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1. INTRODUCTION

Let Fp =0, Fy =1, and F,, = F,,_1 + F,,_5 for n > 2, denote the sequence of Fibonacci
numbers. For an integer m > 2, we shall consider Fibonacci numbers in Z,, throughout this
paper. It is known that the sequence {F,, (mod m)},>¢ is periodic [8]. Let m(m) denote the
(shortest) period of this sequence. There are some known results on m(m) [2, 6, 7, §].

Theorem 1.1: [8] If n(p) # m(p?), then 7 (p*¥) = p*~Ln(p) for each integer k > 1 and prime
p. Also if t is the largest integer with 7(p?) = 7(p), then 7(p*) = p*~tx(p) for k > t.

For any modulus m > 2 and residue b (mod m) (we always assume 1 < b < m), denote
by v(m,b) the frequency of b as a residue in one period of the sequence {F, (mod m)}. It
was proved that v(5%,b) = 4 for each b (mod 5%) and each k > 1 by Niederreiter in 1972 [7].
Jacobson determined v(2%,b) for k > 1 and v(2¥57,b) for k > 5 and j > 0 in 1992 [6]. Some
other results in this area can be found in [4, 5].

In this paper we shall partially describe the number v(3%,b) for k& > 1.

Example 1.1: A period of F,,(mod 27) is listed below:

Feaorg\. || 1 2 3 4 5 6 7 8 || <y
0 1 1 2 3 5 8 13 21
1 7 1 8 9 17 26 16 15
2 4 19 23 15 11 26 10 9
3 19 1 20 21 14 8 22 3
4 25 1 26 0 26 26 25 24
5 22 19 14 6 20 26 19 18
6 0 1 11 12 23 8 4 12
7 6 1 17 18 8 26 7 6
8 13 19 5 24 2 2 1 0
] | |

Table 1: A period of the Fibonacci numbers Fg,4, (mod 27).
So v(27,1) = v(27,26) = 8, v(27,8) = v(27,19) = 5 and v(27,b) = 2 for b # 1,8,19,26. O
2. SOME KNOWN RESULTS
In Section 4, we shall consider the frequency of each residue b (mod 3*) in one period of the

sequence {F,, (mod 3*)}. Before considering this problem we list some well-known identities
in this section.

22



DISTRIBUTION OF THE FIBONACCI NUMBERS MODULO 3k

The Fibonacci sequence is defined for all integer values of the index n. So we have

F_,=(-1)""FE,; (1)
Fn+m:Fm—1Fn+Fan+1; (2)
bk
Flnsr =Y <h> FrERME. L, for k> 0; (3)
h=0
bk
Fy, = F, Z <h> EM1pr=hp  for k> 0; (4)
h=1

Remark: The proof of (1) can be found in [1]. (2) was mentioned as a known result in the
proof of [8, Theorem 3]. It is called the addition formula. (3) was mentioned in [2] as a known
result. These two identities can be proved by induction. (4) follows from the fact Fy = 0 and

(3).
JFrom (3), (4) and the fact F.y = F; = F5, =1, Fy =0 and F3 = 2, we have

Fap1 = (Fuo1)’ +3(F)° Fuy + (F)?, (5)
Py = Fo [3(Fu1)’ + 3F Py +2(F)| . (6)

Let a(m*) be the first index o > 0 such that F, = 0 (mod mF¥). Let 3(m*) be the largest
integer 3 such that F,(,,») =0 (mod mP), i.e., B(mF) is the largest exponent 3 such that m”

divides Fy(y,r). It is usually written as mBm") | Fo(m#ry in number theory. Note that, by using
the fact that the g.c.d.(Fy, Fo—1) = 1 and (3) we have a(m) is a factor of w(m) for m > 2 (the
reader also may wish to see [2]).

Theorem 2.1: [2] If p is an odd prime and k > 3(p), then a(p*) = p* =P a(p) and B(p*) = k.

Example 2.1: {F), (mod 3)},>0 ={0,1,1,2,0,2,2,1,0,1,...}. Thus we have 7(3) = 8 and
a(3) = 4. Since Fy = 3, 3(3) = 1. By Theorem 2.1, a(3%) = 3*~1a(3) = 4-3*~1 and p(3¥) = k
for £k > 1. This means that 3kHF4,3k—1 fork>1. 0O

It is easy to check that m(3) = 8 and 7(3%) = 24. Applying Theorem 1.1 we have

m(3*) =831 for k> 1.

From Example 2.1, we have
3k||F7T(3k)/2 for k > 1. (7)

3. SOME USEFUL IDENTITIES OF FIBONACCI NUMBERS MODULO 3*

In this section, we show some identities of Fibonacci numbers modulo 3% which will be
used in Section 4.

Lemma 3.1: For k >4, Fr 3191 = 7-3""2+1 (mod 3%) and Fy(3r)/9 = 4-3F2 (mod 3%).
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Proof: Note that 7(3%) = 8-3*~1. We prove this lemma by induction on k. When k = 4,
we have Fh3 = 28657 = 64 = 7- 32 + 1 (mod 3%) and Fhy = 46368 = 36 = 4 - 32 (mod 3*%).
Suppose the lemma is true for some k& > 4. Since 2k —3 > k+ 1 and Fg.3x-3 = 0 (mod 3),

3 (Fg.36-3)° = 0 (mod 3*+1) (8)
(Fg.ge-3)° =0 (mod 35F1) (9)
and (Fg.aes_1)° = (7-3"72 4 1)3 =7-3*"14+1 (mod 3**1). (10)

By putting n = 8-3%=3 into (5) and (6), using (8), (9), (10) and the induction assumption,
we have

F8,3k—2_1 = (F8,3k—3_1)3 = 7 . 3k_1 + ]. (mOd 3k+1),

F8,3k72 = 3F8,3k73 (F8,3k73_1)2
=3(4-352 4 3%u) (7382 4 1 + 3Fu)? for some u,v € Z
=433 T+ 9u)? +2-3F2(T 4+ 9v) +1] =4 -3 (mod 3FT).

This completes the proof. O
Corollary 3.2: For k>2, Fz_; =3""141 (mod 3*) and Fz =3""' (mod 3%), where
7 = 7 (3F).

Proof: Suppose k = 2. F; = 13 = 4 (mod 3?) and Fg = 21 = 3 (mod 3?). Suppose k = 3.
By the proof of Lemma 3.1 we have Fa3 = 7-3%+1 (mod 3*) and Fyy = 4-3% (mod 3%). This
implies Fp3 = 3% + 1 (mod 33) and Fby = 32 (mod 33). Suppose k& > 4. By (5), (8), (9) and
(10) we have

Fso1=(Fz-1)" +3(Fg)" Pz 1+ (F5)’
=731 41 (mod 3**1)
=3""1 +1 (mod 3").
Similarly, by (6) (8), (9) and (10) we have
F5 =3F5 (Fg1)" (mod 3

=3-4-32(7-32 1 1)% (mod 3%)
=4-3""1 =351 (mod 3%).

This completes the proof. O
Proposition 3.3 can be proved like Lemma 3.1 was proved. However, we will provide
another proof.

Proposition 3.3: For k> 1, Fz_1 = F,ry_1 = —1 (mod 3%), where m = 7(3%).
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Proof: By (2) we have F_; = (F%_1)2+ (F%)2 . By (7) we have (F%_l)Q =1 (mod 3%).
By the definition of 7 and together with (7), F'z_; # 1 (mod 3%). Since the multiplication
group of units of Zgx is cyclic (see [3, Theorem 4.19]), Fz _; = —1 (mod 3%). O
Corollary 3.4: Fork > 2, F,,;z = —F, (mod 3").

Proof: By (2) we have Foyz = Fz _1F, + Fz F, ;1. By Proposition 3.3 and (7) we have
Fpyz =—F, (mod 3%). O

Thus, for each band each n such that F,, = b (mod 3*) we have Foyz = —b (mod 3F).
Thus the frequency of b (mod 3*) and —b (mod 3%) are equal. That is, v(3*,b) = v(3%, 3% —b).

4. FREQUENCIES OF FIBONACCI NUMBERS MODULO 3*

In this section, we shall compute some values of v(3%,b) for k > 1.

F, if n=2, 6 (mod 8)
Lemma 4.1 For k> 2, we have Foyz =4 F,+3""! ifn=0,5, 7 (mod 8)
k=1 e —
(mod 3%), where m = 7(3F). F,+2-3 ifn=1, 3, 4 (mod 8)

Proof: By (2) and Corollary 3.2, we have
Foyz =FFr 14+ Fu1Fz = (3" '+ 1)F, + 3" 'Foyy = F, + 3 'Fopn  (mod 3%). (11)

Since 7(3) = 8 and {F, 42 (mod 3)},>0 ={1,2,0,2,2,1,0,1,...}, we obtain the lemma. O

F, if n =6, 18 (mod 24)
Lemma 4.2: For k>4, we have F, z = F,+3"! if n =10, 14 (mod 24)
k=1 po —
(mod 3k)7 where m — 7]_(314) F,+2-3 if n=2, 22 (mod 24)

Proof: By (2) and Lemma 3.1, we have
Foyz = FyFz 1+ Fo1Fz = F, + 3 72(TF, + 4F,41)  (mod 3%).

Let U, = T7F, + 4F,41. Since w(9) = 24 and U, = 6,0,3,3,0,6 (mod 9) when n =
2,6,10,14,18,22 (mod 24), respectively, we have the lemma. O
For each b, 1 < b < 27, we let the number w(3*,b) = [{n | F, = b (mod 27), 1 < n <
7(3%)}|. This means that
wEb) = > vEha).

1<p<3k
z=b (mod 27)

Let A be a set of one period of the sequence {F,, (mod 3*)}, where k > 3. Since 7(3%) =
3F=37(27), after taking modulo 27 for each element of A, the set A becomes 3¥=3 copies of a
period of the sequence {F,, (mod 27)} . Thus by Example 1.1 we have the following lemma.

8-3F3 ifb=1, 26
Lemma 4.3: For k>3, w(3*,b) =4 5-3¥3 4fb=38, 19.

2383 otherwise.
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Lemma 4.4: Let k > 1. Suppose 1 < n < m(3¥) with n # 2,6 (mod 8). If F,, =b (mod 3F),
then there is a number n’ € {n,n+nr(3%),n+27(3%)} such that F,, =b (mod 3**1). Moreover,
two sets {Fr, Firry, Foiponar)} and {b, b+ 3%, b+2-3%} are equal in Zgr+1. Note that
n=n' (mod 8).

Proof: It is straightforward to check that the lemma holds for k = 1.

Now we assume k > 2. Suppose F,, = b’ (mod 3**1). Then ¥ = b+ 3*c (mod 3¥1), for
some ¢ with 0 < ¢ < 2.

Now =G — 7(3%), so by Lemma 4.1 we have

{Fn+3’f n=0,57 (mod 8)

d3k+1
F,+2.3 n51,3,4(m0d8)} (mo )

Frn(ar) = F | zahen =

k —
{b/+3 n=0,57 (mod 8)} (mod 35+1)

¥+4+2-38 n=1,3,4 (mod 8)

{ b+38(c+1) n=0,57 (mod 8)
b+3F(c+2) n=1,3,4 (mod 8)

Since m(3*) = 0 (mod 8), n = n + 7(3%) = n + 27(3%) (mod 8). So we have
{Fn; Foin@rys Fogonae)} =10, b+3% b+4+2-3F) in Zgks:. This completes the proof. 0O

k 3 S k h 9 9 9

Moreover, two sets {Fn, Fn+ﬂ.(3k), Fn+ 2 (3%) } and {b, b+ 3%, b+2-3%} are equal in Zgisr.
3 3

Note that n = n’ (mod 24).
Proof: Suppose F,, = b (mod 3¥*1). Then b’ = b + 3*c (mod 3¥1), for some c with
0<e<2.

Similar to the proof of Lemma 4.4, now W(3S+1) = W(gk)

, so by Lemma 4.2 we have

{ F, +3F n = 10,14 (mod 24)

od 3k+1
Fo+2-3% n=222 (mod 24) } (m )

F B = F k+1y =
n—i—# n_'_%

b+3%(c+1) n=10,14 (mod 24)

= d 3k,
{b+3k(c+2) n=2,22 (mod 24) } (mo )

Since %k) =0 (mod 24), we have the lemma. O
Note that it is easy to see that if F};, = b (mod 3F), then there is a number m, 1 < m < 72,
such that n =m (mod 72) and F,, = b (mod 27).

Theorem 4.6: For k >3, v(3%,b) =8 ifb=1 or 26 (mod 27).
Proof: We shall prove the theorem by induction on k. Consider b = 1 (mod 27) first.
Suppose k = 3. Then by Table 1 we have v(33,1) = 8.
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Suppose v(3%,b) = 8 for k > 3. Let b € Zgxt1 with b = 1 (mod 27). Let F,, = b
(mod 3%), 1 <i < 8and 1< mn; <nm(3%). Since F,,, =1 (mod 27), it is easy to see from Table
1 that n; # 6,18 (mod 24). By Lemmas 4.4 and 4.5 there are at least v(3¥,b) = 8 nl’s with
0 < nj < 7(3F*1) such that F,,, = b (mod 3"!). Since there are 3572 solutions in Zgs+1 for
the congruence equation b = 1 (mod 27), w(3**1 1) > 8-3*=2. But it is known from Lemma 4.3
that w(3*T1 1) = 8. 3¥=2. Therefore v(3*+1,b) = 8.

The proof for b =26 (mod 27) is similar. O

By a similar proof we obtain the following theorem.

Theorem 4.7: For k >3, v(3%,b) =2 if b # 1,8,19 nor 26 (mod 27).

It is easy to see that v(3,0) = 2, v(3,1) = v(3,2) = 3 and v(9,1) = v(9,8) = 5 and
v(9,b) = 2 for b # 1 nor 8.

In general we do not have a formula to describe the number v(3%,b) for b = 8,19 (mod 27)
yet. Suppose b = 27m + 8 with 0 < m < 3¥=3 and ¥’ = —b (mod 3*). Then it is easy to see
that b’ = 27m’ + 19 for some m’. Namely, m’ = 3¥=3 —m — 1. By Corollary 3.4, we have
v(3k,27m + 8) = v(3%,27m’ + 19). Thus, we shall be only interested in v(3%,27m + 8). We
give below some numerical data for 1/(3’“, 27m + 8) when 3 < k£ < 10.

v(3%,8) = 5.
v(3%,8) = 11, v(3%,b) = 2 otherwise.
v(3°,8) = 20, v(3°,89) = 11, v(3%,b) = 2 otherwise.

v(3%,27m + 8)

m =0 (mod 3?) 20
m = 12 29
otherwise 2

v(37,27m + 8)

m =0 (mod 3?) 20

m =12 29

m = 66 56

otherwise 2
v(3%,27Tm + 8)

m =0 (mod 3?) 20

m = 66 (mod 3%) 56

m =12 83

otherwise 2
v(32,27Tm + 8)

m =0 (mod 3?) 20

m = 66 (mod 3%) 56

m =12 83

m = 498 164

otherwise 2
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v(310,27m + 8)
m =0 (mod 3?) 20
m = 66 (mod 3%) 56
m = 498 (mod 39) 164
m = 741 245
otherwise 2

Finally we thank Mr. S. K. Wong for his programming work.
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