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1. INTRODUCTION

In [2], Kimberling posed the question of which recurrent sequences {tn : n = 0, 1, 2, . . . }
have the property

gcd(tm, tn) = tgcd(m,n) ∀m,n ∈ N. (1)

A sequence with this property is called a strong divisibility sequence (SDS). For example, the
Fibonacci polynomials, defined by the second-order linear recurrence Fn(x) = xFn−1(x) +
Fn−2(x); F0(x) = 0, F1(x) = 1, is a SDS of polynomials (see [3]). This paper will present a
characterization of all the second-order SDS of polynomials. The proofs are all elementary;
the most advanced technique used is mathematical induction. I will not discuss the sequences
that consist only of integers. For the characterization of second-order SDS of integers see [1].

2. THE SET S AND THE SUBSETS D, F , G, AND H

Let S be the set of second-order linear recurrent sequences of polynomials defined by

sn(x) = p(x)sn−1(x) + q(x)sn−2(x); s0(x) = 0, s1(x) = 1

where p(x), q(x) ∈ Z[X]. The subset of all of the SDS of S will be denoted by D.
Note we let s0(x) = 0 because all terms of a strong divisibility sequence divide s0(x).

We may also take s1(x) = 1 without loss of generality because all the second-order strong
divisibility sequences are obviously all the multiples of the sequences from D.

In pursuit of a description of D, consider the following subsets of S: F , F1, G, and H;
defined with the initial conditions 0 and 1.

F = {(fn) : fn(x) = p(x)fn−1(x) + q(x)fn−2(x); f0(x) = 0, f1(x) = 1}
F1 = F where gcd(p(x), q(x)) = 1
G = {(gn) : gn(x) = p(x)gn−1(x); g0(x) = 0, g1(x) = 1} (degenerate sequence)
H = {(hn) : hn(x) = q(x)hn−2(x); h0(x) = 0, h1(x) = 1}.

There are some results which follow from defining G and H: D ∩G = ∅ and D ∩H = ∅.
For the set G we can clearly see that g2(x) = p(x) and g3(x) = (p(x))2. So

gcd(g2(x), g3(x)) = p(x) 6= 1 = ggcd(2,3)(x)

which contradicts (1). Similarly, consider h3(x) and h5(x) which equals q(x) and (q(x))2,
respectively, to obtain a contradiction to (1).
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3. THE SUBSETS F AND F1

Clearly F1 ⊂ F . We will see that F1 = D∩F by showing F1∩D = F1 and D∩F \F1 = ∅.
Theorem 1: Let fn ∈ F then

fn+k(x) = fk+1(x)fn(x) + q(x)fk(x)fn−1(x).

Proof: We use strong induction on k. By definition of F ,

fn+1(x) = p(x)fn(x) + q(x)fn−1(x)

We see that f2(x) = p(x) and f1(x) = 1 showing that the initial case is true. We assume
fn+k(x) = fk+1(x)fn(x) + q(x)fk(x)fn−1(x) by the induction hypothesis. So it follows

f(n+k)+1(x) = p(x)fn+k(x) + q(x)f(n+k)−1(x)
= p(x)[fk+1(x)fn(x) + q(x)fk(x)fn−1(x)]

+ q(x)[fk(x)fn(x) + q(x)fk−1(x)fn−1(x)]
= fk+2(x)fn(x) + q(x)fk+1(x)fn−1(x).

Corollary 1: Let fn ∈ F then

m | n implies fm(x) | fn(x).

Proof: Assume m | n which implies n = km. To show fm(x) | fkm(x) we will use
induction on k. fm(x) | f1·m(x) clearly. Suppose fm(x) | fkm(x) by the induction hypothesis.
So

fm(x) | αfkm(x) + βfm(x) ∀α, β.

With Theorem 1, choose the appropriate α and β, fm+1(x) and q(x)fkm−1(x) respectively, to
yield fm(x) | fkm+m(x); moreover,

fm(x) | f(k+1)m(x).

Theorem 2: Let fn ∈ F1 then

gcd(fn(x), fn+1(x)) = 1.

Proof: We will use induction on n. gcd(f1(x), f2(x)) = 1 since f1(x) = 1. We know

fn+2(x) ≡ p(x)fn+1(x) + q(x)fn(x) (mod fn+1(x)), so
fn+2(x) ≡ q(x)fn(x) (mod fn+1(x)).

Therefore gcd(fn+2(x), fn+1(x)) = gcd(fn+1(x), q(x)fn(x)). Notice that gcd(fn+1(x), q(x)) =
1 by the fact fn ∈ F1 giving us the property gcd(p(x), q(x)) = 1. So with the induc-
tion hypothesis of gcd(fn+1(x), fn(x)) = 1 and gcd(fn+1(x), q(x)) = 1, it follows that
gcd(fn+1(x), q(x)fn(x)) = 1 which yields gcd(fn+2(x), fn+1(x)) = 1.
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Corollary 2: Let fn ∈ F1 then m = qn+ r implies

gcd(fm(x), fn(x)) = gcd(fn(x), fr(x)).

Proof: Assume m = qn+ r,

fm(x) = fqn+r(x) = fr+1(x)fqn(x) + q(x)fr(x)fqn−1(x),

by Theorem 1. Consider

fm(x) ≡ fr+1(x)fqn(x) + q(x)fr(x)fqn−1(x) (mod fn(x))
fm(x) ≡ q(x)fr(x)fqn−1(x) (mod fn(x)).

Thus gcd(fm(x), fn(x)) = gcd(fn(x), q(x)fr(x)fqn−1(x)). From Theorem 2 and Corollary
1 we see that gcd(fqn(x), fqn−1(x)) = 1 and gcd(fqn(x), fn(x)) = fn(x), respectively.
So it follows gcd(fn(x), fqn−1(x)) = 1 and since the gcd(fn(x), q(x)) = 1 we arrive at
gcd(fn(x), q(x)fqn−1(x)) = 1. Therefore,

gcd(fm(x), fn(x)) = gcd(fn(x), q(x)fr(x)fqn−1(x)) = gcd(fn(x), fr(x)).

Theorem 3: All sequences in F1 are in D.
Proof: Let fn ∈ F1 and consider the use of the Euclidean algorithm in conjunction with

Corollary 2. We can see

m = q0n+ r1 n > r1 ≥ 0 ⇒ gcd(fm(x), fn(x)) = gcd(fn(x), fr1(x))
n = q1r1 + r2 r1 > r2 ≥ 0 ⇒ gcd(fn(x), fr1(x)) = gcd(fr1(x), fr2(x))

...
rk−1 = qkrk + 0 ⇒ gcd(frk−1(x), frk

(x)) = gcd(frk
(x), f0(x)) = frk

.

With gcd(m,n) = rk and gcd(fm(x), fn(x)) = frk
(x), it follows

gcd(fn(x), fm(x)) = frk
(x) = fgcd(n,m)(x)

for all sequences fn ∈ F1.
Theorem 4: F ∩D = F1.

Proof: Let fn ∈ D ∩ F \ F1 then gcd(p(x), q(x)) = d(x) 6= 1, which implies p(x) =
d(x)P (x) and q(x) = d(x)Q(x). Therefore,

fn(x) = d(x)P (x)fn−1(x) + d(x)Q(x)fn−2(x).

Consider f2(x) and f3(x): d(x)P (x) and d(x)(P (x)d(x)P (x) +Q(x)) respectively. This gives
a contradiction to (1) since

gcd(f2(x), f3(x)) = d(x) 6= 1 = f1(x).
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Thus D ∩ F \ F1 = ∅, and since F1 ⊂ F and F1 ∩D = F1, we can see F ∩D = F1.

4. CONCLUSION

D ∩ G = ∅, D ∩ H = ∅, and F ∩ D = F1, show that D, all SDS of polynomials with
the initial conditions s0(x) = 0 and s1(x) = 1, is the set of sequences F1. Thus the set of
multiples of F1 is all the second-order strong divisibility sequences of polynomials, completing
the characterization.

REFERENCES

[1] P. Horak and L. Skula. “A Characterization of the Second-Order Strong Divisibility
Sequences.” The Fibonacci Quarterly 23 (1985): 126-132.

[2] C. Kimberling. “Strong Divisibility Sequences and Some Conjectures.” The Fibonacci
Quarterly 17 (1979): 13-17.

[3] W. A. Webb and E. A. Parberry. “Divisibility Properties of Fibonacci Polynomials.” The
Fibonacci Quarterly 7 (1969): 457-463.

AMS Classification Numbers: 11B39

z z z

169


