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1. INTRODUCTION

Every non-negative integer n has at least one digital expansion

n = ZEka,

k>2

with digits €, € {0,1}. The maximal expansion with respect to the lexicographic order on
(...,€4,€3,€2) is the Zeckendorf expansion or, more generally, the greedy expansion, which has
been studied by Zeckendorf [7] and many others. (Lexicographic order means (..., €3, €2) <
(-..,€5,65) if ex < €, for some k > 2 and ¢; < ¢ for all j > k.) The minimal expansion
with respect to this order is the less known lazy expansion, which was introduced by Erdos
and Joé [4] (for g-ary expansions of 1, 1 < g < 2). For example, 100 has greedy expansion
100 = 89 + 8 + 3 = Fi1 + Fs + F4 and lazy expansion 100 =55 +21 +13+5+3+2+1 =
Fio+ Fs + Fr + F5 + Fy + F3 + F,. Denote the digits of the greedy expansion by €] (n) and
those of the lazy expansion by ek (n).

The aim of this work is to study the structure of the possible digit sequences in order to
obtain distributional results for the sum-of-digits functions

sg(n) = Z el(n) and s¢(n) = Z et (n).

k>2 k>2

2. RESULTS

It is well known that Zeckendorf expansions have no two subsequent ones (because the
pattern (0,1,1) could be replaced by (1,0,0)) and that every finite sequence with no two
subsequent ones is a Zeckendorf expansion of some integer (see Zeckendorf [7]). Symmetrically,
lazy expansions have no two subsequent zeros preceeded by a one, because (1,0,0) could be
replaced by (0, 1,1), and it is not difficult to see that every such sequence is the lazy expansion
of some integer (see Lemma 1).

For s4(n), Grabner and Tichy [5] proved (in the context of digital expansions related to
linear recurrences) that its mean value is given by

% D sg(n) = #logaNJrfl(logaN)Jr@(

log N)
2 )
n<N o’ +1

N

where f; is periodic with period 1, continuous and nowhere differentiable and a denotes the

golden number 1+T\/5 For the variance, Dumont and Thomas [2] obtained (in the more general
context of numeration systems associated with primitive substitutions on finite alphabets)

2
1 1 1
- — ——log, N| = —=1log, N + fa(log, N)log, N + o(1),
NT;V(Sg(n) o2 11 O8a > 577 108 f2(logg N)log, N + o(1)
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where f5 is again periodic with period 1, continuous and nowhere differentiable. In [3], they
showed that the distribution is asymptotically normal, i.e.

1 Sg( ) —21 1 10gaN 1 x 9

— n<N ot < —>—/ e /24t

N#{ 5-3/4, /log, N V2T )
This is also a special case of a result of Drmota and Steiner [1], where generalizations of the
sum-of-digits functions are studied.

The distribution of s¢(n) has not been studied yet, but it is easy to replace the greedy
expansions in [1] by lazy expansions and to obtain similar asymptotics (with expected value
a‘;—il log, N). Instead of doing this, we will directly prove the following central limit theorem
for the joint distribution of s4(n) and s¢(n).

Theorem 1: We have, as N — 00,

1 sq(n) — pglog, N se(n) — pelog, N
—#in< N |Z g 2o <y, <z
N#{ ov/log, N 5 /log. N ‘
1 OO [Te 1 (12442 2Ct,t,)
N _ e 20-0%) Ve I dt ,dt
21y/1 — C2 /_oo /_oo o
with o = 1+2\/5, fg = a++1’ e = ag—il’ o=>5"3/* and C =9 — 5a ~ 0.90983.

This means that the two sum-of-digits functions are strongly correlated. If one of them is
large for some n, the probability of the other one to be large is very high. (The distribution is

the Gaussian distribution with covariance matrix < é ?) )

Similarly to [1], corresponding results can be proved for F-additive functions, for sequences
of primes and for polynomial sequences P(n), n € N, or P(p), p € P.

3. PROOFS

First we prove the characterization of lazy expansions given in Section 2.
Lemma 1: The lazy expansions are exzactly those sequences (ex)r>2 € {0,1}N with
(€ky€k—1,€k—2) 7# (1,0,0) for all k > 4 and only a finite number of €, = 1.

Proof: As already noted, the pattern (1,0,0) does not occur because it could be replaced
by (0,1,1) and it suffices therefore to show that no two such sequences represent the same
number. For an integer n € {F}, — 1, F, ..., Fx+1 — 2}, we must have eﬁ(n) =0forall j >k
since €}(n) = 1 implies

J
Y ci(mF 2 Fj+ Fjp+ Fjgt - =Fjy — 1.
i=2

On the other hand, we have ef_,(n) = 1 since the sum over all F},2 < j <k —2, is
k—2
ZF]':(Fk_z—|—Fk_4+...)+(Fk_3+Fk_5+...):Fk_l—l-i-Fk_g—l:Fk—Q
j=2
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and hence too small. The number of possible expansions with these properties is easily seen
to be Fi_1 (by induction on k), thus equal to #{Fy — 1, F), ..., Fr11 — 2}, and the lemma is
proved.

In order to study the joint structure of the greedy and lazy digits, we show that

Di(n) = (€(n) — el(n))Fj =Y (¢9(n) — €§(n))F;
j=k

can only take three values.
Lemma 2: Dy(n), k > 3, can only take the values 0, Fy, and Fj_1.

Proof: We show that
D (G —eNF=) &F (1)
Jj=>3 j=>2
with €;, €}, €] € {0,1} implies

S (e —€NFji=> €Fji—0F, (2)

>3 §>2

for all ¢ > 0 with 6 € {0,1}. It suffices to prove (2) for ¢ = 1. Then the general equation
follows by induction on i with F;i; = Fj4i—1 + Fjii—o.

Since Fj is given by F; = %aj — % (—é)], we obtain

e () 5 () - (2)

Hence “(2) —a x (1)” with i = 1 yields

!/ 1 1 7 1
—5:Z(ej—c‘j —€5) ) —es

j=3
and ¢ is bounded by
AL A O (. SR
a3 ot a®  af "\ T )1 a2 T QYT

Since 0 is an integer, we have thus 6 > 0. For the lower bound, we get
5 1 1 2 1 2 2 1 1 1 1
-0 > —— — — = — — —= — —— — = — E-Fg Q+§:—a+g:—1—$

Hence § € {0,1} and (2) is proved. If either e = 0 or ¢; = 0 for all j > 4, then we obtain
—6 > —1 and thus § = 0.
Clearly we have

> (€(n) —€§(n)Fj_kis| = Y &F;

Jjzk J=2
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for some ¢; € {0,1}, since the term on the left side is a non-negative integer. By (2), we get

1Di(n)] =) (9(n) = €5(n)Fy| = €;Fjqr-3 — Fi s

Jj=k Jj=2
for all k£ > 4. Since Dg(n) is bounded by

k—1
Di(n)| < Fy = Fryn =2,

=2

€; must be zero for all j > 5 and, if e = 1, for j > 4. Hence we have § = 0, ¢; must be zero
for all 5 > 4 and the only possible values for |Dg(n)| are 0, Fy, and Fj_;.

Since greedy expansions have no two subsequent ones and lazy expansions have no two
subsequent zeros (in the range of its ones), we have, for k > 4,

Di(n) > (Fy—2+ Fr—a+...) = (Fp1 + Frs+...) = (Fpo1 — 1) = (F, — 1) = —Fj_

and thus Dy (n) > 0 if eﬁ- (n) =1 for some j > k. Otherwise we have ki: e?(n)Fj = n. Hence
j=

Dy (n) is non-negative for k > 4. Clearly |D3(n)| € {0,1} and D3(n) = Dy(n)—2(e§(n)—ej(n)).
Because of D4(n) € {0,2,3}, D3(n) is non-negative and the lemma is proved.
Remark: § in (2) can be 1, e.g. F3+ F5 — Fy = Fy + Fy and Fy + Fs — F5 = F5 + F5 — 1.
This is due to 2F) = Fy41 + Fji—2, but for k = 3 we also have 2F5 = F; + F5.
Lemma 3: For Fx <n < Fi1 — 2, the digits €] (n), €, (n) have the following properties:

1. € =0 forallk >K, ¢, =1,€};,_,=0

2. ef;:Oforallk:zK, 6%71:1

8. (e2,€t) = (1,0) implies (€] _,, € 1) =(0,1).

4o If (i1 €hyq) # (0,1), then (e, €;,) = (0,1) implies (€]_y,€,_;) = (0,1) with probability
% and (€] _,,€_1) = (0,0), (€] _,,€e._,) = (1,1) with probabilities %

5. If (€] 1, €5,q) = (0,1), then (€], €;) = (0,1) implies (] _,€e;,_1) = (1,0) with probability

Fyo—=1 1 (6%_176;;_1) = (0,0), (Ei—pei—l) = (1,1) with probabilities

Fo ot In the

1
Fr_o+1°

latter cases, the (e?,e?) are alternately (0,0) and (1,1) for j < k.

6. (e, €e) = (1,1) resp. (€],€t) = (0,0) imply (€] _,,€e_,) = (0,1), if the digits are not
determined by 4. and k < K.

Proof: 1. is obvious and 2. follows from the proof of Lemma 1. Furthermore, these n
are the only integers with these properties (and their number is Fix_1 —1). 3. follows directly
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from the properties of greedy and lazy expansions. For the other properties, we use Lemma 2
and Dy_1 = Dy + (6% - Ei)Fk

In 5., we must have Djyio = Fjyo, Diy1 = F) and Dy = 0. Hence (€]_, Eiq) cannot
be (0,1). Furthermore, (e ,,ef ;) = (0,0) implies Dy_; =0 and €;,_, = 1. Thuse] , = 1.
Similarly (€] _,,ef_;) = (1,1) implies (€] _,,€5_,) = (0,0). Inductively, we get the alternating
sequence, i.e. only one possibility for the last digits. For (€] _,,et ;) = (1,0), the situation is
similar to that of kK —1 = K and we have therefore Fj,_5 — 1 possibilities. This gives the stated
probabilities.

In 4., we must have Dy11 = Fiy1 and Dy = Fx_1. Then we have Fj_3 + 1 possibilities
for (€] _,,et_1)=1(0,1) (see5.). (€] _,,er_y)=(1,1) and (€] ,,e,_;) = (0,0) imply, with
Dy—1=Fj_1, (€] _,,€_5) = (0,1) and hence Fj,_» — 1 possibilities. This also proves 6.
Remark: For n = Fg4q, — 1, the unique digital expansion is given by ex_o; = 1 for all
J<K/2—1and ex_1_9; =0 for all j < K/2 — 1. Note that for these n, s4(n) is as large as
possible whereas sy¢(n) is as small as possible (in the “neighbourhood” of n) while, for “typical”
n, large sq(n) entails large s¢(n).

Lemma 3 shows that we get simple transition probabilities from €; to €, if we exclude
those n whose digital expansions terminate by alternating (1,1)’s and (0,0)’s. Thus define the
sets

Sk ={ne{Fg,...,Fxi1 —1}| (el(n), er.(n)) & {(0,0),(1,1)} for some k < J}
for K > J + 3. The number of excluded n is
#({Fr,Fx +1,...,Fgky1 —2}\Ssk) = Fx—y+1.

In case (¢7,€5) =(0,0), we have Fg_; possibilities for €% ,,...,e% _,, and in case
72 €7 J+1 K—2
(¢%,¢5) = (1,1), we have F_;_1 possibilities for € s €f_g-)
Define a sequence of random vectors (X, j x)k>2 by
- 1
#S7 K

Lemma 3 shows that this is a Markov chain, i.e.

Pr[Xk—l,J,K = (bi—1>b£—1)|Xk,J,K = (bi’bi)vXk—H,J,K = (bi+17bi+1)7 .- ]

Pr[ Xy s = (09,0%)] #{n € Syx | €l(n) = b7, ek (n) = b'}.

=Pr(Xi_1.5x = 0], 0 )| Xk, sk = (b],05)],

if we make a distinction between Xy 11 7 x = (0,1) and X417 x # (0,1) in case Xi jx = (0,1)
(otherwise we had a Markov chain of order 2), say X; ;x = (0, 1)t if Xiox = (0,1) #
Xit1,0x and Xi g = (0,1)if Xp sk = (0,1) = Xpi1, 5.k

The transition matrix Py ; defined by

Pr(X;_1,5x = (0,0) Pr{X; sk = (0,0)]
Pr[Xk7J7K = (0, 1)1]

=Py | Pr[Xy x = (0,1)%
)l Pr[Xy sk = (1,0)]
,1)] Pr[Xy k= (1,1)]
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is, for k > J + 3,

Fy_o—F)_ _
0 F25 2 000 0 &z+0(™®) 00 0
1 0 01 1 1 0 01 1
Pes=|0 71”;;3_;&;1;1 000]=]0 L+0@™*) 00 0],
0 . oF 1 00 0 0 1 00
0 F25"2 000 0 L+0(®) 0 00

i.e. the Markov chain is almost homogeneous. Denote the limit of this matrix for £ — oo by P.
Its eigenvalues are 1, —%, —% and 0. Thus the probability distribution is almost stationary
with

Pr(X; ;x = (0,0)] = m +0 (of min(k,K—k)>
Pr[Xy. x = (0,1)'] = 0420—[1— -+ 1, <a— min(k,K—k))
Pr[Xy. x = (0,1)?] = m L0 (OF min(k,K%))

Pr(X; s x = (1,0)] = m +0 (a— min(k,K—k))

Pr(X; x = (1,1)] = m o) (a— min(hK—k))

for J <k < K.
For a given N = 31, €/(N)F, with €4 (N) =1 (i.e. L ~ log, N), define

L k—1 L
Sy = U U Sipn,k + Z Gg(N)Fj
k=L—[Ln] K=L—[L"] j=k+1

and a sequence of random vectors (Y n)r>2 by

1
#SN

This sequence is close to what we need because of

Pr[Y, n = (b7,0) #{n € Sy | €l(n) = b7, ek (n) = b}.

(3)

#({0,....N = 1}\ Sn) = O (L"Fp_izn + L' F_s[zn)) = O ((log N)WN)

a(loga N)”]

and, for [L"] < k < [L— L"), the Y} n are a Markov chain with transition matrices Py, ;rn). For
[L"] < k < L —2[L"], the distribution of Y}, x is thus almost stationary with the probabilities
of Xy, sk and error terms O (oz_Ln).
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Lemma 4: The Yy = (Yng,Y,f,N) satisfy a central limit theorem for L" < k < L — 2L".
More precisely, we have, for all ag,a; € R, as N — oo,

L—2[L"
Z[ ] ag(Ykg,N — fig) + aé(Yk{N — fbe)

oVL

= N(0, a§ +aj + 2a,4a,C),
k=L

where N'(M,V) denotes the normal law with mean value M and variance V.
Proof: For the mean value, we have

EYkg,N = Pr[Ykg,N = (1,0)] + Pr[Ykg,N = (1,1)]

1 1

" o%(a? + 1) i a(a?+1)

+ O (a_m> = pg + O (oz_Ln)

and
EV{y=m+0 (a—”) .

Hence the mean value of the sum converges to zero. The variance is given by

L—2[L"]
Var Z ag(Y,gN — ) + aE(YIf,N — he)
k=[L7]
L—2[L"] L—2[L"] L—2[L"] L—2[L"]
= Var Z agYy v + Var Z aYy n +2Cov Z agYy v Z aYi n
k=[L"] k=[L"] k=[L"] k=[L"]

L—2[L"] L—2[L")—k

KL G=lL)—k

(The calculation of the variance of Y Y, and Y Y,f,  is similar to that in [1] and to that of
the covariance hereafter.) The covariance is given by

COV(Ykg,N’ YIf—i—j,N) = Pr[Ykg,N =1, Ylf—i—j,N =1] - Pr[Ykg,N = 1]Pr[Ylf+j,N =1].

For j = 0, we obtain, with (a? + 1)? = 502,

1 o? 1
4 _ —L"\ _Ln
Cov(Y,ﬁN,Yk’N)—a(a2+1)—(a2+1)2—|—0<a )——?—I-O(a )
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The approximated transition matrix has the form P = QDQ ™!

1 o
——— 1 ——5— 1 1
a(a+1) oo 1 0 0 00\ /,/1 1 1 1 1
i @ @ 0 0o 1 9 o o0||1 -1 —a 1 1
2
T s e 00 0 0 —-% 0o0f]1 -5 —-a* 1 1
1 ot 0 0 0 0 0 1 0 0 0 -1
“ry 1 e 1 2
L 3 0 0 0 0 0 0 0 —a 0 1
e ! -2 01
a(a?+1) a?+1
and the transition matrix of order j (P = QD’Q™!) is given by
101 1 1 1 1 -1 1 4 1
a a a o « ;| —« 1 —a o? —a
VRS S T T T B N 111 g1
2 a? a? a? a? a? « a? @ «a
e T T T T @ 1
e e S S -1 -1 a -l
101 01 1 1 1 1 1 _a 1
—a® a —a® o o
, 1,2 4,8 4
1 1Y 3 3 5 3
+a2+1 _E a - a - a
—a? 1 —a? ot —a?
—a® a —a® o —ad?

Clearly
Pr[Yy =LY,y =1]

= PrlYersw = (0.1 (PrlYiw = (1,0)[Yirsx = (0, 1) ]+Pr[Yiey = (1, )[¥irjn = (0,1)'])
FPr{Yipsn = (0,12 (PrlYew = (1,0)Visjn = (0,174 PrYew = (1,1)Verin = (0,1)%])
+Pr{Yis v = (1 D] (PrlYiw = (10)Yirsw = (LDHPrYiw = (1 D[Yirsv = (1,1)]).

Note that the contribution of the first matrix of P7 to this probability is just figite and that
of the second matrix is zero. Hence we have, for 7 > 0,

1 1V (a(l+a) -a?-a® —a2-—a3 n
Cov(Y Vi n) = —— —— 0 (a"")
oV (Y Vi) a?+1 ( 042) ( a?+1 + a?(a?+1) + ala?+1) +Ee
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For j < 0, we get similarly

I3
1 1 _n

Therefore we have

L—2[L"]—k
> Cov (YEx. Vi)
j=[L"—k
11 > 1Y’
_ —L" —2min(k—[L"],L—2[L"]—k
_ ! ¥+2z<_$) +0(La~2") + O (- 2minte- (e 12710
j=1
With
c 1 1+2i 1Y a?+1 /1 2 .
= —— _ _— = — _— — = — (8%
502 \ ot =~ o? « ot a?+1 ’
we obtain
L—2[L"]
Var Z ag(Yy n — 11g) + ag(Yk{N — ) | = L02(a§ + aj + 2a,a,C) + O (L").
k=[L7]

We apply the central limit theorem for Markov chains or mixing sequences (e.g. Theo-
rem 2.1 of Peligrad [6]) and the lemma is proved.
Because of (3), we have

1 sg(n) — pglog, N se(n) — pelog, N
—#{n< N |Z b 20 <oy, <z
N#{ o+/log, N I o+/log, N ‘
sg(n) — pglog, N se(n) — pelog, N
— n € Sy |~ g 20" <o, = x
#SN { N oy/log, N I oy/log, N ‘
L—2[L"] 4 L-2[L"] ,
1 (n) — p b (n) —
— neds k I <z, k <z
#SN o g[;] ovI g ,}[;] ovL ‘

With Lemma 4, the theorem is proved.
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