) of

λk =
1− p
p

(λk−1 + λk−2 + . . .+ λ+ 1) ,

and C1, . . . , Ck are chosen to satisfy the initial conditions (2)-(3). The behavior of the λi for
general p and sufficiently large k is similar to the behavior for p = 1

2 described in [9]: there is
a real root, which we will call λ1, between λ = 1 and λ = 1

p , and the remaining roots are all
inside the circle |λ| = 1. The contribution from λ1 dominates the sum (5), and in particular

limn→∞

(
F

(k,p)
n+1 /F

(k,p)
n

)
= λ1. As k increases, λ1 converges rapidly to 1

p .

The focus of this paper will be on an interesting formula for the F (k,p)
n , very different from

the Binet-type representation (5). In the case of the standard k-generalized Fibonacci numbers
(p = 1

2 ), and in particular in the case of the standard Fibonacci numbers (p = 1
2 , k = 2), our

formula reduces to an expression found by Ferguson [2]. Ferguson proved his result using
generating functions; we offer a combinatoric proof, which highlights the importance of the
(k, p)-generalized Fibonacci numbers in success run problems. The combinatoric proof nicely
explains why F

(k,p)
n depends on the greatest integer not exceeding (n − k + 1)/(k + 1). This

integer is simply the maximum possible number of distinct runs of k successes in a sequence
of n− k trials.
Notation: Let H(x) denote the Heaviside function defined by

H(x) =
{

1 x ≥ 0
0 x < 0

.

Theorem: For n ≥ k

F (k,p)
n =

bn−k+1
k+1 c∑
r=0

(−1)rpk(r+1)−n(1− p)r−1

[
(1− p)

(
n− k(r + 1)

r

)
+
(
n− k(r + 1)

r − 1

)]
. (6)

Here we understand that for any non-negative integer N ,
(

N
−1

)
= 0, and for any real x, bxc

denotes the largest integer not exceeding x.

Proof: Let P (k,p)
n denote the probability that there is at least one run of at least k

successes in a sequence of n identical Bernoulli trials, each having probability p of success.
The possible outcomes of the trials can be partitioned as follows: either the first trial results in
failure, or the first trial results in success and the second in failure, or the first two in success
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and the third in failure, . . . , or the first k − 1 result in success and the kth in failure, or the
first k all result in success. Thus, using the law of total probability we have

P (k,p)
n = q(P (k,p)

n−1 + pP
(k,p)
n−2 + p2P

(k,p)
n−3 + . . .+ pk−1P

(k,p)
n−k ) + pk , n ≥ k , (7)

where we have written q = 1−p. The initial conditions for this recursion are P (k,p)
n = 0,

0 ≤ n ≤ k − 1. If we write P (k,p)
n = 1− pnR

(k,p)
n we find

R(k,p)
n =

q

p
(R(k,p)

n−1 +R
(k,p)
n−2 + . . .+R

(k,p)
n−k ) , n ≥ k ,

with initial conditions R(k,p)
n = p−n, 0 ≤ n ≤ k − 1. Comparing with (1) and (4) we deduce

that R(k,p)
n = F

(k,p)
k+n , or

F (k,p)
n = pk−n(1− P (k,p)

n−k ) , n ≥ k . (8)

We now consider computing P
(k,p)
n using the inclusion–exclusion principle. Let Ai, i =

1, 2, . . . , n − k + 1, denote the event that there is a minimal run of k successes starting on
the ith trial. By “minimal” we mean that there is a run of precisely k successes starting on
the ith trial. Thus for i = 1, 2, . . . , n− k, being in Ai means that trials i, i+ 1, . . . , i+ k − 1
result in success, but trial i+k results in failure (so in particular, the event that the first k+ 1
trials result in success but trial k + 2 results in failure is contained in A2 but not A1). For
i = n− k + 1, being in Ai means just that the last k trials (trials n− k + 1, n− k + 2, . . . , n)
result in success. With this definition of the events Ai, P

(k,p)
n is simply the probability of their

union. So applying the inclusion–exclusion principle we have

P (k,p)
n =

∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑

i<j<l

P(Ai ∩Aj ∩Al)

+ . . .+ (−1)r−1
∑

i1<i2<...<ir

P(Ai1 ∩Ai2 ∩ . . . ∩Air ) + . . . .

Computing the first term is straightforward. We have

P(Ai) =
{
pkq 1 ≤ i ≤ n− k
pk i = n− k + 1

,

and so ∑
i

P(Ai) =
(
pkq(n− k) + pk

)
H(n− k) . (9)

The factor H(n − k) here reflects the fact that unless n ≥ k we cannot have a success run.
Moving to the second term, we can only have a pair of success runs if n ≥ 2k + 1. Because of
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our choice of Ai as the event that there is a minimal success run starting at the ith trial, Ai

and Aj are mutually exclusive if |j − i| ≤ k, and in full generality we have

P(Ai ∩Aj) =


0 |j − i| ≤ n
(pkq)2 1 ≤ i, j > i+ k, j < n− k + 1
p2kq 1 ≤ i, j > i+ k, j = n− k + 1

.

Thus

∑
i<j

P(Ai ∩Aj) =
n−2k−1∑

i=1

n−k∑
j=i+k+1

p2kq2 +
n−2k∑
i=1

p2kq

=
(

1
2
p2kq2(n− 2k)(n− 2k − 1) + p2kq(n− 2k)

)
H(n− 2k − 1) .

The third term in the inclusion–exclusion principle is

∑
i<j<l

P(Ai ∩Aj ∩Al) =
n−3k−2∑

i=1

n−2k−1∑
j=i+k+1

n−k∑
l=j+k+1

p3kq3 +
n−3k−1∑

i=1

n−2k∑
j=i+k+1

p3kq2

=
(

1
6
p3kq3(n− 3k)(n− 3k − 1)(n− 3k − 2)

+
1
2
p3kq2(n− 3k)(n− 3k − 1)

)
H(n− 3k − 2) .

A pattern is clearly emerging. For arbitrary r ≥ 1 we have

∑
i1<i2<...<ir

P(Ai1 ∩Ai2 ∩ . . . ∩Air ) =
n+1−r(k+1)∑

i1=1

n+1−(r−1)(k+1)∑
i2=i1+(k+1)

. . .

(n+1)−(k+1)∑
ir=ir−1+(k+1)

prkqr

+
n+2−r(k+1)∑

i1=1

n+2−(r−1)(k+1)∑
i2=i1+(k+1)

. . .

n+2−2(k+1)∑
ir−1=ir−2+(k+1)

prkqr−1 .

Lemma: For positive integers N, r,K with N > rK

N−rK∑
i1=1

N−(r−1)K∑
i2=i1+K

. . .

N−K∑
ir=ir−1+K

1 =
(
N − rK + r − 1

r

)
. (10)
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Proof: We consider arrangements of N − 1 objects with the constraints that there are
K objects of type 1 that appear in succession in a prescribed order, followed (not necessarily
immediately) by K objects of type 2 that appear in succession in a prescribed order, followed
in turn by K objects of type 3 that appear in succession in a prescribed order, and so on, up
to K objects of type r (that appear in succession in a prescribed order). Furthermore, the
remaining N − 1−Kr objects are identical. The left hand side of (10) counts the number of
such arrangements by counting the ways to place the first object of type 1, the first object of
type 2 etc. A more sensible way to count, however, is to notice that we can treat each of the
blocks of objects of types 1, 2, . . . , r as metaobjects, and then we are counting arrangements of
just N − 1− r(K − 1) objects in which r have prescribed order and the remaining N − 1−Kr
are identical. The number of such arrangements is clearly just the number of ways to chose r
from N − rK + r − 1. •

Returning now to the proof of the main theorem, using the lemma we can write down all
the terms in the inclusion–exclusion principle, and we have

P (k,p)
n =

∞∑
r=1

(−1)r−1

[(
n− rk
r

)
prkqr +

(
n− rk
r − 1

)
prkqr−1

]
H ((n+ 1)− r(k + 1)) .

The Heaviside functions restrict the sum to be over a finite range, and thus we reach the final
result

P (k,p)
n =

bn+1
k+1 c∑
r=1

(−1)r−1prk(1− p)r−1

[
(1− p)

(
n− rk
r

)
+
(
n− rk
r − 1

)]
. (11)

Using this in (8) we obtain the result in the theorem. •
Corollary 1: [2] For n ≥ k

F (k)
n =

bn−k+1
k+1 c∑
r=0

(−1)r2n+1−kr−k−r

[
1
2

(
n− k(r + 1)

r

)
+
(
n− k(r + 1)

r − 1

)]
. (12)

Corollary 2: [2] For n ≥ 2

Fn =
bn−1

3 c∑
r=0

(−1)r2n−3r−1

[
1
2

(
n− 2r − 2

r

)
+
(
n− 2r − 2
r − 1

)]
. (13)

Corollary 3: Define

Σ(k,p)
N =

b N
k+1c∑
r=0

(
N − kr

r

)(
1
p

)N−kr−r (
p− 1
p

)r

.

(This is the sum of terms in a diagonal in a generalization of Pascal’s triangle, see [12].) Then

F (k,p)
n = p

(
Σ(k,p)

n−k+1 − Σ(k,p)
n−2k

)
. (14)
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(The proof of this is an elementary manipulation of binomial coefficients.)
Comment 1: It is well-known that

Fn =
bn−1

2 c∑
r=0

(
n− 1− r

r

)
,

i.e. that the standard Fibonacci numbers can be expressed as a diagonal sum of Pascal’s
triangle. In (14) we see that for any k, the k-generalized Fibonacci numbers can be expressed
as the difference of two diagonal sums of a generalized Pascal’s triangle. In [12] it is shown
that the Σ(k,p)

n obey the recursion relation

Σ(k,p)
n =

1
p

Σ(k,p)
n−1 +

p− 1
p

Σ(k,p)
n−k−1 .

The roots of the characteristic polynomial of this recursion are exactly those of the recursion
(1), plus the root 1. Thus we should be able to write the F (k,p)

n as a linear combination of the
Σ(k,p)

n . The simplicity of (14), however, is remarkable.
Comment 2: There is an interesting way to generate the result (11) from the recursion
relation (7). We write (7) in the form

P (k,p)
n = q

k∑
i=1

pi−1P
(k,p)
n−i + pk , n ≥ k , P (k,p)

n = 0 , 0 ≤ n < k . (15)

Consider the modified recursion

P
(k,p)
n = q

∞∑
i=1

pi−1P
(k,p)
n−i + pk , n ≥ k , P

(k,p)
n = 0 , n < k , (16)

which determines quantities P (k,p)
n , where now n runs over all the integers, even negative. We

can regard the P (k,p)
n as a “first approximation” to the P (k,p)

n . Remarkably (16) has the exact
solution

P
(k,p)
n = pk (1 + q(n− k))H(n− k) ,
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as can be verified by a tedious calculation. This is precisely the first term (9) in the inclusion
–exclusion principle! We continue by writing a recursion for the differences Q(k,p)

n = P
(k,p)
n −

P
(k,p)
n . Subtracting (16) from (15) gives

Q(k,p)
n = q

k∑
i=1

pi−1Q
(k,p)
n−i − q

∞∑
i=k+1

pi−1P
(k,p)
n−i

= q

k∑
i=1

pi−1Q
(k,p)
n−i − q

n−k∑
i=k+1

pi+k−1 (1 + q(n− i− k))

= q

k∑
i=1

pi−1Q
(k,p)
n−i − q(n− 2k)p2kH(n− 2k − 1) , n ≥ k . (17)

This recursion should be solved with initial conditions Q(k,p)
n = 0, 0 ≤ n < k, and in fact we

clearly have Q(k,p)
n = 0 for 0 ≤ n < 2k + 1. Again, we “approximate” (17) with the recursion

Q
(k,p)
n = q

∞∑
i=1

pi−1Q
(k,p)
n−i − q(n− 2k)p2k , n ≥ 2k + 1 , (18)

with initial conditions Q(k,p)
n = 0, n < 2k + 1. This recursion can also be solved exactly, to

give

Q
(k,p)
n = −p2kq(n− 2k)

(
1 +

1
2
q(n− 2k − 1)

)
H(n− 2k − 1) ,

which is the second term in the inclusion–exclusion formula (with the correct sign). This pro-
cedure can be continued. There may be some relation with ∞-generalized Fibonacci numbers
[10].
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