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ABSTRACT

The distance-k domination and independent domination numbers for Fibonacci trees are
determined, both in terms of Fibonacci numbers and in closed form.

1. INTRODUCTION

Fibonacci trees Tn are defined recursively for all integers n ∈ Z+ as follows: (1) T1 and
T2 are the trivial trees, and (2) for n ≥ 3, Tn is the rooted binary tree where Tn−1 is the left
subtree of the root and Tn−2 is the right subtree. The root of Tn is designated rn. The level of
a vertex v of Tn, denoted level(v), is dist(v, rn) where dist is the standard distance function.
Figure 1 shows T1 through T6.

Figure 1: The first six Fibonacci trees
Fibonacci trees have been studied by several researchers, including Knisely, Wallis, and

Domke [4] who showed their edges can be colored red and blue so that the subgraph induced by
the red edges is isomorphic to the subgraph induced by the blue edges, and Grimaldi [1] who
investigated several properties of these trees including the distribution of leaves and internal
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vertices. In this paper we develop formulas for the distance-k domination and independent
domination numbers of Tn. Since these invariants are normally NP-hard to evaluate, it is
useful to have classes of graphs for which their value is known. This allows algorithms for
general graphs to be tested on these classes in order to evaluate their performance.

Let G = (V,E) be a graph. A subset D ⊆ V is a distance-k dominating set of G if every
vertex of V is distance at most k from some vertex in D. The size of a smallest such set is
denoted γ≤k(G) and a set of that size is a γ≤k-set. An excellent introduction to distance-k
domination, due to Henning, can be found in Chapter 12 of [3]. An independent dominating
set of graph G is a distance-1 dominating set in which no two vertices are adjacent. The
minimum size of such a set is the independent domination number. It is denoted γi(G), and
an independent dominating set of that size is a γi-set.

Some notation and concepts are independent of the two types of domination. These are
introduced here, using x to represent either “≤k” or “i”. Let D be a γx-set of Tn. We define Di

to be D∩V (Tn−i) for i = 1, 2. A private neighbor of vertex v ∈ D is a vertex which is distant-
k dominated (independent dominated) by v and is not distance-k dominated (independent
dominated) by any other vertex of D [2]. Note that v can be a private neighbor of itself. The
smallest level of a vertex in D is denoted LD, and we define Ln = min{LD: D a γx-set of Tn}.
Let Dn = {D : D a γx-set of Tn with LD = Ln}, XD = {v ∈ D : D ∈ Dn and level(v) =
Ln}, and BD = max{dist(v, w) : v ∈ XD, level(w) ≥ Ln, and w is a private neighbor of v}.
Define Bn = min{BD : D ∈ Dn}. The ordered pair (Ln, Bn) is well-defined. Our approach
to determining the distance-k and independent domination numbers of Tn will be to see how
they change as the pair (Ln, Bn) changes with increasing n.

Section 2 determines the distance-k domination number of Fibonacci trees and Section 3
the independent domination number.

2. THE DISTANCE-k DOMINATION NUMBER

We begin with the following lemma which allows a useful restriction of the γ≤k-sets that
we need to consider.
Lemma 1: Let D̂ be a γ≤k-set of Tn. Then there is an associated γ≤k-set D such that
every vertex v ∈ D, with the possible exception of rn, has a private neighbor w such that
level(w) = level(v) + k.

Proof: Set D to D̂ and iteratively execute the following steps until it is no longer possible.
Select v ∈ D having the largest level and which does not have a private neighbor at level(v)+k.
If v 6= rn, replace v in D by its parent v′. Observe that v′ distance-k dominates all the private
neighbors of v. Upon completion, all vertices of D, with the possible exception of rn, possess
the required property.

A γ≤k-set D of Tn satisfying the conditions of Lemma 1 and such that (LD, BD) =
(Ln, Bn) is said to be representative. Note that Ln > 0 implies, by Lemma 1, that Bn = k.

Some additional notation will be useful. Since Tn includes both Tn−1 and Tn−2 as induced
subgraphs, it will be convenient to refer to Tn−i where i = 1 or 2 and then let c(i) = 3−i. Thus
Tn−i and Tn−c(i) refer, respectively, to Tn−1 and Tn−2 if i = 1 and to Tn−2 and Tn−1 if i = 2.
The open distance-k neighborhood of a vertex x ∈ V is Nk(x) = {v ∈ V : 0 < dist(v, x) ≤ k},
and the closed distance-k neighborhood of x isNk[x] = Nk(x)∪{x}. Similarly, the open distance-
k neighborhood of S ⊆ V is Nk(S) = ∪x∈SNk(x) and the closed distance-k neighborhood of S
is Nk[S] = Nk(S) ∪ S.
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Let D be a γ≤k-set of Tn. In all of the following, the index i is either 1 or 2. A vertex
x ∈ D −Di is called a helper if Nk(x) ∩ {V (Tn−i) −Nk[Di]} 6= ∅. The next lemma shows at
most one helper need be considered.
Lemma 2: If there is at least one helper, then there is a helper x such that, for any other
helper y ∈ Di, Nk[x] ∩ V (Tn−c(i)) ⊇ Nk(y) ∩ V (Tn−c(i)).

Proof: Let x be a helper closest to rn and y ∈ Di be any other helper. Since dist(x, rn) ≤
dist(y, rn), x distance-k dominates all vertices of Tn−c(i) that y does.

The following sequence of lemmas provides insight into the γ≤k-sets of Tn.
Lemma 3: |Di| ≥ γ≤k(Tn−i)− 1.

Proof: Suppose |Di| ≤ γ≤k(Tn−i)−2. Then at least two helpers are required to distance-k
dominate Tn−i, which violates Lemma 2.

Lemma 4: γ≤k(Tn) ≥ γ≤k(Tn−1) + γ≤k(Tn−2)− 1.
Proof: Let D be a γ≤k-set of Tn. Certainly γ≤k ≥ |D1| + |D2|. If |Di| ≥ γ≤k(Tn−i) for

some i, we are done by Lemma 3. Otherwise |Di| < γ≤k(Tn−i) for i = 1, 2 and a helper is
required. By Lemma 2, only one helper x is useful. If x = rn, we are done. If x ∈ Di for some i,
Di is a distance-k dominating set of Tn−i which is smaller than γ≤k(Tn−i), a contradiction.

The next lemma and corollary are helpful when at least one Bn−i = k.
Lemma 5: If Bn−i = k, |Di| ≥ γ≤k(Tn−i).

Proof: Suppose |Di| = γ≤k(Tn−i)−1, so a helper x ∈ {rn}∪Dc(i) is necessary to distance-
k dominate Tn−i. Then Nk[Di ∪ {x}] ⊇ V (Tn−i), which implies Nk[Di ∪ {rn−i}] ⊇ V (Tn−i).
Thus Di ∪ {rn−i} is a γ≤k-set of Tn−i. By assumption, rn−i must have a private neighbor at
level k of Tn−1 which is at level k + 1 of Tn and hence can’t be distance-k dominated by x, a
contradiction.

Corollary 6: Suppose rn is in a γ≤k-set of Tn and Bn−1 = Bn−2 = k. Then γ≤k(Tn) ≥
γ≤k(Tn−1) + γ≤k(Tn−2) + 1.

The following four lemmas provide the basis for determining the distance-k domination
number of Tn. They address only a subset of the possible conditions which conceivably could
arise. However, this subset is exactly what is needed.
Lemma 7: Suppose n ≥ 3, (Ln−2, Bn−2) = (0, t), and (Ln−1, Bn−1) = (0, t + 1) where
0 ≤ t ≤ k − 2. Then γ≤k(Tn) = γ≤k(Tn−1) + γ≤k(Tn−2)− 1 and (Ln, Bn) = (0, t+ 2).

Proof: Let Dn−1 and Dn−2 be representative γ≤k-sets of Tn−1 and Tn−2, respectively.
Observe that [(Dn−2 ∪ Dn−1) − {rn−1, rn−2}] ∪ {rn} is a γ≤k-set by Lemma 4, and it also
satisfies Lemma 1. Obviously Ln = 0 is as small as possible. Suppose Bn < t+ 2. Let D be a
representative γ≤k-set of Tn. Since Ln = 0, rn ∈ D which implies |Di| = γ≤k(Tn−i)− 1 for
i = 1, 2 and D1∪{rn} distance-k dominates Tn−1. Thus D̂ = D1∪{rn−1} is a γ≤k-set of Tn−1

satisfying Lemma 1. Furthermore, Bn−1 ≤ bD̂ ≤ Bn − 1 < t+ 1 = Bn−1, a contradiction.

Lemma 8: Suppose n ≥ 3. If (Ln−2, Bn−2) = (0, k − 1) and (Ln−1, Bn−1) = (0, k), then
(Ln, Bn) = (0, k). If (Ln−2, Bn−2) = (k, k) and (Ln−1, Bn−1) = (0, 0), then (Ln, Bn) = (0, 1).
In either case, γ≤k(Tn) = γ≤k(Tn−1) + γ≤k(Tn−2).

Proof: Again let Dn−1 and Dn−2 be representative γ≤k-sets of Tn−1 and Tn−2, respec-
tively. Let min(Bn−2, Bn−1) = Bn−i. In this case [(Dn−2 ∪ Dn−1) − {rn−i}] ∪ {rn} is a
γ≤k-set which satisfies Lemma 1. To see its minimality, observe that |Dn−c(i)| ≥ γ≤k(Tn−c(i))
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by Lemma 5. Furthermore, in these two cases no vertex of Dn−c(i) can distance-k domi-
nate all the private neighbors of rn−i in Tn−i. Therefore no helper exists in Dn−c(i) and
γ≤k(Tn) = γ≤k(Tn−1) + γ≤k(Tn−2). The above γ≤k-set shows Ln = 0, implying rn is in any
representative γ≤k-set. Since |Dn−c(i)| ≥ γ≤k(Tn−c(i)), it follows that |Dn−i| = γ≤k(Tn−i)−1.
The value of Bn now follows from an argument similar to that in the proof of Lemma 7.

Lemma 9: Suppose n ≥ 3, Bn−1 = Bn−2 = k, and min(Ln−1, Ln−2) = Ln−i < k. Then
γ≤k(Tn) = γ≤k(Tn−1) + γ≤k(Tn−2) and (Ln, Bn) = (Ln−i + 1, k).

Proof: Let Dn−1 and Dn−2 be representative γ≤k-sets of Tn−1 and Tn−2, respectively.
Then D = Dn−2 ∪ Dn−1 is a γ≤k-set by Lemma 5 and it satisfies Lemma 1. Since rn is in
no γ≤k-set by Corollary 6, D is a representative γ≤k-set and the values for (Ln, Bn) follow
immediately.

Lemma 10: Suppose n ≥ 3 and (Bn−2, Ln−2) = (Bn−1, Ln−1) = (k, k). Then γ≤k(Tn) =
γ≤k(Tn−1) + γ≤k(Tn−2) + 1 and (Ln, Bn) = (0, 0).

Proof: Let Dn−1 and Dn−2 be representative γ≤k-sets of Tn−1 and Tn−2, respectively.
Then D = Dn−2 ∪Dn−1 ∪{rn} is a representative γ≤k-set by Corollary 6 and the fact that no
γ≤k-set of Tn−i can distance-k dominate rn for i = 1, 2. Clearly (Ln, Bn) = (0, 0).

Lemmas 7, 8, 9, and 10 can now be employed to determine the distance-k domination
number of Tn. It may be helpful in following the reasoning to be discussed below to refer to
Table 1 which gives results for k = 5. Each entry of the table is composed of four parts: the
tree Tn; (Ln, Bn); γ≤k(Tn), usually in terms of Fibonacci numbers; and the lemma leading to
that result.

The computation of Tn for general k is now described. Observe that the height of T1 is 0
and the height of Tn is n− 2 for n ≥ 2. It follows at once that γ≤k(Tn) = 1 for 1 ≤ n ≤ k and
(Ln, Bn) = (0, n− 2) (except (L1, B1) = (0, 0)).

Beginning with n = k+1 and assuming knowledge of γ≤k(Tn−1) and γ≤k(Tn−2), the values
γ≤k(Tn) and (Ln, Bn) are determined recursively by a reasoning based only on the values of
(Ln−1, Bn−1) and (Ln−2, Bn−2). It follows that if, for some positive integer t, (Ln−2, Bn−2) =
(Ln+t−2, Bn+t−2) and (Ln−1, Bn−1) = (Ln+t−1, Bn+t−1), there will be a cyclic repetition of
the reasoning and the cycle will have length t. We will see that t = 3k+ 2. Table 1 illustrates
this by presenting each cycle (of length 3k + 2 = 17) as a column. Notice that along any row
the lemma employed stays the same. Of course, there are an infinite number of columns, but
exactly 3k + 2 = 17 rows.

The method for computing Tn, n ≥ k + 1, is given in the following steps for k ≥ 3,
steps that are repeated for each cycle. When k = 1 or k = 2, a similar but not identical
pattern occurs. Tables 2 and 3 present results for those two cases, respectively. These cases
are discussed briefly below. The final Theorem 11 and its corollary are valid for all k ≥ 1.
In the following, the variable i, i ≥ 0, can be interpreted as the column of the table in which
the corresponding result would be displayed. The first column is column 0. We will see that
γ≤k(Tk+1) and γ≤k(Tk+2) are Fibonacci numbers. It follows from Lemmas 7 to 10 that γ≤k(Tn)
is a sum of Fibonacci numbers for all successive n, with small modifications due to the plus or
minus 1 that the lemmas sometimes require.

1. Two applications of Lemma 7 so, for k + 1 + i(3k + 2) ≤ n ≤ k + 2 + i(3k + 2),
(Lk+1+i(3k+2), Bk+1+i(3k+2)) = (0, k − 1) and (Lk+2+i(3k+2), Bk+2+i(3k+2)) = (0, k). Now
γ≤k(Tn−2) and γ≤k(Tn−1) each include a 1 in their sum. Thus a 1 also will result in the
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sum for these cases. When n = k + 1 + i(3k + 2) we interpret the 1 as F1, and when
n = k + 2 + i(3k + 2) we interpret the 1 as F2.

2. One application of Lemma 8 so (Lk+3+i(3k+2), Bk+3+i(3k+2)) = (0, k).
3. 2k applications of Lemma 9 so, for k + 4 + i(3k + 2) ≤ n ≤ 3k + 3 + i(3k + 2), (Ln, Bn)

ranges over the values (1, k), (1, k), (2, k), (2, k), . . . , (k, k), (k, k).
4. One application of Lemma 10 yields (L3k+4+i(3k+2), B3k+4+i(3k+2)) = (0, 0). This adds a

1 to the sum of Fibonacci numbers.
5. One application of Lemma 8, so (L3k+5+i(3k+2), B3k+5+i(3k+2)) = (0, 1). The added 1

remains.
6. k−3 applications of Lemma 7, so, for 3k+6+ i(3k+2) ≤ n ≤ 4k+2+ i(3k+2), (Ln, Bn)

ranges from (0, 2) to (0, k − 2). The added 1 stays on all of the sums.
It can be checked that exactly 3k+2 values are determined by one pass through the above

steps. When k = 1, γ≤k(T2) = γ≤k(T3) = 1. Furthermore, step 4 results in (Ln, Bn) = (0, 0)
which is a repeat of the value for T2, so this represents the beginning of a new cycle. Thus,
any cycle beginning with the second employs only step 4 for one value, step 2 for two values,
and step 3 for two values. The cycle then has length 5 = 3k + 2. When k = 2, γ≤k(T3) = 1.
In this case, step 5 produces the value which starts a new cycle, so, beginning with the second
cycle, we employ step 5 for one value, step 1 but only for one value, step 2 for one value, step
3 for four values, and step 4 for one value. Hence each cycle has length 8 = 3k + 2.

T6 (0,4) F1 (7) T23 (0,4) F18+F1 (7) T40 (0,4) F35+F18+F1 (7)

T7 (0,5) F2 (7) T24 (0,5) F19+F2 (7) T41 (0,5) F36+F19+F2 (7)

T8 (0,5) F3 (8) T25 (0,5) F20+F3 (8) T42 (0,5) F37+F20+F3 (8)

T9 (1,5) F4 (9) T26 (1,5) F21+F4 (9) T43 (1,5) F38+F21+F4 (9)

T10 (1,5) F5 (9) T27 (1,5) F22+F5 (9) T44 (1,5) F39+F22+F5 (9)

T11 (2,5) F6 (9) T28 (2,5) F23+F6 (9) T45 (2,5) F40+F23+F6 (9)

T12 (2,5) F7 (9) T29 (2,5) F24+F7 (9) T46 (2,5) F41+F24+F7 (9)

T13 (3,5) F8 (9) T30 (3,5) F25+F8 (9) T47 (3,5) F42+F25+F8 (9)

T14 (3,5) F9 (9) T31 (3,5) F26+F9 (9) T48 (3,5) F43+F26+F9 (9)

T15 (4,5) F10 (9) T32 (4,5) F27+F10 (9) T49 (4,5) F44+F27+F10 (9)

T16 (4,5) F11 (9) T33 (4,5) F28+F11 (9) T50 (4,5) F45+F28+F11 (9)

T17 (5,5) F12 (9) T34 (5,5) F29+F12 (9) T51 (5,5) F46+F29+F12 (9)

T18 (5,5) F13 (9) T35 (5,5) F30+F13 (9) T52 (5,5) F47+F30+F13 (9)

T19 (0,0) F14+1 (10) T36 (0,0) F31+F14+1 (10) T53 (0,0) F48+F31+F14+1 (10)

T20 (0,1) F15+1 (8) T37 (0,1) F32+F15+1 (8) T54 (0,1) F49+F32+F15+1 (8)

T21 (0,2) F16+1 (7) T38 (0,2) F33+F16+1 (7) T55 (0,2) F50+F33+F16+1 (7)

T22 (0,3) F17+1 (7) T39 (0,3) F34+F17+1 (7) T56 (0,3) F51+F34+F17+1 (7)

Table 1: γ≤k(Tn) for 6 ≤ n ≤ 56 and k = 5

T2 (0,0) F1 T7 (0,0) F6+F1 (10) T12 (0,0) F11+F6+F1 (10)

T3 (0,1) F2 T8 (0,1) F7+F2 (8) T13 (0,1) F12+F7+F2 (8)

T4 (0,1) F3 (8) T9 (0,1) F8+F3 (8) T14 (0,1) F13+F8+F3 (8)

T5 (1,1) F4 (9) T10 (1,1) F9+F4 (9) T15 (1,1) F14+F9+F4 (9)

T6 (1,1) F5 (9) T11 (1,1) F10+F5 (9) T16 (1,1) F15+F10+F5 (9)

Table 2: γ≤k(Tn) for 2 ≤ n ≤ 16 and k = 1
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T3 (0,1) F1 T11 (0,1) F9+F1 (8) T19 (0,1) F17+F9+F1 (8)

T4 (0,2) F2 (7) T12 (0,2) F10+F2 (7) T20 (0,2) F18+F10+F2 (7)

T5 (0,2) F3 (8) T13 (0,2) F11+F3 (8) T21 (0,2) F19+F11+F3 (8)

T6 (1,2) F4 (9) T14 (1,2) F12+F4 (9) T22 (1,2) F20+F12+F4 (9)

T7 (1,2) F5 (9) T15 (1,2) F13+F5 (9) T23 (1,2) F21+F13+F5 (9)

T8 (2,2) F6 (9) T16 (2,2) F14+F6 (9) T24 (2,2) F22+F14+F6 (9)

T9 (2,2) F7 (9) T17 (2,2) F15+F7 (9) T25 (2,2) F23+F15+F7 (9)

T10 (0,0) F8+1 (10) T18 (0,0) F16+F8+1 (10) T26 (0,0) F24+F16+F8+1 (10)

Table 3: γ≤k(Tn) for 3 ≤ n ≤ 26 and k = 2

We now can calculate the value of γ≤k(Tn).
Theorem 11: For 1 ≤ n ≤ k, γ≤k(Tn) = 1. For n ≥ k + 1,

γ≤k(Tn) =
bn−k−1

3k+2 c∑
i=0

Fn−k−i(3k+2) + ε

where ε = 1 if 2 + (3k + 2)i ≤ n ≤ k + (3k + 2)i for any nonnegative integer i ≥ 1 and ε = 0
otherwise.

Proof: The value of ε results from the fact that in each complete cycle (in each column)
the last k−1 domination numbers include an added 1. Notice that γ≤k(Tn) includes the sum of
Fn−k and successively smaller Fibonacci numbers whose indices differ by 3k+ 2. The number

of Fibonacci numbers involved is easily seen to be
⌊
n−k−1
3k+2

⌋
+ 1 which accounts for the limits

on the sum.
A closed form can be found. Let α = 1+

√
5

2 and β = 1−
√

5
2 .

Corollary 12: For 1 ≤ n ≤ k, γ≤k(Tn) = 1. For n ≥ k + 1,

γ≤k(Tn) =
1√
5

{
αn+2k+2 − αn−k−b

n−k−1
3k+2 c(3k+2)

α3k+2 − 1

}

− 1√
5

{
βn+2k+2 − βn−k−b

n−k−1
3k+2 c(3k+2)

β3k+2 − 1

}
+ ε.

Proof: It is known that Fn = αn−βn

√
5

. Using this to replace the Fibonacci numbers in the
sum of Theorem 11 and recognizing this produces two finite geometric sums, one involving α
and one β, yields

γ≤k(Tn) =
1√
5

{
αn−k−b

n−k−1
3k+2 c(3k+2)

[
α(3k+2)(bn−k−1

3k+2 c+1) − 1
α3k+2 − 1

]}
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− 1√
5

{
βn−k−b

n−k−1
3k+2 c(3k+2)

[
β(3k+2)(bn−k−1

3k+2 c+1) − 1
β3k+2 − 1

]}
+ ε.

The result then follows from multiplication by the term before the square brackets.
We specialize Theorem 11 and Corollary 12 for the case k = 1 since this corresponds to

the standard domination number γ.
Corollary 13: γ(T1) = 1. For n ≥ 2,

γ(Tn) =
bn−2

5 c∑
i=0

Fn−1−5i =
1√
5

{
αn+4 − αn−1−5bn−2

5 c

α5 − 1

}
− 1√

5

{
βn+4 − βn−1−5bn−2

5 c

β5 − 1

}

3. THE INDEPENDENT DOMINATION NUMBER

Figure 2 shows γi-sets (indicated by the circled vertices) for T1 through T6.

Figure 2: γi-sets for the first six Fibonacci trees

For independent domination there are three possible ordered pairs (Ln, Bn): (1) (0, 0)
meaning rn is in a γi-set and has only itself as a private neighbor, (2) (0, 1) meaning rn is
in a γi-set and has at least one child as a private neighbor, and (3) (1, 1) meaning no γi-set
contains rn. Notice that T3 has the pair (0, 1), T4 and T5 have (1, 1), and T6 has (0, 0). We
will see that, with the exception of T3, the pair (0, 1) will apply to trees where it is possible
for a γi-set to have exactly one child of rn as a private neighbor of rn. T7 is the first example
of this. The following two lemmas lead to the independent domination number of Tn.
Lemma 14: Let D be a γi-set of Tn. If Bn−i = 1 for i = 1 or 2, then |Di| ≥ γi(Tn−i) and
γi(Tn) ≥ γi(Tn−1) + γi(Tn−2).

Proof: Suppose |Di| < γi(Tn−i). Then Di ∪ {rn} is an independent dominating set
of Tn−i and rn is necessary to dominate only rn−i. Thus neither child of rn−i is in Di, so
Di∪{rn−i} is an independent dominating set of Tn−i in which rn−i has only itself as a private

163



DOMINATION IN FIBONACCI TREES

neighbor, contradicting the fact that Bn−i = 1. Since |Di| ≥ γi(Tn−i) and no vertex of Di

dominates a vertex of Tn−c(i), it takes an additional γi(Tn−c(i)) vertices of D to dominate
Tn−c(i) and the bound on γi(Tn) follows.

Let us call the pair (0, 1) proper if, in a γi-set of Tn which corresponds to this pair, the
root has exactly one child which is a private neighbor.
Lemma 15: The following transitions hold:
1. If (Ln−1, Bn−1) = (Ln−2, Bn−2) = (1, 1), then (Ln, Bn) = (0, 0) and γi(Tn) = γi(Tn−1) +

γi(Tn−2) + 1.
2. If (Ln−1, Bn−1) = (0, 0) and (Ln−2, Bn−2) = (1, 1), then (Ln, Bn) = (0, 1) is proper and

γi(Tn) = γi(Tn−1) + γi(Tn−2).
3. If (Ln−1, Bn−1) = (0, 1) is proper and (Ln−2, Bn−2) = (0, 0), then (Ln, Bn) = (0, 1) is

proper and γi(Tn) = γi(Tn−1) + γi(Tn−2).
4. If (Ln−i, Bn−i) = (0, 1) and Bn−c(i) = 1, then (Ln, Bn) = (1, 1) and γi(Tn) = γi(Tn−1)

+γi(Tn−2).
Proof: Suppose D is a γi-set of Tn. If (Ln, Bn) = (0, 0), then γi(Tn) ≥ γi(Tn−1) +

γi(Tn−2) + 1 since in this case Di independently dominates Tn−i for i = 1, 2. Assume Dn−1

and Dn−2 are γi-sets of Tn−1 and Tn−2, respectively, with the stated ordered pairs. For Parts
2 through 4 we will demonstrate an independent dominating set of size γi(Tn−1) + γi(Tn−2)
which, by Lemma 14, must be a γi-set of Tn.

1. Dn−1 ∪Dn−2 ∪ {rn} is a γi-set of Tn since |Dn−i| ≥ γi(Tn−i) for i = 1, 2 by Lemma 14
and, because Ln−i = 1, Dn−i cannot dominate rn. Clearly (Ln, Bn) = (0, 0).

2. (Dn−1 − {rn−1}) ∪Dn−2 ∪ {rn} is a γi-set of Tn. Root rn has rn−1 as a private neighbor
but not rn−2. (Ln, Bn) 6= (0, 0) by the remark at the beginning of the proof. Thus
(Ln, Bn) = (0, 1) and is proper.

3. (Dn−1 − {rn−1}) ∪ (Dn−2 − {rn−2}) ∪ {rn, x} is a γi-set of Tn, where x is the private
neighbor child of rn−1. Then rn has rn−2 as a private neighbor but not rn−1. Thus
(Ln, Bn) = (0, 1) is proper by an argument similar to that in the proof of Part 2.

4. Dn−1 ∪ Dn−2 is a γi-set. Since Bn−i = 1 for i = 1, 2, no γi-set can contain rn so
(Ln, Bn) = (1, 1).
It is straightforward to show that γi(T1) = 1, γi(T2) = 1 = F1, γi(T3) = 1 = F2,

γi(T4) = 2 = F3, and γi(T5) = 3 = F4. Furthermore, (L4, B4) = (L5, B5) = (1, 1). Results
for Tn, n ≥ 6, can be obtained by cycling in order through the parts of Lemma 15. Table 4
shows information for n ≤ 15. The format is similar to that of Table 1, except now the fourth
column for each entry refers to the part of Lemma 15 which is employed. The entry (0, 1)p
indicates it is proper.

T1 (0,0) 1

T2 (0,0) F1 T6 (0,0) F5+F1 (1) T11 (0,0) F10+F6+F1 (1)

T3 (0,1) F2 T7 (0,1)p F6+F2 (2) T12 (0,1)p F11+F7+F2 (2)

T4 (1,1) F3 T8 (0,1)p F7+F3 (3) T13 (0,1)p F12+F8+F3 (3)

T5 (1,1) F4 T9 (1,1) F8+F4 (4) T14 (1,1) F13+F9+F4 (4)

T10 (1,1) F9+F5 (4) T15 (1,1) F14+F10+F5 (4)

Table 4: γi(Tn) for 1 ≤ n ≤ 15
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It is now possible to state the value of γi(Tn). The approach mimics that of Theorem 11
and Corollary 12.
Theorem 16: γi(T1) = 1. For n ≥ 2,

γi(Tn) = Fn−1 +
bn−1

5 c∑
i=1

Fn−5i.

Corollary 17: γi(T1) = 1. For n ≥ 2,

γi(Tn) =
1√
5

(
αn−1 − βn−1

)
+

1√
5

[
αn − αn−5bn−1

5 c

α5 − 1

]
− 1√

5

[
βn − βn−5bn−1

5 c

β5 − 1

]
.

4. CONCLUDING REMARKS

Of course, the techniques developed here could be applied to other domination parameters,
with total domination being a reasonable one to examine. It is expected that all would result in
answers involving the Fibonacci numbers. Perhaps a more interesting investigation, especially
if it might have applications or provide insights, is to repeat the study for other recurrence
relations of the form an =

∑k
i=1 cian−i where the ci are nonnegative integers. In this case,

some structure would have to be defined for the first k trees.
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