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1. INTRODUCTION

Pairs of inverse relations are very useful in the study of combinatorial identities [2]. One
of the classical inversion formulas is the binomial inverse pair:

an =
n∑

k=0

(−1)k

(
n

k

)
bk; bn =

n∑
k=0

(−1)k

(
n

k

)
ak. (1)

We say that a sequence {an} of complex numbers is self-inverse or invariant if
n∑

k=0

(−1)k

(
n

k

)
ak = an (2)

and denote by S+ the set of self-inverse sequences. We also denote by S− the set of sequences
{an} satisfying

n∑
k=0

(−1)k

(
n

k

)
ak = −an.

By the definition it is not difficult to verify that {an} ∈ S− if and only if a0 = 0 and
{

an+1
n+1

}
∈

S+ or {nan−1} ∈ S+.
Recently, Sun [5] studied self-inverse sequences by using their generating functions and

gave many interesting examples and results of self-inverse sequences. In this paper, we explore
self-inverse sequences by means of linear transformations, difference operators and the umbral
calculus. We obtain various characterizations of self-inverse sequences from these different
approaches. For S+ we show that it is a vector space over the complex field and determine its
dimension. We also give simpler proofs to certain results of Sun. It is worth noting that our
results can give rise to many interesting identities.

2. LINEAR TRANSFORMATIONS

Let

P =
(

(−1)k

(
n

k

))
=



1
1 −1 O

1 −2 1
1 −3 3 −1
...

...
...

...
. . .

 .

Then the inverse pair (1) can be written as

α = Pβ ; β = Pα,

where α = (a0, a1, a2, . . . )T and β = (b0, b1, b2, . . . )T are two column vectors. Note that the
pair in (1) is self-inverse. Hence, P is an involutory matrix, i.e., P 2 = I, where I is the identity
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matrix. In what follows we identify a vector α = (a0, a1, a2, . . . )T with the sequence {an}.
Then α ∈ S+ if and only if α is invariant under the linear transformation y = Px, i.e., Pα = α.
Thus, S+ is precisely the null space of the matrix P − I. Similarly, we may show that S− is
the null space of the matrix P + I. The following proposition is therefore immediate.
Proposition 2.1: Let α, β be two complex vectors.
(a) If α, β ∈ S±, then aα+ bβ ∈ S± for arbitrary complex numbers a and b;
(b) if A is a matrix satisfying AP = PA, then α ∈ S± implies that Aα ∈ S±.
Theorem 2.2: α ∈ S± if and only if α = (P ± I)v for some vector v. In other words, S± is
precisely the column space of the matrix P ± I.

Proof: Suppose that α ∈ S+. Then Pα = α. Putting v = α/2, we have

(P + I)v = (P + I)α/2 = (Pα+ α)/2 = (α+ α)/2 = α.

Conversely, suppose that α = (P + I)v for some v. Then

Pα = P (P + I)v = (P 2 + P )v = (I + P )v = α.

Thus, α ∈ S+.
The statement for S− may be proved similarly.

Remark 2.3: The above discussion for the binomial inverse pair is also suitable for general
self-inverse pairs:

an =
∑

k

A(n, k)bk; bn =
∑

k

A(n.k)ak,

where the matrix A = (A(n, k)) satisfies A2 = I.
An equivalent form of Theorem 2.2 is the following theorem, which has been observed by

Sun [5, Remark 3.2].
Theorem 2.4: The sequence {an} ∈ S± if and only if there exists a sequence λ0, λ1, λ2, . . .
of complex numbers such that

an =
n∑

k=0

(−1)k

(
n

k

)
λk ± λn, n = 0, 1, 2, . . . .

Taking λn = λn in Theorem 2.4 and noting
n∑

k=0

(−1)k

(
n

k

)
λk = (1− λ)n,

we obtain
Corollary 2.5: Suppose that λ is a complex number. Then {(1− λ)n ± λn} ∈ S±.
Remark 2.6: Let {an} is a sequence defined by{

an+2 = an+1 + tan, n ≥ 0,
a0 = 2, a1 = 1.

Then, the Binet form of {an} is an = (1 − λ)n + λn, where λ is a root of the equation
λ2 − λ − t = 0. Thus, {an} ∈ S+. In particular, we have {Ln} ∈ S+, where the Ln are the
Lucas numbers defined by L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2.
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Similarly, if a sequence {an} satisfies the recursive relation an+2 = an+1 +tan(n ≥ 0) with
a0 = 0, then {an} ∈ S−. In particular, we have {Fn} ∈ S−, where the Fn are the Fibonacci
numbers defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Now let m be a positive integer and Pm the m×m matrix
(
(−1)k

(
n
k

))
, n, k = 0, 1, . . . ,m−

1. Denote S±m = {α ∈ Cm : Pmα = ±α}. Then S±m is the column space of the matrices Pm±I.
Moreover, we have the following result.
Theorem 2.7: With the above notation, we have
(a) Cm = S+

m ⊕ S−m, and
(b) dimS+

m = dm/2e and dimS−m = bm/2c,
where dxe and bxc denote the least integer greater than or equal to x and the greatest integer
less than or equal to x respectively.

Proof: (a) Any vector α ∈ Cm can be written in the form

α = β + γ,

where β = (Pm + I)α/2 and γ = −(Pm − I)α/2 ∈ S−m. By Theorem 2.2, β ∈ S+
m and γ ∈ S−m.

So Cm = S+
m + S−m. On the other hand, it is clear that S+

m ∩ S−m = {0}. Thus, we conclude
that Cm = S+

m ⊕ S−m.
(b) For k = 0, 1, . . . ,m− 1, let uk be the kth column of the matrix

Pm + I =



2
1 0
1 −2 2 O

1 −3 3 0
...

...
...

...
. . .

1 −
(
m−1

1

) (
m−1

2

)
−
(
m−1

3

)
· · · (−1)m−1 + 1


.

Then, u0, u2, u4, . . . are linearly independent since the position of the first non-zero element
of these vectors is different. The rank of matrix Pm + I is therefore not less than dm/2e.
It follows that dimS+

m ≥ dm/2e from Theorem 2.2. Similarly, we have dimS−m ≥ bm/2c.
However, dimS+

m + dimS−m = m by (a). Hence, dimS+
m = dm/2e and dimS−m = bm/2c, as

claimed.
Remark 2.8: From the proof of Theorem 2.7(b) we see that u0, u2, u4, . . . form a basis of the
vector space S+

m. Similarly we may determine a basis of the vector space S−m.

3. DIFFERENCE OPERATORS

Given a function f : Z → C, define a new function ∆f : Z → C by

∆f(n) = f(n+ 1)− f(n).

∆ is called the forward difference operator. For k ≥ 1, we may iterate ∆ k times to obtain the
kth forward difference operator,

∆kf = ∆(∆k−1f),
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where ∆0 is the identity operator. It is well-known (see, e.g., [4, p.37]) that

∆nf(0) =
n∑

k=0

(−1)n−k

(
n

k

)
f(k).

Thus, Theorem 2.4 can be restated as follows.
Theorem 3.1: The sequence {an} ∈ S+ if and only if there exists a function f : Z → C such
that

an = (−1)n∆nf(0) + f(n), n = 0, 1, 2, . . . .

It is also well-known that if f is a polynomial of degree d, then ∆kf(0) = 0 for k > d (see,
e.g., [4, Proposition 1.4.2(a)]). Hence, we have
Theorem 3.2: If f is a polynomial of degree d, then there exists an self-inverse sequence {an}
such that an = f(n) when n > d.
Example 3.3: Let d be a positive integer.
1. Suppose that f(n) = nd. Then ∆nf(0) = n!S(d.n) where S(d, n) are the Stirling numbers
of the second kind (see, e.g., [4, Proposition 1.4.2(c)]). Thus, we obtain a self-inverse sequence
an = (−1)nn!S(d, n) + nd satisfying an = nd for n > d.
2. Suppose that f(n) =

(
n
d

)
. Then ∆nf(0) = δnd by induction, where δnd = 1 if n = d and

δnd = 0 otherwise. Thus, we obtain a self-inverse sequence an = (−1)nδnd +
(
n
d

)
satisfying

an =
(
n
d

)
for n > d.

Theorem 3.4: Suppose that {an} ∈ S+. Then {∆kan+k} ∈ S+ for k ≥ 0.
Proof: We use induction on k. The case k = 0 is trivial. Now assume that ∆kan+k ∈ S+.

Then there exists a function f such that

∆kan+k = (−1)n∆nf(0) + f(n), n = 0, 1, 2, . . . .

It follows that

∆k+1an+(k+1) = ∆(∆ka(n+1)+k)

= ∆[(−1)n+1∆n+1f(0) + f(n+ 1)]
= (−1)n+2∆n+2f(0)− (−1)n+1∆n+1f(0) + ∆f(n+ 1)
= (−1)n∆n+1f(1) + ∆f(n+ 1)
= (−1)n∆nF (0) + F (n),

where F (n) = ∆f(n + 1). Hence {∆k+1an+(k+1)} ∈ S+ and the proof is complete by
induction.

In the case k = 1, Theorem 3.4 states that {an} ∈ S+ yields {an+2 − an+1} ∈ S+, which
is precisely the result of Corollary 3.1(c) in [5].
Remark 3.5: The discussion for S+ in this section is also suitable for S−.
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4. UMBRAL CALCULUS

Many results in combinatorics are often easily read, verified and expanded by means of the
umbral method. In this section we apply the umbral method to explore self-inverse sequences.
But here, we do not want to describe the umbral method (for a rigorous description, see [1]
or [3]). The basic idea of the umbral method relies on the use of a notation where certain
exponents can be interchanged with suffixes. For example, (2) can be written symbolically as

(1− a)n ≡ an,

with the understanding that the expression on the left be expanded in powers of a, and then
each term ak be replaced by ak. The symbol a is referred to as an “umbra”, and the symbol
≡ is used to denote symbolic or umbral equivalences, in which we put ak ≡ ak. Thus, a
sequence {an} ∈ S+ if and only if (1− a)n ≡ an for all n. Similarly, {an} ∈ S− if and only if
(1− a)n ≡ −an for all n.
Proposition 4.1: Let {an} and {bn} be two sequences of complex numbers.
(a) Suppose that both {an} and {bn} are in S+ or in S−. Then,

n∑
k=0

(−1)k

(
n

k

)
an−kbk = 0

holds for odd n.
(b) Suppose that {an} ∈ S− and {bn} ∈ S+. Then, (3) holds for even n.

Proof: Suppose that both {an} and {bn} are self-inverse. Then,

an ≡ (1− a)n, bn ≡ (1− b)n.

Thus,
(a− b)n ≡ [(1− a)− (1− b)]n ≡ (b− a)n.

When n is odd, we have (a− b)n ≡ 0. Expanding the binomial expression yields (3).
Other results may be obtained similarly.

Corollary 4.2: Suppose that {an} ∈ S±. Then for odd n,

n∑
k=0

(−1)k

(
n

k

)
akan−k = 0.

It is easy to see that the sequence {1/2n} is self-inverse. By Proposition 4.1, if {an} ∈ S+,
then

n∑
k=0

(−1)k

(
n

k

)
2kan−k = 0 (4)

holds for odd n, and if {an} ∈ S−, then (4) holds for even n. The converse is also true.
Theorem 4.3: Let {an} be a sequence of complex numbers.
(a) {an} ∈ S+ if and only if (4) holds for odd n.
(b) {an} ∈ S− if and only if (4) holds for even n.
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Proof: (a) It suffices to show sufficiency. Suppose that (4) holds for odd n. Then
(a− 1/2)n ≡ 0 for odd n. Thus, (a− 1/2)n ≡ (1/2− a)n for all n. It follows that

(1− a)n ≡ [1/2 + (1/2− a)]n ≡ [1/2 + (a− 1/2)]n ≡ an.

Hence, {an} ∈ S+.
(b) The proof is similar to that of part (a).
Finally, we apply the umbral method to give an elegant proof of the following proposition

due to Sun [5, Theorem 4.1].
Proposition 4.4: Suppose that {fn}, {an} are two sequences of complex numbers.
(a) If {an} ∈ S+, then

n∑
k=0

(
n

k

)(
fk − (−1)n−k

k∑
s=0

(
k

s

)
fs

)
an−k = 0. (5)

(b) If {an} ∈ S−, then

n∑
k=0

(
n

k

)(
fk + (−1)n−k

k∑
s=0

(
k

s

)
fs

)
an−k = 0.

Proof: We only prove (a). The proof of (b) is similar. Suppose that {an} ∈ S+. Then,

(f + a)n ≡ [f + (1− a)]n ≡ [(f + 1)− a]n.

Expanding and noting that (f + 1)k ≡
∑k

s=0

(
k
s

)
fs, we obtain

n∑
k=0

(
n

k

)
fkan−k =

n∑
k=0

(−1)n−k

(
n

k

) k∑
s=0

(
k

s

)
fsan−k,

which yields (5).
Remark 4.5: We have seen that the Lucas sequence {Ln} ∈ S+ and the Fibonacci sequence
{Fn} ∈ S−. It is also easy to see that {(−1)nBn} ∈ S+ where Bn are the Bernoulli numbers
defined by B0 = 1, B1 = −1/2 and

∑n
k=0

(
n
k

)
Bk = Bn for n > 1. So, the results of this section

can produce many identities about these well-known numbers.
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