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1. INTRODUCTION

Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2, denote the sequence of Fibonacci
numbers. For an integer m ≥ 2, we shall consider Fibonacci numbers in Zm throughout this
paper. It is known that the sequence {Fn (mod m)}n≥0 is periodic [8]. Let π(m) denote the
(shortest) period of this sequence. There are some known results on π(m) [2, 6, 7, 8].
Theorem 1.1: [8] If π(p) 6= π(p2), then π(pk) = pk−1π(p) for each integer k ≥ 1 and prime
p. Also if t is the largest integer with π(pt) = π(p), then π(pk) = pk−tπ(p) for k > t.

For any modulus m ≥ 2 and residue b (mod m) (we always assume 1 ≤ b ≤ m), denote
by ν(m, b) the frequency of b as a residue in one period of the sequence {Fn (mod m)}. It
was proved that ν(5k, b) = 4 for each b (mod 5k) and each k ≥ 1 by Niederreiter in 1972 [7].
Jacobson determined ν(2k, b) for k ≥ 1 and ν(2k5j , b) for k ≥ 5 and j ≥ 0 in 1992 [6]. Some
other results in this area can be found in [4, 5].

In this paper we shall partially describe the number ν(3k, b) for k ≥ 1.
Example 1.1: A period of Fn(mod 27) is listed below:

F8x+y ↘ 1 2 3 4 5 6 7 8 ← y

0 1 1 2 3 5 8 13 21
1 7 1 8 9 17 26 16 15
2 4 19 23 15 11 26 10 9
3 19 1 20 21 14 8 22 3
4 25 1 26 0 26 26 25 24
5 22 19 14 6 20 26 19 18
6 10 1 11 12 23 8 4 12
7 16 1 17 18 8 26 7 6
8 13 19 5 24 2 26 1 0
x ↑

Table 1: A period of the Fibonacci numbers F8x+y (mod 27).

So ν(27, 1) = ν(27, 26) = 8, ν(27, 8) = ν(27, 19) = 5 and ν(27, b) = 2 for b 6= 1, 8, 19, 26.

2. SOME KNOWN RESULTS

In Section 4, we shall consider the frequency of each residue b (mod 3k) in one period of the
sequence {Fn (mod 3k)}. Before considering this problem we list some well-known identities
in this section.
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The Fibonacci sequence is defined for all integer values of the index n. So we have

F−n = (−1)n+1Fn; (1)

Fn+m = Fm−1Fn + FmFn+1; (2)

Fkn+r =
k∑
h=0

(
k
h

)
FhnF

k−h
n−1 Fr+h, for k ≥ 0; (3)

Fkn = Fn

k∑
h=1

(
k
h

)
Fh−1
n F k−hn−1 Fh, for k ≥ 0; (4)

Remark: The proof of (1) can be found in [1]. (2) was mentioned as a known result in the
proof of [8, Theorem 3]. It is called the addition formula. (3) was mentioned in [2] as a known
result. These two identities can be proved by induction. (4) follows from the fact F0 = 0 and
(3).

¿From (3), (4) and the fact F−1 = F1 = F2 = 1, F0 = 0 and F3 = 2, we have

F3n−1 = (Fn−1)3 + 3 (Fn)2 Fn−1 + (Fn)3 , (5)

F3n = Fn

[
3 (Fn−1)2 + 3FnFn−1 + 2 (Fn)2

]
. (6)

Let α(mk) be the first index α > 0 such that Fα ≡ 0 (mod mk). Let β(mk) be the largest
integer β such that Fα(mk) ≡ 0 (mod mβ), i.e., β(mk) is the largest exponent β such that mβ

divides Fα(mk). It is usually written as mβ(mk)‖Fα(mk) in number theory. Note that, by using
the fact that the g.c.d.(Fα, Fα−1) = 1 and (3) we have α(m) is a factor of π(m) for m ≥ 2 (the
reader also may wish to see [2]).
Theorem 2.1: [2] If p is an odd prime and k ≥ β(p), then α(pk) = pk−β(p)α(p) and β(pk) = k.
Example 2.1: {Fn (mod 3)}n≥0 = {0, 1, 1, 2, 0, 2, 2, 1, 0, 1, . . . }. Thus we have π(3) = 8 and
α(3) = 4. Since F4 = 3, β(3) = 1. By Theorem 2.1, α(3k) = 3k−1α(3) = 4 ·3k−1 and β(3k) = k
for k ≥ 1. This means that 3k‖F4·3k−1 for k ≥ 1.

It is easy to check that π(3) = 8 and π(32) = 24. Applying Theorem 1.1 we have

π(3k) = 8 · 3k−1 for k ≥ 1.

From Example 2.1, we have

3k‖Fπ(3k)/2 for k ≥ 1. (7)

3. SOME USEFUL IDENTITIES OF FIBONACCI NUMBERS MODULO 3k

In this section, we show some identities of Fibonacci numbers modulo 3k which will be
used in Section 4.
Lemma 3.1: For k ≥ 4, Fπ(3k)/9−1 ≡ 7 · 3k−2 + 1 (mod 3k) and Fπ(3k)/9 ≡ 4 · 3k−2 (mod 3k).
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Proof: Note that π(3k) = 8 ·3k−1. We prove this lemma by induction on k. When k = 4,
we have F23 = 28657 ≡ 64 ≡ 7 · 32 + 1 (mod 34) and F24 = 46368 ≡ 36 ≡ 4 · 32 (mod 34).

Suppose the lemma is true for some k ≥ 4. Since 2k− 3 ≥ k+ 1 and F8·3k−3 ≡ 0 (mod 3),

3 (F8·3k−3)2 ≡ 0 (mod 3k+1) (8)

(F8·3k−3)3 ≡ 0 (mod 3k+1) (9)

and (F8·3k−3−1)3 ≡
(
7 · 3k−2 + 1

)3 ≡ 7 · 3k−1 + 1 (mod 3k+1). (10)

By putting n = 8 ·3k−3 into (5) and (6), using (8), (9), (10) and the induction assumption,
we have

F8·3k−2−1 ≡ (F8·3k−3−1)3 ≡ 7 · 3k−1 + 1 (mod 3k+1),

F8·3k−2 ≡ 3F8·3k−3 (F8·3k−3−1)2

≡ 3(4 · 3k−2 + 3ku)(7 · 3k−2 + 1 + 3kv)2 for some u, v ∈ Z

≡ 4 · 3k−1[32k−4(7 + 9v)2 + 2 · 3k−2(7 + 9v) + 1] ≡ 4 · 3k−1 (mod 3k+1).

This completes the proof.
Corollary 3.2: For k ≥ 2, Fπ

3−1 ≡ 3k−1 + 1 (mod 3k) and Fπ
3
≡ 3k−1 (mod 3k), where

π = π(3k).
Proof: Suppose k = 2. F7 = 13 ≡ 4 (mod 32) and F8 = 21 ≡ 3 (mod 32). Suppose k = 3.

By the proof of Lemma 3.1 we have F23 ≡ 7 · 32 + 1 (mod 34) and F24 ≡ 4 · 32 (mod 34). This
implies F23 ≡ 32 + 1 (mod 33) and F24 ≡ 32 (mod 33). Suppose k ≥ 4. By (5), (8), (9) and
(10) we have

Fπ
3−1 =

(
Fπ

9−1

)3 + 3
(
Fπ

9

)2
Fπ

9−1 +
(
Fπ

9

)3
≡ 7 · 3k−1 + 1 (mod 3k+1)
≡ 3k−1 + 1 (mod 3k).

Similarly, by (6) (8), (9) and (10) we have

Fπ
3
≡ 3Fπ

9

(
Fπ

9−1

)2 (mod 3k+1)

≡ 3 · 4 · 3k−2(7 · 3k−2 + 1)2 (mod 3k)
≡ 4 · 3k−1 ≡ 3k−1 (mod 3k).

This completes the proof.
Proposition 3.3 can be proved like Lemma 3.1 was proved. However, we will provide

another proof.
Proposition 3.3: For k ≥ 1, Fπ

2−1 = Fα(3k)−1 ≡ −1 (mod 3k), where π = π(3k).
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Proof: By (2) we have Fπ−1 =
(
Fπ

2−1

)2 +
(
Fπ

2

)2
. By (7) we have

(
Fπ

2−1

)2 ≡ 1 (mod 3k).
By the definition of π and together with (7), Fπ

2−1 6≡ 1 (mod 3k). Since the multiplication
group of units of Z3k is cyclic (see [3, Theorem 4.19]), Fπ

2−1 ≡ −1 (mod 3k).

Corollary 3.4: For k ≥ 2, Fn+π
2
≡ −Fn (mod 3k).

Proof: By (2) we have Fn+π
2

= Fπ
2−1Fn + Fπ

2
Fn+1. By Proposition 3.3 and (7) we have

Fn+π
2
≡ −Fn (mod 3k).

Thus, for each b and each n such that Fn ≡ b (mod 3k) we have Fn+π
2
≡ −b (mod 3k).

Thus the frequency of b (mod 3k) and −b (mod 3k) are equal. That is, ν(3k, b) = ν(3k, 3k− b).

4. FREQUENCIES OF FIBONACCI NUMBERS MODULO 3k

In this section, we shall compute some values of ν(3k, b) for k ≥ 1.

Lemma 4.1 For k ≥ 2, we have Fn+π
3
≡

Fn if n ≡ 2, 6 (mod 8)
Fn + 3k−1 if n ≡ 0, 5, 7 (mod 8)
Fn + 2 · 3k−1 if n ≡ 1, 3, 4 (mod 8)


(mod 3k), where π = π(3k).

Proof: By (2) and Corollary 3.2, we have

Fn+π
3

= FnFπ
3−1 + Fn+1Fπ

3
≡ (3k−1 + 1)Fn + 3k−1Fn+1 ≡ Fn + 3k−1Fn+2 (mod 3k). (11)

Since π(3) = 8 and {Fn+2 (mod 3)}n≥0 = {1, 2, 0, 2, 2, 1, 0, 1, . . . }, we obtain the lemma.

Lemma 4.2: For k ≥ 4, we have Fn+π
9
≡

Fn if n ≡ 6, 18 (mod 24)
Fn + 3k−1 if n ≡ 10, 14 (mod 24)
Fn + 2 · 3k−1 if n ≡ 2, 22 (mod 24)


(mod 3k), where π = π(3k)

Proof: By (2) and Lemma 3.1, we have

Fn+π
9

= FnFπ
9−1 + Fn+1Fπ

9
≡ Fn + 3k−2(7Fn + 4Fn+1) (mod 3k).

Let Un = 7Fn + 4Fn+1. Since π(9) = 24 and Un ≡ 6, 0, 3, 3, 0, 6 (mod 9) when n ≡
2, 6, 10, 14, 18, 22 (mod 24), respectively, we have the lemma.

For each b, 1 ≤ b ≤ 27, we let the number ω(3k, b) = |{n | Fn ≡ b (mod 27), 1 ≤ n ≤
π(3k)}|. This means that

ω(3k, b) =
∑

1≤x≤3k

x≡b (mod 27)

ν(3k, x).

Let A be a set of one period of the sequence {Fn (mod 3k)}, where k ≥ 3. Since π(3k) =
3k−3π(27), after taking modulo 27 for each element of A, the set A becomes 3k−3 copies of a
period of the sequence {Fn (mod 27)} . Thus by Example 1.1 we have the following lemma.

Lemma 4.3: For k ≥ 3, ω(3k, b) =


8 · 3k−3 if b = 1, 26
5 · 3k−3 if b = 8, 19
2 · 3k−3 otherwise.

.
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Lemma 4.4: Let k ≥ 1. Suppose 1 ≤ n ≤ π(3k) with n 6≡ 2, 6 (mod 8). If Fn ≡ b (mod 3k),
then there is a number n′ ∈ {n, n+π(3k), n+2π(3k)} such that Fn′ ≡ b (mod 3k+1). Moreover,
two sets {Fn, Fn+π(3k), Fn+2π(3k)} and {b, b + 3k, b + 2 · 3k} are equal in Z3k+1 . Note that
n ≡ n′ (mod 8).

Proof: It is straightforward to check that the lemma holds for k = 1.
Now we assume k ≥ 2. Suppose Fn ≡ b′ (mod 3k+1). Then b′ ≡ b+ 3kc (mod 3k+1), for

some c with 0 ≤ c ≤ 2.

Now π(3k+1)
3 = π(3k), so by Lemma 4.1 we have

Fn+π(3k) = F
n+

π(3k+1)
3
≡
{
Fn + 3k n ≡ 0, 5, 7 (mod 8)
Fn + 2 · 3k n ≡ 1, 3, 4 (mod 8)

}
(mod 3k+1)

≡
{
b′ + 3k n ≡ 0, 5, 7 (mod 8)
b′ + 2 · 3k n ≡ 1, 3, 4 (mod 8)

}
(mod 3k+1)

≡
{
b+ 3k(c+ 1) n ≡ 0, 5, 7 (mod 8)
b+ 3k(c+ 2) n ≡ 1, 3, 4 (mod 8)

}
(mod 3k+1).

Since π(3k) ≡ 0 (mod 8), n ≡ n + π(3k) ≡ n + 2π(3k) (mod 8). So we have
{Fn, Fn+π(3k), Fn+2π(3k)} = {b, b+ 3k, b+ 2 · 3k} in Z3k+1 . This completes the proof.

Lemma 4.5: Let k ≥ 3. Suppose 1 ≤ n ≤ π(3k) with n ≡ 2, 10, 14, 22 (mod 24). If Fn ≡ b
(mod 3k), then there is a number n′ ∈ {n, n+ π(3k)

3 , n+ 2π(3k)
3 } such that Fn′ ≡ b (mod 3k+1).

Moreover, two sets
{
Fn, F

n+
π(3k)

3
, F

n+
2π(3k)

3

}
and {b, b+ 3k, b+ 2 · 3k} are equal in Z3k+1 .

Note that n ≡ n′ (mod 24).
Proof: Suppose Fn ≡ b′ (mod 3k+1). Then b′ ≡ b + 3kc (mod 3k+1), for some c with

0 ≤ c ≤ 2.
Similar to the proof of Lemma 4.4, now π(3k+1)

9 = π(3k)
3 , so by Lemma 4.2 we have

F
n+

π(3k)
3

= F
n+

π(3k+1)
9
≡
{
Fn + 3k n ≡ 10, 14 (mod 24)
Fn + 2 · 3k n ≡ 2, 22 (mod 24)

}
(mod 3k+1)

≡
{
b+ 3k(c+ 1) n ≡ 10, 14 (mod 24)
b+ 3k(c+ 2) n ≡ 2, 22 (mod 24)

}
(mod 3k+1).

Since π(3k)
3 ≡ 0 (mod 24), we have the lemma.

Note that it is easy to see that if Fn ≡ b (mod 3k), then there is a number m, 1 ≤ m ≤ 72,
such that n ≡ m (mod 72) and Fm ≡ b (mod 27).
Theorem 4.6: For k ≥ 3, ν(3k, b) = 8 if b ≡ 1 or 26 (mod 27).

Proof: We shall prove the theorem by induction on k. Consider b ≡ 1 (mod 27) first.
Suppose k = 3. Then by Table 1 we have ν(33, 1) = 8.
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Suppose ν(3k, b) = 8 for k ≥ 3. Let b ∈ Z3k+1 with b ≡ 1 (mod 27). Let Fni ≡ b
(mod 3k), 1 ≤ i ≤ 8 and 1 ≤ ni ≤ π(3k). Since Fni ≡ 1 (mod 27), it is easy to see from Table
1 that ni 6≡ 6, 18 (mod 24). By Lemmas 4.4 and 4.5 there are at least ν(3k, b) = 8 n′i’s with
0 ≤ n′i ≤ π(3k+1) such that Fn′

i
≡ b (mod 3k+1). Since there are 3k−2 solutions in Z3k+1 for

the congruence equation b ≡ 1 (mod 27), ω(3k+1, 1) ≥ 8·3k−2. But it is known from Lemma 4.3
that ω(3k+1, 1) = 8 · 3k−2. Therefore ν(3k+1, b) = 8.

The proof for b ≡ 26 (mod 27) is similar.
By a similar proof we obtain the following theorem.

Theorem 4.7: For k ≥ 3, ν(3k, b) = 2 if b 6≡ 1, 8, 19 nor 26 (mod 27).
It is easy to see that ν(3, 0) = 2, ν(3, 1) = ν(3, 2) = 3 and ν(9, 1) = ν(9, 8) = 5 and

ν(9, b) = 2 for b 6= 1 nor 8.
In general we do not have a formula to describe the number ν(3k, b) for b ≡ 8, 19 (mod 27)

yet. Suppose b = 27m + 8 with 0 ≤ m < 3k−3 and b′ ≡ −b (mod 3k). Then it is easy to see
that b′ = 27m′ + 19 for some m′. Namely, m′ = 3k−3 − m − 1. By Corollary 3.4, we have
ν(3k, 27m + 8) = ν(3k, 27m′ + 19). Thus, we shall be only interested in ν(3k, 27m + 8). We
give below some numerical data for ν(3k, 27m+ 8) when 3 ≤ k ≤ 10.
ν(33, 8) = 5.
ν(34, 8) = 11, ν(34, b) = 2 otherwise.
ν(35, 8) = 20, ν(35, 89) = 11, ν(35, b) = 2 otherwise.

ν(36, 27m+ 8)

m ≡ 0 (mod 32) 20
m = 12 29
otherwise 2

ν(37, 27m+ 8)

m ≡ 0 (mod 32) 20
m = 12 29
m = 66 56
otherwise 2

ν(38, 27m+ 8)

m ≡ 0 (mod 32) 20
m ≡ 66 (mod 34) 56
m = 12 83
otherwise 2

ν(39, 27m+ 8)

m ≡ 0 (mod 32) 20
m ≡ 66 (mod 34) 56
m = 12 83
m = 498 164
otherwise 2
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ν(310, 27m+ 8)

m ≡ 0 (mod 32) 20
m ≡ 66 (mod 34) 56
m ≡ 498 (mod 36) 164
m = 741 245
otherwise 2

Finally we thank Mr. S. K. Wong for his programming work.
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