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ABSTRACT

Let ∆(P ) be the m-dimensional Pascal’s pyramid consisting of m-nomial coefficients
n!/r1!r2! . . . rm!, and ∆(M) be the modified one of the modified m-nomial coefficients
(n + m − 1)!/r1!r2! . . . rm!, where n = r1 + r2 + · · · + rm. It will be proved that a GCD
equality for a configuration C, which holds in ∆(P ) corresponds to an LCM equality for C ′ in
∆(M), which is symmetric to C with respect to a point, and an LCM equality for C in ∆(P )
to a GCD equality for C ′ in ∆(M). The results are generalized to the pyramids consisting of
the generalized coefficients defined by a strong divisibility sequence.

1. INTRODUCTION

In our previous paper [6], we showed the reason why there exists the dual correspondence
between sets in Pascal’s triangle and one’s in the modified Pascal triangle concerning GCD and
LCM for which many examples are given in [1] and [2]. In this note we will extend the results to
the case of the m-dimensional generalized Pascal pyramid and the m-dimensional generalized
modified Pascal pyramid. We have shown in our previous paper [3] and [4] many examples in
which a GCD equality for a configuration C in Pascal’s pyramid ∆(P ) corresponds to an LCM
equality for a configuration C ′, which is symmetric to C with respect to a point, in modified
Pascal pyramid ∆(M), and an LCM equality for a configuration C in Pascal’s pyramid ∆(P )
corresponds to a GCD equality for a configuration C ′ in modified Pascal pyramid ∆(M) (the
definitions will be given in the next section).

The purpose of this paper is to clarify the reason why such a phenomenon occurs between
these pyramidal arrays of numbers by showing a p-adic complementary relation of m-nomial
coefficients and modified m-nomial coefficients.

2. DEFINITIONS, NOTATIONS AND CLARIFICATIONS

We denote the value of m-nomial coefficients as(
n

r1r2 . . . rm

)
=

n!
r1!r2! . . . rm!

,
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where n = r1 +r2 + · · ·+rm. The m-dimensional Pascal’s pyramid, which we denote by ∆(P ),
is the m-dimensional pyramidal array of m-nomial coefficients. We call{

n
r1r2 . . . rm

}
=

(n+m− 1)!
r1!r2! . . . rm!

,

where n = r1 + r2 + · · · + rm, the modified m-nomial coefficients, and we refer to a similar
pyramidal array of these coefficients as the m-dimensional modified Pascal pyramid, which we
denote by ∆(M).

Let the symbols
(

n
r1r2 . . . rm

)
and

{
n

r1r2 . . . rm

}
represent both their values and

positions in ∆(P ) and ∆(M), respectively. Since the position of a point is determined by
r1, r2, . . . , rm, in both ∆(P ) and ∆(M), we can represent it by (r1, r2, . . . , rm), which we refer
to the coordinates of the point. We overlap ∆(P ) and ∆(M) in m-dimensional space in such
a way that any two points taken out of each pyramid by one coincide if they have the same
coordinates. When we consider symbols or concepts common to ∆(P ) and ∆(M), and do
not have to distinguish them, we sometimes use the symbol ∆(T ) to represent both ∆(P ) and
∆(M) in order to avoid repetitions. It is assumed throughout the arguments that r1, r2, . . . , rm
are nonnegative integers satisfying n = r1 +r2 + · · ·+rm. A nonempty finite subset C of ∆(T )
is called a configuration in ∆(T ). We introduce an equivalence relation to the set of all the
configurations in ∆(T ) such that two configurations in ∆(T ) are equivalent to each other if
and only if one is obtained by a parallel translation of the other. Then an equivalence class
of the set of all configurations in ∆(T ) by this equivalence relation is called a translatable
configuration in ∆(T ). Unless otherwise stated, we simply call it a configuration C even if
it is actually referring the translatable configuration to which the configuration C belongs.
There will not be danger of misinterpretation since we are discussing only the GCD and LCM
properties which hold on C independent of the location of C in ∆(T ).

Let S1 and S2 be two nonempty finite subsets of ∆(T ), where S1 ∩S2 = ∅ is not claimed.
We define a configuration C in ∆(T ) by C = S1 ∪ S2. If the equality

gcd(S1) = gcd(S2) (1)

holds independent of the location of C in ∆(T ), we call (1) a GCD equality in ∆(T ). In the
same manner, if

lcm(S1) = lcm(S2) (2)

holds instead of (1), we call (2) a LCM equality in ∆(T ).
Let us fix a point X in ∆(T ). If X is a midpoint of segment AA′, we say that two points

A and A′ are symmetric with respect to X. Two configurations C and C ′ are said to be
symmetric with respect to X if there is a one to one correspondence σ from points of C to
points of C ′, such that all the corresponding pairs are symmetric with respect to X, and then
σ is called a symmetric transformation.

Notice that each transformation operates on C, not on ∆(T ), and therefore, when we
consider the case in which a symmetric transformation operates on a translatable configuration
C, we do not have to locate the center of symmetry since change of the center of symmetry
only causes a parallel transformation of the resulting C ′ which is unchanged as a translatable
configuration.
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3. p-ADIC COMPLEMENTARY THEOREM BETWEEN m-NOMIAL
COEFFICIENTS AND MODIFIED m-NOMIAL COEFFICIENTS

Now we fix a prime p and integersm ≥ 2 and e ≥ 1, and let r1, r2, . . . , rm, r′1, r
′
2, . . . , r

′
m, n =

r1 +r2 + · · ·+rm, n
′ = r′1 +r′2 + · · ·+r′m be nonnegative integers. The additive p-adic valuation

of an integer y, denoted by β = vp(y), is the largest integer β such that pβ divides y. We
assume that the conditions

n+ n′ = mpe −m, r1 + r′1 = r2 + r′2 = · · · = rm + r′m = pe − 1 (3)

are satisfied. Then we put

vp(n, n′) = vp

(
n

r1r2 . . . rm

)
+ vp

{
n′

r′1r
′
2 . . . r

′
m

}
,

since the right hand side depends only on n and n′ and is independent of r1, r2, . . . , rm and
r′1, r

′
2, . . . , r

′
m, as we will see in the proof of the following theorem.

Theorem 1: (p-adic complementary theorem) If the conditions (k − 1)pe ≤ n ≤ kpe − 1 or
(m − k)pe −m + 1 ≤ n′ ≤ (m − k + 1)pe −m are satisfied for a positive integer k, then the
value of vp(n, n′) is unchanged.

Proof: If r + r′ = pe − 1, then vp(r′) = vp(r + 1), and so we have

vp(r!r′!) = vp(r!) + vp(r′!) = vp(r!) + vp((r + 1)(r + 2) . . . (r + r′))
= vp((r + r′)!) = vp((pe − 1)!).

If n > 0, since vp(n′+m+ h) = vp(n− h) for h = 0, 1, . . . , n− (k− 1)pe− 1 by the conditions,

vp(n!) = vp(n(n− 1) · · · ((k − 1)pe + 1)) + vp(((k − 1)pe)!)
= vp((n′ +m)(n′ +m+ 1) · · · (n′ +m+ n− (k − 1)pe − 1)

+ vp(((k − 1)pe)!)
= vp((n′ +m)(n′ +m+ 1) · · · ((m− k + 1)pe − 1)) + vp(((k − 1)pe)!)

vp(n!(n′ +m− 1)!) = vp(n!) + vp((n′ +m− 1)!)
= vp((n′ +m)(n′ +m+ 1) · · · ((m− k + 1)pe − 1)) + vp(((k − 1)pe)!)

+ vp((n′ +m− 1)!)
= vp(((k − 1)pe!) + vp((m− k + 1)pe − 1)!).

The last equality is also trivially valid for n = 0 (then k = 1). Thus

vp(n, n′) = vp(n!(n′ +m− 1)!/r1!r′1!r2!r′2! . . . rm!r′m!)
= vp(((k − 1)pe)!((m− k + 1)pe − 1)!/((pe − 1)!)m),

which depends only on p, m, k and e.

17



ON GCD-LCM DUALITY BETWEEN PASCAL’S PYRAMID ...

Remark: If we do not restrict the range of n, vp(n, n′) does not always keep the same value.
For example, in the case c = 2, m = 5 and e = 1, the values of vp(n, n′) are as follows.

n 0 1 2 3 4
vp(n, n′) 7 7 5 5 6

Theorem 2: Let m = kpf , where f ≥ 0 and k is not divisible by p. Then vp(n, n′) takes the
same value for any r1, r2, . . . , rm, r′1, r

′
2, . . . , r

′
m, n = r1+r2+· · ·+rm and n′ = r′1+r′2+· · ·+r′m,

satisfying (3), if and only if k < p.
Proof: If k < p, n < mpe < pf+1pe = pe+f+1 so that vp(n) ≤ e + f for any n such that

n ≤ mpe −m. Thus vp(n′ +m+ h) = vp(n− h) for h = 0, 1, . . . , n− 1, and we have

vp(n!(n′ +m− 1)!) = vp((n+ n′ +m− 1)!) = vp((mpe − 1)!).

If k > p on the contrary, for n = pf+1+e < mpe,

vp(n) = f + 1 + e, while vp(n′ +m) = vp(mpe − n) = vp((k − p)pf+e) = f + e.

Since vp(n′ +m+ h) = vp(n− h) for h = 1, 2, . . . , n− 1, we have

vp(n, n′) = vp(n− 1, n′ + 1) + 1
to complete the proof.

4. GCD-LCM DUALITY BETWEEN m-DIMENSIONAL PASCAL’S
PYRAMID AND THE MODIFIED PASCAL PYRAMID

As an application of the p-adic complementary theorem between the m-nomial coefficients
and the modified m-nomial coefficients which was established in the previous section, we now
prove a duality between a configuration C in m-dimensional Pascal’s pyramid ∆(P ) and a
configuration C ′ in m-dimensional modified Pascal pyramid ∆(M) concerning the GCD and
the LCM.
Theorem 3: Let C = S1 ∪ S2 be a configuration in ∆(P ) consisting of two nonempty finite
subsets S1 and S2, which corresponds to a configuration C ′ = σ(C) = S′1 ∪ S′2 in ∆(M) by a
symmetric transformation σ with respect to a point X in such a manner that σ(S1) = S′1 and
σ(S2) = S′2. Then the GCD equality

gcd(S1) = gcd(S2) (4)

holds wherever C is located in ∆(P ), if and only if the LCM equality

lcm(S′1) = lcm(S′2) (5)

holds wherever C ′ = σ(C) is located in ∆(M). Similarly, the LCM equality for C holds in
∆(P ) if and only if the corresponding GCD equality for C ′ holds in ∆(M).

Proof: First, we assume that the GCD equality (4) holds independent of the location of
C in ∆(P ). Then wherever C is located in ∆(P ), we have

min{vp(S1)} = min{vp(S2)}, (6)
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where min{vp(Si)} denotes min{vp(A)|A ∈ Si} for i = 1 and 2.
Let p be an arbitrary, but fixed, prime. Now we take the point X whose coordinates are

given by r1 = r2 = · · · = rm = (pe − 1)/2 as the center of the symmetric transformation σ.
Notice that if p = 2, X does not correspond to an entry of ∆(T ). Given a location of C ′ in
∆(M), we take e to be sufficiently large so that

pe > max{n′|n′ corresponds to a point A′ in C ′}+m.

Then the configuration C corresponding to C ′ by σ is contained in ∆(P ), and each point A ∈ C
satisfies the condition of Theorem 1 for k = m. Therefore, vp(A)+vp(A′) takes the same value,
which we denote by vp(C,C ′), for every A ∈ C and the corresponding A′ = σ(A) ∈ C ′, so that

min{vp(S)}+ max{vp(S′)} = vp(C,C ′) = a constant (7)

for any S ⊂ C and corresponding S′ ⊂ C ′.
Since we assume the GCD equality (4) in ∆(P ), equality (6) holds so that, using (7), we

have
max{vp(S′1)} = max{vp(S′2)} for all primes p, (8)

which is equivalent to (5). Similarly, we can prove that if (5) holds independent of the location
of C ′ in ∆(M), then (4) holds independent of the location of C in ∆(P ).

If we exchange min and max in (6), (7) and (8), then gcd and lcm in (4) and (5) must be
exchanged.

5. THE CASE OF GENERALIZED m-NOMIAL COEFFICIENTS AND
GENERALIZED MODIFIED m-NOMIAL COEFFICIENTS

A sequence of positive integers A = {an} = {a1, a2, a3, · · · } is called a strong divisibility
sequence if

(ak, ah) = a(k,h)

for every k, h = 1, 2, 3, · · · , where (ak, ah) and (k, h) are the greatest common divisors of two
numbers. Without loss of generality, we can assume here that a1 = 1 as we stated in [5].
The sequence of natural numbers N = {1, 2, 3, . . . } and the sequence of Fibonacci numbers
F = {F1, F2, F3, . . . } are examples of strong divisibility sequences. Let pe, where e > 0 be
a prime power. The rank of apparition of pe in A = {an}, the smallest u such that pe|au
is denoted by ρ(pe). In our previous paper [5], we showed that the sequence {kn} defined
by kn =min{e, vp(an)} is periodic with period u = ρ(pe) and is symmetric in the interval
0 < n < u.

For any strong divisibility sequence A = {an}, if we generalize the m-nomial coefficients
and the modified m-nomial coefficients by replacing r1, r2, · · · , rm and n in section 2 with
ar1 , ar2 , · · · , arm and an, respectively, then we have A m-nomial coefficents(

n

r1r2 · · · rm

)
A

=
∏
an∏

ar1
∏
ar2 · · ·

∏
arm

,
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and modified A m-nomial coefficients

{
n

r1r2 · · · rm

}
A

=
∏
an+m−1∏

ar1
∏
ar2 · · ·

∏
arm

,

where n = r1 + r2 + · · ·+ rm and the symbol
∏
ar is defined by

∏
ar = a1a2 · · · ar for r ∈ N .

For the generalized Pascal Pyramid and the generalized modified Pascal Pyramid consist-
ing of these coefficients, we use the same symbols as we defined for original ones in section 2,
or sometimes put sub A to distinguish from the original case.

Let A = {an} be a strong divisibility sequence, and p a fixed prime. We assume that
n = r1 + r2 + · · ·+ rm and n′ = r′1 + r′2 + · · ·+ r′m as above and the conditions

n+ n′ = mu−m, r1 + r′1 = r2 + r′2 = · · · = rm + r′m = u− 1 (9)
are satisfied, where u = ρ(pe) for a prime power pe. This means geometrically that a point
(r1, r2, . . . , rm) in ∆(P )A and a point (r′1, r

′
2, . . . , r

′
m) in ∆(M)A are symmetric with respect

to a center X whose coordinates are given by r1 = r2 = · · · = rm = (u− 1)/2. Then we put

vp(n, n′)A = vp

(
n

r1r2 . . . rm

)
A

+ vp

{
n′

r′1r
′
2 . . . r

′
m

}
A

.

Theorem 4: (p-adic complementary theorem for the generalized version)
If {vp(an)} is bounded, then vp(n, n′)A is a constant.
If {vp(an)} is unbounded, then the value of vp(n, n′)A is unchanged in the region where

(k− 1)u ≤ n ≤ ku− 1 or (m− k)u−m+ 1 ≤ n′ ≤ (m− k+ 1)u−m are satisfied for a positive
integer k.

Proof: If r + r′ = u − 1, then vp(r′) = vp(u − (r + 1)) = vp(r + 1), and so we have
vp(
∏
ar
∏
ar′) = vp(

∏
ar) + vp(

∏
aa′

r
) = +vp(

∏
ar) + vp(ar+1ar+2 . . . ar+r′) = vp(

∏
ar+r′) =

vp(
∏
au−1).

First, we assume that {vp(an)} is bounded. Let max{vp(an)} = e and put u = ρ(pe).
Then {vp(an)} is periodic with period u and symmetric in the interval 1 ≤ n ≤ u − 1. Since
n+n′+m− 1 = mu− 1, we have n′+m− k = mu− (n+ k) for k = 1, 2, · · · , n′+m− 1, and
so,

vp

(∏
an
∏

an′+m−1

)
= vp

(∏
an

)
+ vp

(∏
an′+m−1

)
= vp

(∏
an

)
+ vp (an+1an+2 · · · amu−1) = vp

(∏
amu−1

)
.

Summarizing above results, we have
vp (n, n′)A = vp

(∏
amu−1

)
−mvp

(∏
au−1

)
,

which shows that vp(n, n′)A is independent of n and n′ as was desired.
In the second case, where {vp(an)} is unbounded, vp(n, n′)A is not always a constant in

the whole region. If we restrict the region, however, we can prove that vp(n, n′)A is unchanged
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in (k− 1)u ≤ n ≤ ku− 1 or (m−k)u−m+ 1 ≤ n′ ≤ (m−k+ 1)u−m for a positive integer k.
The proof is similar to that of Theorem 1 or the first part of this theorem, and will be omitted.

This theorem also leads the next one in the same way as we got Theorem 3.
Theorem 5: Let C = S1 ∪ S2 be a configuration in ∆(P )A consisting of two nonempty finite
subsets S1 and S2, which corresponds to a configuration C ′ = S′1∪S′2 in ∆(M)A by a symmetric
transformation σ with respect to a point X in a manner σ(S1) = S′1 and σ(S2) = S′2. Then
the GCD equality

gcd(S1) = gcd(S2)

holds wherever C is located in ∆(P )A, if and only if the LCM equality

lcm(S′1) = lcm(S′2)

holds wherever C ′ = σ(C) is located in ∆(M)A. Similarly, the LCM equality for C holds in
∆(P )A if and only if the corresponding GCD equality for C ′ holds in ∆(M)A.
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