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1. INTRODUCTION

In a recent article [4] we related the product of chord lengths of an ellipse to a collection
of polynomials. Specifically, for a ≥ |b| , the locus of points

aeiθ + be−iθ = (a+ b) cos θ + i(a− b) sin θ, 0 ≤ θ < 2π (1)

where i =
√
−1 describes an ellipse with vertices ±(a+ b) and ±i(a− b). The major axis lies

on the y-axis if b < 0 (see figure 1) and on the x-axis if b > 0. The curve is a circle of radius a
whenever b = 0. (In [4] we restricted b ≥ 0.) Set θn,j := 2jπ/n and z

(a,b)
n,j := aeiθn,j + be−iθn,j

for j = 0, . . . , n− 1.

Figure 1: An ellipse with b < 0

Note that the nodes z(a,b)
n,j are the image of the nth roots of unity under the mapping

eiθ 7→ aeiθ + be−iθ.
Define the polynomials

Pn(z; a, b) :=
n−1∏
j=0

(z − z(a,b)
n,j ) + (an + bn) (2)

for all positive integers n. For convenience we set P0(z; a, b) = 2. By direct substitution we
observe that Pn(z; a, b) is the unique monic polynomial interpolant to an+bn in the nodes z(a,b)

n,j ,
j = 0, . . . , n − 1. Slight modifications of arguments given in [4] verify that the polynomials
Pn(z; a, b) satisfy the three-term recurrence relation

Pn(z; a, b) = zPn−1(z; a, b)− abPn−2(z; a, b), n = 2, 3, . . . ., (3)
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and the identity

Pn(aeiθ + be−iθ; a, b) = aneinθ + bne−inθ, 0 ≤ θ ≤ 2π (n ≥ 0). (4)

The first few polynomials in this family are

P0(z; a, b) = 2
P1(z; a, b) = z

P2(z; a, b) = z2 − 2ab
P3(z; a, b) = z3 − 3abz
P4(z; a, b) = z4 − 4abz2 + 2a2b2

P5(z; a, b) = z5 − 5abz3 + 5a2b2z.

For convenience, set z0 := z
(a,b)
n,0 = a+ b. Observe that in view of (2)

Pn(z0; a, b) = an + bn. (5)
Hence,

Pn(z; a, b)− Pn(z0; a, b) =
n−1∏
j=0

(z − z(a,b)
n,j ).

This suggests that the product of the lengths of the chords of the ellipse from z0 to the points
z
(a,b)
n,j , j = 1, . . . , n− 1 is given by the positive real number

P ′n(z0; a, b) = lim
z→z0

Pn(z; a, b)− Pn(z0; a, b)
z − z0

(6)

=
n−1∏
j=1

(z0 − zn,j) . (7)

(See figure 2 for the case n = 8.) In [4] we also established

P ′n(z0; a, b) = n
an − bn

a− b
(8)

which, except for the factor of n, reminds us of Binet’s formula for the Fibonacci numbers
just as equation (5) is reminiscent of Binet’s formula for the Lucas numbers. A recent and
exhaustive treatise on these numbers can be found in [3].

Figure 2: Chords determined by n = 8 points
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We can now state our main result. Set

α =
1 +
√

5
2

and β =
1−
√

5
2

(9)

so that α+ β = −αβ = 1. Note that α is the golden ratio. Then

Fn =
1
n
P ′n (1;α, β) , n ∈ N (10)

where Fn denotes the nth Fibonacci number. This result follows immediately from Binet’s
formula and equation (8). Likewise,

Ln = Pn

(
z
(α,β)
n,j ;α, β

)
= αn + βn (11)

for any j = 0, . . . , n − 1 where Ln represents the nth Lucas number. In what follows we will
derive equations (10) and (11) without the use of Binet’s formula. We will also verify that the
sequences {Pn (z;α, β)} and

{
1
nP
′
n (z;α, β)

}
are the classical Lucas and Fibonacci polynomials

respectively.
The goal of this note is to relate both the Lucas and Fibonacci sequences to products

of chord lengths of an ellipse. Actually, we relate classes of generalized Fibonacci and Lucas
sequences to elliptical chord lengths. These results will be used to establish Binet’s formulas
and divisibility properties of Fibonacci type sequences such as the well known identity

F2n = FnLn.

We plan to elaborate further on these and other topics in subsequent articles.

2. GENERALIZED FIBONACCI AND LUCAS NUMBERS

The polynomials Pn (z; a, b) and 1
nP
′
n (z; a, b) will be referred to as the generalized Lu-

cas and Fibonacci polynomials respectively. (That these definitions are not the most general
possible will not concern us here.) These polynomials were examined in [1] and [2]. Interest-
ingly, the generalized Fibonacci polynomials also satisfy the three term recurrence relation (3).
Specifically,

1
n
P ′n (z; a, b) =

z

n− 1
P ′n−1 (z; a, b)− ab

n− 2
P ′n−2 (z; a, b) . (12)

Since we are dealing with polynomials it is sufficient to verify equation (12) for z = aeiθ+be−iθ,
that is for z on the ellipse (1). Using the chain rule we have

dPn
dθ

=
dPn
dz

dz

dθ

=⇒ dPn
dz

=
dPn/dθ

dz/dθ
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where by (4)

dPn
dθ

= in
(
aneinθ − bne−inθ

)
. (13)

Hence, for n > 2

z

n− 1
dPn−1

dz
− ab

n− 2
dPn−2

dz
=

z

n− 1
dPn−1/dθ

dz/dθ
− ab

n− 2
dPn−2/dθ

dz/dθ

=
(

z

n− 1
dPn−1

dθ
− ab

n− 2
dPn−2

dθ

)
/
dz

dθ

= i
(
aneiθn − bne−iθn

)
/
dz

dθ

=
1
n

dPn/dθ

dz/dθ

=
1
n

dPn
dz

.

Equation (12) follows.
Definition 1: Two real numbers a and b with a ≥ |b| are suitable if both a + b and ab are
integers.

Observe that a and b are suitable if and only if there are integers u and v such that

a =
1
2
u+

1
2

√
u2 − 4v

b =
1
2
u− 1

2

√
u2 − 4v

with u2 ≥ 4v.
Suppose a and b are suitable. Then P1 (z0) = a+b and P2 (z0) = (a+ b)2−2ab = a2+b2 are

integers. These values coupled with those obtained using the recurrence relation (3) generate
the Fibonacci-like integer sequence

a+ b, a2 + b2, a3 + b3, . . . .

We designate the nth term of this sequence by L
(a,b)
n . It is easy to verify that if a and b are

given by (9) then the above sequence reduces to the classical Lucas sequence {Ln}. Similarly,

since P ′1 (z0) = 1 and 1
2P
′
2 (z0) = a+ b, equation (12) defines an integer sequence

{
F

(a,b)
n

}
whenever a and b are suitable. If a and b are given by (9) then

{
F

(a,b)
n

}
reduces to the classical

Fibonacci sequence {Fn}.
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Recall that P1 (z;α, β) = z and P2 (z;α, β) = z2 − 1 and note that these are the first two
classical Lucas polynomials. Also, P ′1 and P ′2 are the first two classical Fibonacci polynomials.
Since Pn (z;α, β) and 1

nP
′
n (z;α, β) satisfy the three-term recurrence relation used to generate

the Fibonacci and Lucas polynomials (see (3) and (12) respectively), it must follow that
Pn (z;α, β) and 1

nP
′
n (z;α, β) are the classical Fibonacci and Lucas polynomials.

Binet’s formulas for these generalized polynomials are easily established. Indeed, equation

(5) gives the generalized Binet’s formula for the sequence
{
L

(a,b)
n

}
. Using equation (13) we

have

dPn
dz

∣∣∣∣
z=z0

=
dPn/dθ

dz/dθ

∣∣∣∣
θ=0

=
in
(
aneinθ − bne−inθ

)
i (aeiθ − be−iθ)

∣∣∣∣∣
θ=0

from which the Binet’s formula for the generalized Fibonacci sequence follows.
The surprising thing is that by equation (7) nF (a,b)

n represents the product of lengths of
chords of an ellipse determined by the base point z0 and the the points z(a,b)

n,j , j = 1, . . . , n− 1.
This observation provides us with method to geometrically substantiate some of the divisi-
bility properties of the generalized Fibonacci numbers. The following example illustrates this
approach.
Example 2: It is known that F3 | F3n for any positive integer n ([3]). A similar result
holds for the generalized Fibonacci numbers. Since the two chords used to derive F (a,b)

3 also
appear in the product of F

(a,b)
3n (because the 3rd roots of unity are also 3nth roots of unity),

1
3nP

′
3n (z0; a, b) = 1

3P
′
3 (z0; a, b) · l where l must be in integer. Hence, 1

3P
′
3 (z0; a, b) = F

(a,b)
3 will

always be a factor of 1
3nP

′
3n (z0; a, b) = F

(a,b)
3n .

The method used in the last example provides us with an approach for proving a more
general result.

Proposition 3: Let m and n be positive integers. If m divides n then F
(a,b)
m divides F (a,b)

n .

Proof: Suppose m divides n. Then the mth roots of unity are also nth roots of unity. This
ensures the containment {

z
(a,b)
m,j

}
⊂
{
z
(a,b)
n,j

}
which means that the chords appearing in the product representing 1

mP
′
m (z0; a, b) also appear

in the representation of 1
nP
′
n (z0; a, b) . Consequently,

1
n
P ′n (z0; a, b) =

1
m
P ′m (z0; a, b) · l

where l must be an integer. The desired result follows.

Corollary 4: If m and n are positive integers for which gcd(m,n) = 1, then F
(a,b)
m F

(a,b)
n

divides F (a,b)
mn .
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Proof: Except for 1 no mth root of unity is an nth root of unity or vice-versa whenever
gcd (m,n) = 1. Hence, all chord lengths in the product forming 1

mP
′
m (z0; a, b) 1

nP
′
n (z0; a, b)

must also appear in the product 1
mnP

′
mn (z0; a, b) .

3. GENERALIZED LUCAS NUMBERS AS PRODUCTS
OF CHORD LENGTHS

The generalized Lucas numbers are also expressible as elliptical chord lengths. To see
this we first fix ψ ∈ [0, 2π) and rotate the endpoints of line segments on the ellipse using the
transformation that maps

eiθ −→ aei(θ+ψ) + be−i(θ+ψ).

Observe that this transformation does not rotate each point on the ellipse by the angle ψ. Set

z
(a,b)
n,j,ψ := aei(θn,j+ψ) + be−i(θn,j+ψ), j = 0, . . . , n− 1.

Because z(a,b)
n,j,0 = z

(a,b)
n,j we will suppress the additional subscript whenever ψ = 0. In view of

Equation (4),

Pn(z(a,b)
n,j,ψ; a, b) = aneinψ + bne−inψ, j = 0, 1, . . . , n− 1.

Consequently, Pn (z; a, b) is the monic polynomial interpolant to aneinψ+bne−inψ in the nodes
z
(a,b)
n,j,ψ, j = 0, . . . , n− 1. Hence,

Pn (z; a, b)−
(
aneinψ + bne−inψ

)
=
n−1∏
j=0

(
z − z(a,b)

n,j,ψ

)
(14)

has roots z(a,b)
n,j,ψ, j = 0, 1, . . . , n− 1. Next, for a positive integer n (using ψ = π/n) set

Qn (z; a, b) = P (a,b)
n (z; a, b) + an + bn (15)

=
n−1∏
j=0

(
z − z(a,b)

n,j,π/n

)
. (16)

There are two facts worth noting about these polynomials. First, in view of Equations (5 and
15)

Qn (z0; a, b) = Pn (a+ b; a, b) + an + bn = 2L(a,b)
n .

This means that 2L(a,b)
n is the product of the lengths of the elliptical chords determined by the

base point z0 and the points z(a,b)
n,j,π/n, j = 0, 1, . . . , n− 1 since by equation (16) z− z(a,b)

n,j,π/n,

j = 0, 1, . . . , n− 1 are the factors of Qn (z; a, b) . Second, the roots z(a,b)
n,j,π/n, j = 0, 1, . . . , n− 1

of Qn (z; a, b) satisfy

z
(a,b)
n,j,π/n = z

(a,b)
2n,2j+1, j = 0, 1, . . . , n− 1.
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(See figure 3 for the case n = 4.) Consequently, the chords appearing in the product
P ′2n (z0; a, b) are precisely those used in the products determining P ′n (z0; a, b) and Qn (z0; a, b).
This establishes the well-known identity

F
(a,b)
2n =

1
2n
P ′2n (z0; a, b)

=
(

1
n
P ′n (z0; a, b)

)(
1
2
Qn (z0; a, b)

)

= F (a,b)
n L(a,b)

n .

Figure 3: Relationship between z
(a,b)
n,j,π/n and z

(a,b)
2n,2j+1 (n = 4)

Several divisibility properties for generalized Lucas numbers can be established using the
same strategy employed for the generalized Fibonacci numbers above. For example, since the
nth roots of (−1) are also

(
3nth

)
roots of (−1) , we easily can establish that L(a,b)

n divides

L
(a,b)
3n for all positive integers n. Some readers may enjoy using these elliptical chord length

representations to verify additional properties of the generalized Fibonacci and Lucas numbers.
The author of this note is currently conducting a seminar on the Fibonacci numbers with an
aim toward student research using this approach. In addition, he is interested in the properties
of the generalized polynomials.
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