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Department of Mathematics, Faculty of Civil Engineering,
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ABSTRACT

We give a method for finding periodic solutions of the equation yn+1 = λTn

(yn
λ

)
,

where Tn, n ∈ N, is a Chebyshev polynomial of the first kind and degree n. Some consideration
of Lucas and Mersenne numbers is also given.

1. INTRODUCTION AND PRELIMINARIES

A method for finding periodic solutions of the logistic difference equation

xn+1 = λxn(1− xn), xn ∈ R, λ ∈ R, n ∈ Z (1)

was given in [1]. More precisely, for a given parameter λ, an initial condition generating the
periodic solution is determined.

If a linear substitution xn = 1/2− yn/λ is introduced, one obtains a canonical form

yn+1 = y2
n − b (2)

of the equation (1), where b = λ2/4 − λ/2. A recurrence relation Ln+1 = L2
n − 2 (with an

initial value L1 = 4), which is a canonical form of the logistic equation for b = 2, defines the
Lucas numbers. We can rewrite it as

yn+1 = y2
n − 2 = 2

(
2
(yn

2

)2

− 1
)

= 2T2

(yn
2

)
, (3)

where T2(x) = 2x2 − 1 is a Chebyshev polynomial. So, we were motivated by this fact to
consider (3) as a special case of a more general equation

yn+1 = λTr

(yn
λ

)
, (4)

where r is a prime number, λ ∈ R.

2. PERIODIC SOLUTION OF THE EQUATION (4)

A periodic solution of a difference equation is the one satisfying condition yn+p = yn,
where p ∈ N, so that yn+q 6= yn whenever 1 ≤ q < p. We call p a period. Any other solution
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ON PERIODIC SOLUTIONS OF A CERTAIN DIFFERENCE EQUATION

is called a non-periodic solution. A trivial solution is yn = 0. In order to find all periodic
solutions of the equation (4), we will first find periodic solutions of the equation

yn+1 = yrn, r is a prime number. (5)

Lemma 1: A general solution of the equation (5) is

yn = ar
n

,

where y0 = a ∈ C is an arbitrary initial value.
Proof: It immediately follows from

yn = yrn−1 = (yrn−2)r = yr
2

n−2 = · · · = yr
n

0 .

Theorem 1: All periodic nontrivial solutions of the equation (5) for a period p are given by∏
d|rp−1

Φd(y) = 0,

where d - rq − 1 for q | p, q < p and Φd(y) are cyclotomic polynomials

Φd(y) =
∏
l|d

(yl − 1)µ(d/l), y ∈ C, d ∈ N,

and µ is the Möbius function defined by

µ(n) =


1 , if n = 1
(−1)k, if n = p1 · · · pk, where pi are distinct primes
0 , if p2 | n for some prime p.

Proof: Periodic solutions must satisfy the relation yn+p = yn. By Lemma 1 we have

ar
n+p

= ar
n

⇒
(
ar

n
)rp

− ar
n

= 0 ⇒ yn

(
yr

p−1
n − 1

)
= 0.

If q | p, q < p there follows rq − 1 | rp − 1, which in turn implies

yr
q−1
n − 1 | yr

p−1
n − 1. (6)

Because of (see Lidl, Niederreiter [2])

zn − 1 =
∏
d|n

Φd(z)

we have
yn

(
yr

p−1
n − 1

)
= yn

∏
d|rp−1

Φd(yn) = 0. (7)
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So all periodic nontrivial solutions for the period p are given by Φd(y) = 0 where d | rp − 1,
and d - rq − 1 for q | p, q < p. We had to exclude a product of cyclotomic polynomials Φd
where d | rq − 1, q | p, q < p, because, considering (6), the equation

yr
q−1
n − 1 =

∏
d|rq−1
q|p,q<p

Φd(yn) = 0

would give nontrivial solutions of the equation yr
q

n = yn obtained as a result of the relation
yn+q = yn. That means we have required periodic solutions for the periods q | p, q < p, which
is untrue.
Example 1: Let us consider the period p = 6. In that case 2p − 1 = 63. Divisors of 63 are 1,
3, 7, 9, 21, 63. So we have

yn
(
y63
n − 1

)
= yn

∏
d|63

Φd(yn)

= Φ0(yn)Φ1(yn)Φ3(yn)Φ7(yn)Φ9(yn)Φ21(yn)Φ63(yn) = 0,

where Φ0(y) = y and Φ1(y) = y − 1. However, divisors q of 6, q < 6 are 1, 2, 3. There follows
we must exclude 21 − 1 = 1, 22 − 1 = 3, 23 − 1 = 7, which means we omit a product of
those polynomials roots of which are periodic solutions for periods 1, 2, 3, that is the product
of cyclotomic polynomials Φ1(y),Φ3(y),Φ7(y). All periodic nontrivial solutions for the period
p = 6 are obtained as roots of the cyclotomic polynomials Φ9(y) = y6 + y3 + 1,Φ21(y) =
y12−y11 +y9−y8 +y6−y4 +y3−y+1,Φ63(y) = y36−y33 +y27−y24 +y18−y12 +y9−y3 +1.

For some values of p and r, periodic solutions are obtained by means of the equations

r = 3, p = 1 : Φ1 = 0, Φ2 = 0;
p = 2 : Φ4 = 0, Φ8 = 0;
p = 3 : Φ13 = 0, Φ26 = 0.

r = 5, p = 1 : Φ1 = 0, Φ2 = 0, Φ4 = 0;
p = 2 : Φ3 = 0, Φ6 = 0, Φ8 = 0, Φ12 = 0, Φ24 = 0.

Note that on the basis of

deg Φn =
∑
d|n

dµ
(n
d

)
= ϕ(n),

one can determine the degree of a cyclotomic polynomial, where ϕ is Euler’s function.
Now we are going to find periodic solutions of the difference equation (4).

Lemma 2: A general solution of the equation (4) is given by

yn = λTrn

(y0

λ

)
,

where y0 = a ∈ C is an arbitrary initial value.
Proof: Chebyshev polynomials Tn(x) are defined by

Tn(x) = cos(n arccosx),
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whence there follows

Tmn(x) = cos(mn arccosx) = cos(m(n arccosx))
= cos(m arccos(cos(n arccosx)))
= cos(m arccos(Tn(x))) = Tm(Tn(x)).

By using this property we easily find

yn = λTr

(yn−1

λ

)
= λTr

(
Tr

(yn−2

λ

))
= λTr2

(yn−2

λ

)
= · · · = λTrn

(y0

λ

)
.

Theorem 2: All periodic nontrivial solutions for a period p can be found from an equation
expressed in the form of

2k
∏

d|rp−1
d-rq−1

Φd(x) = Q(x),

where the polynomial Q(x) and k ∈ N are to be determined.
Proof: For a period p, periodic solutions are obtained by means of the relation yn+p = yn.

By Lemma 2 we have

yn+p = λTrn+p

(y0

λ

)
= yn = λTrn

(y0

λ

)
⇒ λTrnrp

(y0

λ

)
= λTrn

(y0

λ

)
.

By making use of the above property Tmn(x) = Tm(Tn(x)), we find

λTrp

(yn
λ

)
= yn ⇒ Trn

(yn
λ

)
=
yn
λ
.

Denoting xn =
yn
λ

we come to an equation
Trp(xn) = xn. (8)

As we know that the coefficient at xn in Chebyshev polynomials Tn(x) is 2n−1, the equation
(8) (when we drop the subscript n for the sake of simplicity) can be rewritten in the form of

2r
p−1xr

p

− 2r
p−1x = P (x) ⇔ 2r

p−1x
(
xr

p−1 − 1
)

= P (x),

where P (x) is a polynomial obtained after the rearrangement of (8). Considering (7) the last
equation becomes

2r
p−1Φ0(x)

∏
d|rp−1

Φd(x)− P (x) = 0 (Φ0(x) = x). (9)

All periodic solutions for the period p, including periods q such that q | p, q < p, can be
obtained form (9). Following the line of reasoning as in the proof of Theorem 1, in order to
find periodic solutions for the period p, we divide the equation (9) by the polynomials giving
periodic solutions for the periods q < p, q | p. These polynomials have a form of the left-hand
side of (9) and contain a product of the cyclotomic polynomials subscripts of which are divisors
of rq − 1. It means that in the product of cyclotomic polynomials on the left-hand side of (9)
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must be omitted those cyclotomic polynomials subscripts of which are divisors of rq − 1 and
after division, instead of the polynomial P (x), a polynomial Q(x) will appear.
Example 2: Let p = 4 and r = 2. According to (8) we start from the equation T16(x) = x,
i.e.

32768x16 − 131072x14 + 212992x12 − 180224x10

+84480x8 − 21504x6 + 2688x4 − 128x2 + 1 = x.

After a rearrangement we get

215x(x15 − 1) = P (x) ⇔ 215Φ0(x)Φ1(x)Φ3(x)Φ5(x)Φ15 − P (x) = 0, (10)
where

P (x) = 131072x14 − 212992x12 + 180224x10

−84480x8 + 21504x6 − 2688x4 + 128x2 − 32767x− 1.

The equation (10) contains all periodic solutions, but we exclude the solutions for the periods
q < 4, q | 4, that is q = 1 or q = 2. So we have to consider now those relations giving periodic
solutions for the periods 1 and 2, that is yn+1 = yn and yn+2 = yn. However, the latter
comprises all periodic solutions of the first one, and the equation (8) becomes

T4(x) = x ⇔ 8x4 − 8x2 + 1 = x ⇔ 8x4 − 8x2 − x+ 1 = 0.

It is necessary to divide (10) by the polynomial 8x4 − 8x2 − x+ 1, roots of which contain all
periodic solutions for the period q = 2, including q = 1. There holds

x(x− 1)(x2 + x+ 1) = Φ0(x)Φ1(x)Φ3(x),

and we have

8x4 − 8x2 − x+ 1 = 0 ⇔ 23Φ0(x)Φ1(x)Φ3(x)− (8x2 − 7x− 1) = 0,

After dividing the equation (10) by the polynomial 8x4 − 8x2 − x+ 1 containing the product
23Φ0(x)Φ1(x)Φ3(x), as a result we obtain

4096x12 − 12288x10 + 512x9 + 13824x8 − 1024x7 − 7104x6 + 640x5

+1600x4 − 120x3 − 120x2 + 1 = 0.

Rewriting this equation we have

212Φ5(x)Φ15(x) ≡4096(1 + x3 + x6 + x9 + x12)
= 12288x10 + 3584x9 − 13824x8 + 1024x7 + 11200x6 − 640x5

−1600x4 + 4216x3 + 120x2 + 4095 = Q(x).

Example 3: Let now r = 3 and p = 2. We start from the equation T9(x) = x and come to
the equation 256x9 − 576x7 + 432x5 − 120x3 + 8x = 0. After a rearrangement we get

28x(x8 − 1) = P (x)⇔ 28x(x− 1)(x+ 1)(x2 + 1)(x4 + 1) = P (x)
⇔ 28Φ0(x)Φ1(x)Φ2(x)Φ4(x)Φ8(x)− P (x) = 0,
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where P (x) = 576x7 − 432x5 + 120x3 − 264x. But we have to divide the above equation
by a polynomial roots of which are periodic solutions for the period p = 1. In order to
find that polynomial, we consider the equation T3(x) = x, whence we obtain the polynomial
22Φ0(x)Φ1(x)Φ2(x) + 2x. After dividing we obtain the equation 64x6 − 80x4 + 28x2 − 2 = 0.
In other words

26Φ4(x)Φ8(x) ≡ 26(x2 + 1)(x4 + 1) = 144x4 + 36x2 + 66 = Q(x).

3. SOME NOTES ON THE LUCAS AND MERSENNE NUMBERS

We are now coming back to the recurrence relation (3) defining the Lucas numbers. Con-
sidering that a general solution of the equation (4) is

yn = 2T2n

(y0

2

)
,

it is, at the same time, a general solution of the equation (3). By choosing y0 =
√

6, seeing as
L1 = 4, we find a general formula for the Lucas numbers

Ln = 2T2n−1(2).

However, taking account of (see Suetin [4])

Tn(z) =
1
2

((
z +

√
z2 − 1

)n
+
(
z −

√
z2 − 1

)n)
, z ∈ C

the Lucas numbers can be expressed explicitly in the following way

Ln = (2 +
√

3)2n−1
+ (2−

√
3)2n−1

.

Also, the well-known Lucas-Lehmer theorem (see Sierpiński [3]) concerned with a test
ascertaining whether Mersenne numbers are prime or not, now becomes: A Mersenne number
Mp, p being an odd prime, is prime if and only if it is a divisor of T2p−2(2).
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[1] P.N. Antonyuk and K.P. Stanyukovič. Periodic Solutions of the Logistic Difference Equa-
tion, Reports of the Academy of Sciences of the USSR 313 No 5 (1990) 1033-1036. (in
Russian)

[2] R. Lidl and G. Niederreiter. Finite Fields, Addison-Wesley Publishing Company, 1983.
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