CHARACTERIZATION OF SECOND-ORDER STRONG DIVISIBILITY SEQUENCES OF POLYNOMIALS

Mark Norfleet

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
(Submitted September 2002-Final Revision January 2003)

1. INTRODUCTION

In [2], Kimberling posed the question of which recurrent sequences $\left\{t_{n}: n=0,1,2, \ldots\right\}$ have the property

$$
\begin{equation*}
\operatorname{gcd}\left(t_{m}, t_{n}\right)=t_{\operatorname{gcd}(m, n)} \quad \forall m, n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

A sequence with this property is called a strong divisibility sequence (SDS). For example, the Fibonacci polynomials, defined by the second-order linear recurrence $F_{n}(x)=x F_{n-1}(x)+$ $F_{n-2}(x) ; F_{0}(x)=0, F_{1}(x)=1$, is a SDS of polynomials (see [3]). This paper will present a characterization of all the second-order SDS of polynomials. The proofs are all elementary; the most advanced technique used is mathematical induction. I will not discuss the sequences that consist only of integers. For the characterization of second-order SDS of integers see [1].

2. THE SET S AND THE SUBSETS D, F, G, AND H

Let S be the set of second-order linear recurrent sequences of polynomials defined by

$$
s_{n}(x)=p(x) s_{n-1}(x)+q(x) s_{n-2}(x) ; \quad s_{0}(x)=0, \quad s_{1}(x)=1
$$

where $p(x), q(x) \in \mathbb{Z}[X]$. The subset of all of the SDS of S will be denoted by D.
Note we let $s_{0}(x)=0$ because all terms of a strong divisibility sequence divide $s_{0}(x)$. We may also take $s_{1}(x)=1$ without loss of generality because all the second-order strong divisibility sequences are obviously all the multiples of the sequences from D.

In pursuit of a description of D, consider the following subsets of $S: F, F_{1}, G$, and H; defined with the initial conditions 0 and 1.

$$
\begin{aligned}
F & =\left\{\left(f_{n}\right): f_{n}(x)=p(x) f_{n-1}(x)+q(x) f_{n-2}(x) ; f_{0}(x)=0, f_{1}(x)=1\right\} \\
F_{1} & =F \text { where } \operatorname{gcd}(p(x), q(x))=1 \\
G & =\left\{\left(g_{n}\right): g_{n}(x)=p(x) g_{n-1}(x) ; g_{0}(x)=0, g_{1}(x)=1\right\} \text { (degenerate sequence) } \\
H & =\left\{\left(h_{n}\right): h_{n}(x)=q(x) h_{n-2}(x) ; h_{0}(x)=0, h_{1}(x)=1\right\} .
\end{aligned}
$$

There are some results which follow from defining G and $H: D \cap G=\emptyset$ and $D \cap H=\emptyset$. For the set G we can clearly see that $g_{2}(x)=p(x)$ and $g_{3}(x)=(p(x))^{2}$. So

$$
\operatorname{gcd}\left(g_{2}(x), g_{3}(x)\right)=p(x) \neq 1=g_{\operatorname{gcd}(2,3)}(x)
$$

which contradicts (1). Similarly, consider $h_{3}(x)$ and $h_{5}(x)$ which equals $q(x)$ and $(q(x))^{2}$, respectively, to obtain a contradiction to (1).

3. THE SUBSETS F AND F_{1}

Clearly $F_{1} \subset F$. We will see that $F_{1}=D \cap F$ by showing $F_{1} \cap D=F_{1}$ and $D \cap F \backslash F_{1}=\emptyset$.
Theorem 1: Let $f_{n} \in F$ then

$$
f_{n+k}(x)=f_{k+1}(x) f_{n}(x)+q(x) f_{k}(x) f_{n-1}(x)
$$

Proof: We use strong induction on k. By definition of F,

$$
f_{n+1}(x)=p(x) f_{n}(x)+q(x) f_{n-1}(x)
$$

We see that $f_{2}(x)=p(x)$ and $f_{1}(x)=1$ showing that the initial case is true. We assume $f_{n+k}(x)=f_{k+1}(x) f_{n}(x)+q(x) f_{k}(x) f_{n-1}(x)$ by the induction hypothesis. So it follows

$$
\begin{aligned}
f_{(n+k)+1}(x)= & p(x) f_{n+k}(x)+q(x) f_{(n+k)-1}(x) \\
= & p(x)\left[f_{k+1}(x) f_{n}(x)+q(x) f_{k}(x) f_{n-1}(x)\right] \\
& \quad+q(x)\left[f_{k}(x) f_{n}(x)+q(x) f_{k-1}(x) f_{n-1}(x)\right] \\
= & f_{k+2}(x) f_{n}(x)+q(x) f_{k+1}(x) f_{n-1}(x) .
\end{aligned}
$$

Corollary 1: Let $f_{n} \in F$ then

$$
m \mid n \text { implies } f_{m}(x) \mid f_{n}(x)
$$

Proof: Assume $m \mid n$ which implies $n=k m$. To show $f_{m}(x) \mid f_{k m}(x)$ we will use induction on k. $f_{m}(x) \mid f_{1 \cdot m}(x)$ clearly. Suppose $f_{m}(x) \mid f_{k m}(x)$ by the induction hypothesis. So

$$
f_{m}(x) \mid \alpha f_{k m}(x)+\beta f_{m}(x) \quad \forall \alpha, \beta
$$

With Theorem 1, choose the appropriate α and $\beta, f_{m+1}(x)$ and $q(x) f_{k m-1}(x)$ respectively, to yield $f_{m}(x) \mid f_{k m+m}(x)$; moreover,

$$
f_{m}(x) \mid f_{(k+1) m}(x)
$$

Theorem 2: Let $f_{n} \in F_{1}$ then

$$
\operatorname{gcd}\left(f_{n}(x), f_{n+1}(x)\right)=1
$$

Proof: We will use induction on $n \cdot \operatorname{gcd}\left(f_{1}(x), f_{2}(x)\right)=1$ since $f_{1}(x)=1$. We know

$$
\begin{aligned}
& f_{n+2}(x) \equiv p(x) f_{n+1}(x)+q(x) f_{n}(x) \quad\left(\bmod f_{n+1}(x)\right), \text { so } \\
& f_{n+2}(x) \equiv q(x) f_{n}(x) \quad\left(\bmod f_{n+1}(x)\right) .
\end{aligned}
$$

Therefore $\operatorname{gcd}\left(f_{n+2}(x), f_{n+1}(x)\right)=\operatorname{gcd}\left(f_{n+1}(x), q(x) f_{n}(x)\right)$. Notice that $\operatorname{gcd}\left(f_{n+1}(x), q(x)\right)=$ 1 by the fact $f_{n} \in F_{1}$ giving us the property $\operatorname{gcd}(p(x), q(x))=1$. So with the induction hypothesis of $\operatorname{gcd}\left(f_{n+1}(x), f_{n}(x)\right)=1$ and $\operatorname{gcd}\left(f_{n+1}(x), q(x)\right)=1$, it follows that $\operatorname{gcd}\left(f_{n+1}(x), q(x) f_{n}(x)\right)=1$ which yields $\operatorname{gcd}\left(f_{n+2}(x), f_{n+1}(x)\right)=1$.

Corollary 2: Let $f_{n} \in F_{1}$ then $m=q n+r$ implies

$$
\operatorname{gcd}\left(f_{m}(x), f_{n}(x)\right)=\operatorname{gcd}\left(f_{n}(x), f_{r}(x)\right)
$$

Proof: Assume $m=q n+r$,

$$
f_{m}(x)=f_{q n+r}(x)=f_{r+1}(x) f_{q n}(x)+q(x) f_{r}(x) f_{q n-1}(x)
$$

by Theorem 1. Consider

$$
\begin{aligned}
& f_{m}(x) \equiv f_{r+1}(x) f_{q n}(x)+q(x) f_{r}(x) f_{q n-1}(x) \quad\left(\bmod f_{n}(x)\right) \\
& f_{m}(x) \equiv q(x) f_{r}(x) f_{q n-1}(x) \quad\left(\bmod f_{n}(x)\right) .
\end{aligned}
$$

Thus $\operatorname{gcd}\left(f_{m}(x), f_{n}(x)\right)=\operatorname{gcd}\left(f_{n}(x), q(x) f_{r}(x) f_{q n-1}(x)\right)$. From Theorem 2 and Corollary 1 we see that $\operatorname{gcd}\left(f_{q n}(x), f_{q n-1}(x)\right)=1$ and $\operatorname{gcd}\left(f_{q n}(x), f_{n}(x)\right)=f_{n}(x)$, respectively. So it follows $\operatorname{gcd}\left(f_{n}(x), f_{q n-1}(x)\right)=1$ and since the $\operatorname{gcd}\left(f_{n}(x), q(x)\right)=1$ we arrive at $\operatorname{gcd}\left(f_{n}(x), q(x) f_{q n-1}(x)\right)=1$. Therefore,

$$
\operatorname{gcd}\left(f_{m}(x), f_{n}(x)\right)=\operatorname{gcd}\left(f_{n}(x), q(x) f_{r}(x) f_{q n-1}(x)\right)=\operatorname{gcd}\left(f_{n}(x), f_{r}(x)\right) .
$$

Theorem 3: All sequences in F_{1} are in D.
Proof: Let $f_{n} \in F_{1}$ and consider the use of the Euclidean algorithm in conjunction with Corollary 2. We can see

$$
\begin{array}{cccc}
m=q_{0} n+r_{1} & n>r_{1} \geq 0 & \Rightarrow & \operatorname{gcd}\left(f_{m}(x), f_{n}(x)\right)=\operatorname{gcd}\left(f_{n}(x), f_{r_{1}}(x)\right) \\
n=q_{1} r_{1}+r_{2} & r_{1}>r_{2} \geq 0 & \Rightarrow & \operatorname{gcd}\left(f_{n}(x), f_{r_{1}}(x)\right)=\operatorname{gcd}\left(f_{r_{1}}(x), f_{r_{2}}(x)\right) \\
& & \vdots & \\
r_{k-1}=q_{k} r_{k}+0 & & \Rightarrow & \operatorname{gcd}\left(f_{r_{k-1}}(x), f_{r_{k}}(x)\right)=\operatorname{gcd}\left(f_{r_{k}}(x), f_{0}(x)\right)=f_{r_{k}} .
\end{array}
$$

With $\operatorname{gcd}(m, n)=r_{k}$ and $\operatorname{gcd}\left(f_{m}(x), f_{n}(x)\right)=f_{r_{k}}(x)$, it follows

$$
\operatorname{gcd}\left(f_{n}(x), f_{m}(x)\right)=f_{r_{k}}(x)=f_{\operatorname{gcd}(n, m)}(x)
$$

for all sequences $f_{n} \in F_{1}$.
Theorem 4: $F \cap D=F_{1}$.
Proof: Let $f_{n} \in D \cap F \backslash F_{1}$ then $\operatorname{gcd}(p(x), q(x))=d(x) \neq 1$, which implies $p(x)=$ $d(x) P(x)$ and $q(x)=d(x) Q(x)$. Therefore,

$$
f_{n}(x)=d(x) P(x) f_{n-1}(x)+d(x) Q(x) f_{n-2}(x)
$$

Consider $f_{2}(x)$ and $f_{3}(x): d(x) P(x)$ and $d(x)(P(x) d(x) P(x)+Q(x))$ respectively. This gives a contradiction to (1) since

$$
\operatorname{gcd}\left(f_{2}(x), f_{3}(x)\right)=d(x) \neq 1=f_{1}(x)
$$

Thus $D \cap F \backslash F_{1}=\emptyset$, and since $F_{1} \subset F$ and $F_{1} \cap D=F_{1}$, we can see $F \cap D=F_{1}$.

4. CONCLUSION

$D \cap G=\emptyset, D \cap H=\emptyset$, and $F \cap D=F_{1}$, show that D, all SDS of polynomials with the initial conditions $s_{0}(x)=0$ and $s_{1}(x)=1$, is the set of sequences F_{1}. Thus the set of multiples of F_{1} is all the second-order strong divisibility sequences of polynomials, completing the characterization.

REFERENCES

[1] P. Horak and L. Skula. "A Characterization of the Second-Order Strong Divisibility Sequences." The Fibonacci Quarterly 23 (1985): 126-132.
[2] C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The Fibonacci Quarterly 17 (1979): 13-17.
[3] W. A. Webb and E. A. Parberry. "Divisibility Properties of Fibonacci Polynomials." The Fibonacci Quarterly 7 (1969): 457-463.

AMS Classification Numbers: 11B39

※凶要

