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1. BEGINNING

Polynomials R(r,u)
n (x) and S

(r,u)
n (x):

Polynomials R(r,u)
n (x) were defined in [3] by the recurrence

R(r,u)
n (x) = (x+ 2)R(r,u)

n−1 (x)−R(r,u)
n−2 (x) (n ≥ 2) (1.1)

with
R

(r,u)
0 (x) = u, R

(r,u)
1 (x) = x+ r + u. (1.2)

Their properties were investigated in conjunction with coefficients c(r,u)
n,k [3, Table 1] where

R(r,u)
n (x) =

n∑
k

c
(r,u)
n,k xk (1.3)

with some conditions attached to the c(r,u)
n,k [3, (2.4)-(2.10)].

Later, in [4], a similar examination was made of the polynomials S(r,u)
n (x) defined by

S(r,u)
n (x) = (x+ 2)S(r,u)

n−1 (x) + S
(r,u)
n−2 (x) (n ≥ 2) (1.4)

with
S

(r,u)
0 (x) = u, S

(r,u)
1 (x) = x+ r + u, (1.5)

where

S(r,u)
n (x) =

n∑
K

d
(r,u)
n,k xk (1.6)

with conditions imposed on the coefficients d(r,u)
n,k [4, (3.4)-(3.7) Table 2].

Pell Convolutions:
(i) In [4], the coefficients d(r,u)

n,k for S(r,u)
n (x) in (1.6) were related to Pell convolution numbers

P
(m)
n which are displayed in [4, Table 1].

(ii) Furthermore, in [6], the nine S(r,u)
n (x) were expressed as sums of Pell convolutions, the

proofs involving d(r,u)
n,k .

Chebyshev Convolutions:
Here, we establish theories corresponding to (i) and (ii) for R(r,u)

n (x), c(r,u)
n,k , and the

mth Chebyshev convolutions U (m)
n for the Chebyshev polynomials Un(x) defined by [2], where

n→ n+ 1,

Un(x) = 2xUn−1(x)− Un−2(x) (n ≥ 2), U0(x) = 0, U1(x) = 1. (1.7)
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Associated with U (m)
n are the mth Chebyshev convolutions T (m)

n for the Chebyshev polynomials
Tn(x) given in [2] by

Tn(x) = 2xTn−1(x)− Tn−2(x) (n ≥ 2), T0(x) = 2, T1(x) = 2x. (1.8)

Observe from (1.7), (1.8) that, when x = 1, Un(1) ≡ Un, Tn(1) ≡ Tn,

Un − Un−1 =
1
2
Tn. (1.9)

Clearly,

{Un} = {0, 1, 2, 3, 4, · · · }, (1.10)
{Tn} = {2, 2, 2, 2, 2, · · · }. (1.11)

Just as the R(r,u)
n (x) are expressible as Morgan-Voyce polynomials [3], so the S(r,u)

n (x)
may be expressed in terms of quasi Morgan-Voyce polynomials [4].

Coefficients d(r,u)
n,k and c

(r,u)
n,k :

One can spot, though not easily, the important connection, involving interchange of su-
perscripts,

d
(r,u)
n,k = d

(u,r)
n−1,k + c

(u,r)
n,k + c

(u,r)
n−1,k (k > n− 1). (1.12)

The restriction k > n−1 in (1.12) is imposed by virtue of c(r,u)
n,n = d

(r,u)
n,n = 1, c(r,u)

n,n−1 = d
(r,u)
n,n−1 =

2(n− 1) + r + u from [3, Table 1] and [4, Table 2]. It precludes any simple link between
R

(r,u)
n (x) and S

(r,u)
n (x) along the lines of (1.12).

Question: Can we find, if it exists, a formula involving binomial coefficients for d(r,u)
n,k analogous

to that for c(r,u)
n,k in [2, (2.11)]?

Purpose of this Paper:
Basically, the aim of our endeavours is to discover sets of relationships, particularly for

convolutions, amoung Tn, Un, Pn, and Qn (the Pell-Lucas numbers (6.11)). In the process,
further data about R(r,u)

n (x) and S
(r,u)
n (x) are determined.

2. CHEBYSHEV CONVOLUTIONS U
(m)
n

¿From (1.7) when x = 1, we define U (m)
n ≡ U (m)

n (1) thus:
Definition:

∞∑
n=1

U (m)
n yn−1 = [1− (2y − y2)]−(m+1), U

(m)
0 = 0 (2.1)

= (1− y)−2(m+1), (2.1a)

with U
(0)
n ≡ Un.
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Calculation in (2.1) leads to the following display for U (m)
n (Table 1).

n\m 0 1 2 3 4
1 1 1 1 1 1
2 2 4 6 8 10
3 3 10 21 36 55
4 4 20 56 120 220
5 5 35 126 330 715

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 1. Chebyshev Convolution Numbers U (m)
n .

These convolution numbers U (m)
n may be verified using the table in [1] derived from Cauchy

products for sequences.

Basic Properties of U (m)
n , c

(r,u)
n,k :

Analogously to the corresponding results (2.1), (2.4), (2.5), (3.7), and Theorem 4 in [4] -
but see also [6, (1.6)] - we derive

U (m)
n = 2U (m)

n−1 − U
(m)
n−2 + U (m−1)

n (recurrence) (2.2)

U
(m)
n+1−m − U

(m)
n−1−m =

n

m
U

(m−1)
n+1−m (2.3)

U (m)
n − U (m)

n−1 =
n+ 2m− 1

2m
U (m−1)

n (2.4)

c
(r,u)
n,k = 2c(r,u)

n−1,k − c
(r,u)
n−2,k + c

(r,u)
n−1,k−1 (n ≥ 2, k ≥ 1 (2.5)

c
(r,u)
n,k = U

(k−1)
n−k+1 + rU

(k)
n−k + u · n− k

2k
U

(k−1)
n−k+1. (2.6)

Observe that (2.2), (2.3), and (2.5) differ from the corresponding expressions for P (m)
n in

[4] by having a centrally located + sign replaced by a − sign, whereas (2.4) and (2.6) do not
exhibit this difference. These variations reflect the differences in sign in the definitions of
R

(r,u)
n (x) and S

(r,u)
n (x) in (1.1) and (1.4) respectively.

3. R(r,u)
n (x) SUMMATIONS IN TERMS OF U

(k)
n

These summation formulas (Theorems 1-9) are analogous to corresponding statements in
[6]. Therefore, their proofs will not be offered. Connections with Morgan-Voyce polynomials
Bn(x), bn(x), Cn(x), cn(x) appear as appropriate [3, p. 234].

Theorem 1: R
(1,1)
n (x) =

∑n
k=0 U

(k)
n+1−kx

k = Bn+1(x).

Theorem 2: R
(0,0)
n (x) =

∑n−1
k=0 U

(k)
n−kx

k+1.
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Theorem 3: R
(0,1)
n (x) =

∑n
k=1

n+k
k U

(k−1)
n+1−kx

k + 1
2Tn = bn+1(x).

Theorem 4: R
(1,0)
n (x) =

∑n
k=1

(
U

(k)
n−k + U

(k−1)
n+1−k

)
xk + Un.

Theorem 5: R
(2,2)
n (x) =

∑n
k=1

(
2U (k)

n+1−k − U
(k−1)
n+1−k

)
xk + 2Un+1.

Theorem 6: R
(1,2)
n (x) =

∑n
k=0

(
U

(k)
4−k + U

(k)
3−k + U

(k)
2−k

)
xk.

Theorem 7: R
(0,2)
n (x) =

∑n
k=1

n
kU

(k−1)
n+1−kx

k + Tn.

Theorem 8: R
(2,0)
n (x) =

∑n
k=1

(
2U (k)

n−k + U
(k−1)
n+1−k

)
xk + 2Un.

Theorem 9: R
(2,1)
n (x) =

∑n
k=1

(
2U (k)

n−k + n+k
2k U

(k−1)
n+1−k

)
xk + 2Un+1 + 1

2Tn.

Recall (1.10), (1.11) that Un = n, Tn = 2 appearing in the above enunciations.
Examples:

R
(2,1)
3 (x) = x3 + 7x2 + 14x+ 7 = c4(x)

R
(0,2)
3 (x) = x3 + 6x2 + 9x+ 2 = C3(x).

Remarks: When applying basic formulas for d(r,u)
n,k corresponding to those for c(r,u)

n,k , bear in
mind the substitution of a − in (2.2) for a+ in [4, (2.1)] in the middle term on the right-hand
side. This effects the occurrence of − in (2.3) instead of a + in [4, (2.4)]. Thus, Theorems 5,
6, and 7, whose proofs involve the use of (2.3), will necessarily contain a slight variation from
the corresponding proofs in [6; Theorems 5, 6, 7].

As a theorem of representative difficulty from Theorems 1-9, we choose to prove Theorem
5 (noting the Question at the completion of the proof).

But firstly observe from [3, (2.7)] that, for r = u− 2,

c
(2,2)
n,0 = 2n+ 2 = 2Un+1 (3.1)

by (1.10). In fact (cf. [4, Theorem 1]),

c
(r,u)
n,0 = Unr +

1
2
Tnu

(
1
2
Tn = Un − Un−1

)
.

Proof of Theorem 5: Consider 2R(1,1)
n (x) for k, then subtract R(1,1)

n−1 (x) for k − 1.

111



CHEBYSHEV AND PELL CONNECTIONS

Accordingly, from (2.3), using (2.6) and simplifying, we have

2c(1,1)
n,k − c

(1,1)
n−1,k−1 = 2U (k)

n−k +
n+ k

k
U

(k−1)
n−k+1 − U

(k−1)
n−k − n− 2 + k

2(k − 1)
U

(k−2)
n−k+1

= 2U (k)
n−k +

n

k
U

(k−1)
n−k+1 by (2.4) · · · · · · · · · · · · (A)

= 2U (k)
n−k+1 − U

(k−1)
n+1−k also, by (2.4) · · · · · · (B)

= U
(k−1)
n−k+1 + 2U (k)

n−k + 2
(n− k)

2k
U

(k−1)
n−k+1 from (A)

= c
(2,2)
n,k by (2.6).

Applying (B) we have the theorem, where 2Un+1 orginates with k = 0. (Refer to (3.1) also).

Question: How do we know to obtain c
(2,2)
n,k = 2c(1,1)

n,k − c
(1,1)
n−1,k−1?

Response: Short tables for c(r,u)
n,k need to be constructed using [3, Table 1]. In Theorem

5, we commence with r = u = 2. A little detection with practice, enables us to “spot” the
required relationship.

4. CHEBYSHEV CONVOLUTION POLYNOMIALS U
(m)
n (x)

Generating Function Definition:
Extending (2.1), we define the mth Chebyshev convolution polynomial U (m)

n (x) of Un(x)
by a generating function:

∞∑
n=1

U (m)
n (x)yn−1 = [1− (2xy − y2)]−(m+1), U

(m)
0 (x) = 0. (4.1)

When m = 0, U (0)
n (x) ≡ Un(x). Putting x = 1 in (4.1) leads us back to (2.1).

Simplest expressions:

m = 0 : U
(0)
1 (x) = 1, U (0)

2 (x) = 2x,U (0)
3 (x) = 4x2 − 1, U (0)

4 (x) = 8x3 − 4x,

U
(0)
5 (x) = 16x4 − 12x2 + 1, · · · . (4.2)

m = 1 : U
(1)
1 (x) = 1, U (1)

2 (x) = 4x,U (1)
3 (x) = 12x2 − 2, U (1)

4 (x) = 32x3 − 12x,

U
(1)
5 (x) = 80x4 − 48x2 + 3, · · · . (4.3)

m = 2 : U
(2)
1 (x) = 1, U (2)

2 (x) = 6x,U (2)
3 (x) = 24x2 − 3, U (2)

4 (x) = 80x3 − 24x,

U
(2)
5 (x) = 240x4 − 120x2 + 6, · · · . (4.4)
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Generally,

U
(m)
1 (x) = 1, U (m)

2 (x) =
(
m+ 1

1

)
2x,U (m)

3 (x) =
(
m+ 2

2

)
(2x)2 −

(
m+ 1

1

)
,

U
(m)
4 (x) =

(
m+ 3

3

)
(2x)3 − 2

(
m+ 2

2

)
2x, (4.5)

U
(m)
5 (x) =

(
m+ 4

4

)
(2x)4 − 3

(
m+ 3

3

)
(2x)2 +

(
m+ 2

2

)
, · · · .

Combinatorial Definition:

U (m)
n (x) =

[ n−1
2 ]∑

j=0

(−1)j

(
n+m− 1− j

m

)(
n− 1− j

j

)
(2x)n−1−2j . (4.6)

The equivalence of (4.1) and (4.6) is now established.
Proof of (4.6) from (4.1): Expand (4.1) to obtain the general term corresponding to

yn−1. We have

(
m+ k
k

)
(2x− y)kyk =

∑
j=0

(−1)j

(
m+ k
k

)(
k
j

)
(2x)k−jyk+j

=
[ n−1

2 ]∑
j=0

(−1)j

(
m+ n− 1− j

m

)(
n− 1− j

j

)
(2x)n−1−2jyn−1 · · · (I)

on writing k + j = n− 1, i.e., k = n− 1− j. Equating coefficients of yn−1 in (4.1) and (I) we
are left with (4.6) as required.

Alternatively, to flush out (4.6), we extend the closed forms [8, (1.7), (4.9), (6.6)] for
P

(m)
n (x) where m = 0, 1, 2 respectively, and then adjust them to apply to U (m)

n (x).

Accordingly, the previously unrecorded closed form expression for P (m)
n (x) is revealed as

P (m)
n (x) =

[ n−1
2 ]∑

j=0

(
n+m− 1− j

m

)(
n− 1− j

j

)
(2x)n−1−2j . (4.7)

Cauchy Summation Definition for U (m)
n (x):

U (m)
n (x) =

n∑
j=1

Uj(x)U (m−1)
n+1−j(x). (4.8)

Some of the simplest expressions in (4.2)-(4.4) may now be checked by means of (4.6) and
(4.8).
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5. CHEBYSHEV CONVOLUTION POLYNOMIALS T
(m)
n (x)

Designate the mth Chebyshev polynomial of Tn(x) by T (m)
n (x).

Generating Function Definition:
∞∑

n=1

T (m)
n (x)yn−1 = (2x− 2y)m+1[1− (2xy − y2)]−(m+1), T

(m)
0 (x) = 0. (5.1)

When x = 1, we have the mth Chebyshev convolution numbers T (m)
n , where T (m)

n (1) ≡ T (m)
n ,

and T
(0)
n ≡ Tn given by

∞∑
n=1

T (m)
n yn−1 = 2m+1(1− y)−(m+1) (5.1a)

so that (1.11) {
T (0)

n

}
= 2{1, 1, 1, 1, . . . }. (5.1b)

Cauchy Summation Definition:

T (m)
n (x) =

n∑
j=1

Tj(x)T (m−1)
n+1−j(x). (5.2)

¿From (5.1) and (5.2), simple expressions of T (m)
n (x) for small values of m and n may be

readily calculated. Clearly, by (5.2) with x = 1,

T (m)
n = 2

n∑
j=1

T
(m−1)
n+1−j . (5.2a)

Relationship between U
(m)
n and T

(m)
n :

Coming to the intrinsic connection between U
(m)
n and T

(m)
n , we learn that this is deter-

mined by the parity of the superscript.
Theorem 10:
(i) T

(2m+1)
n = 22(m+1)U

(m)
n ,

(ii) T
(2m)
n = 22m+1

∑n
j=1 U

(m−1)
j .

Proof:

(i) ∞∑
n=1

T (2m+1)
n yn−1 = 22(m+1)(1− y)−2(m+1) by (5.1a)

= 22(m+1)
∞∑

n=1

U (m)
n yn−1 by (2.1a)

Equate coefficients of yn−1. Then (i) ensues.
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(ii) ∞∑
n=1

T (2m)
n yn−1 = 22m+1(1− y)−(2m+1) by (5.1a)

= 22m+1(1− y)−1
∞∑

n=1

U (m−1)
n yn−1 by (2.1a)

= 22m+1
∞∑

n=1

n∑
j=1

U
(m−1)
j yn−1.

Coefficients of yn−1 being equated, we derive (ii).
Examples:

(i) T
(3)
n = 24U

(1)
n , i.e. T (3)

5 = 16 · 35 = 560.
(ii) T

(4)
n = 25

∑n
j=1 U

(1)
j , i.e. T (4)

3 = 32 · 15 = 480.

Because of the information given in Theorem 10, the reader - if interested - could fairly
readily construct a convolution table for T (m)

n corresponding to Table 1 for U (m)
n .

Exploiting (2.1) and (5.1) together, we readily deduce (m = 0) the familiar relationship
Tn(x) = 2xUn(x)− 2Un−1(x) (see (1.9), x = 1), while m = 1 yields

T (1)
n (x) = 4x2U (1)

n (x)− 8xU (1)
n−1(x) + 4U (1)

n−2(x). (5.3)

6. CHEBYSHEV AND PELL NUMBERS CONNECTED

A1. Pell −→ Chebyshev P −→ U :
Pell number Pn are defined recursively [7, (1.1); x = 1] by

Pn = 2Pn−1 + Pn−2(n ≥ 2), P0 = 0, P1 = 1. (6.1)

Recall that U0 = 0, U1 = 1 also, i.e., both P,U are of Fibonacci-type. Combine (6.1) and (1.7)
(x = 1). Then these common initial conditions impose the summation relations recored in
Table 2.

P1 = U1

P2 = U2

P3 = U3 + 2U1

P4 = U4 + 4U2

P5 = U5 + 6U3 + 6U1

P6 = U6 + 8U4 + 16U2

P7 = U7 + 10U5 + 30U3 + 22U1

P8 = U8 + 12U6 + 48U4 + 68U2

P9 = U9 + 14U7 + 70U5 + 146U3 + 90U1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(6.2)

Table 2. Pn in terms of Un.
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Hidden in this information is a pattern of formation which is empirically obtained (and
readily verifiable). Let

un,n−2k = the coefficient of Un−2k in the expansion of Pn in Table 1. (6.3)

Then we discover the fundamental
Law of Formation A:

un,n−2k = un−1,n−2k−1 + un−1,n−2k+1 + un−2,n−2k. (6.4)

For instance, for P9 we have - follow the arrows in the “step” process in Table 2 -

u9,5(= 70) = u8,4 + u8,6 + u7,5(= 48 + 12 + 10).

Always, un,n−4 = (n− 4)un,n−2 = 2(n− 2)(n− 4).

After appropriate computation using (2.2) with [4, (2.1)] and noting that P (0)
n ≡ P9, P

(9)
0 =

U
(9)
0 = 0. We have, for example,

P
(0)
9 = U

(0)
9 + 14U (0)

7 + 70U (0)
5 + 146U (0)

3 + 90U (0)
1

P
(1)
8 = U

(1)
8 + 14U (1)

6 + 70U (1)
4 + 146U (1)

2

P
(2)
7 = U

(2)
7 + 14U (2)

5 + 70U (2)
3 + 146U (2)

1

P
(3)
6 = U

(3)
6 + 14U (3)

4 + 70U (3)
2

P
(4)
5 = U

(4)
5 + 14U (4)

3 + 70U (4)
1

P
(5)
4 = U

(5)
4 + 14U (5)

2

P
(6)
3 = U

(6)
3 + 14U (6)

1

P
(7)
2 = U

(7)
2

P
(8)
1 = U

(8)
1 .

(6.5)

This is a very revealing and appealing structural pattern with a regular contraction in the
number of terms on the right-hand side.

As the pattern in (6.5) from P
(0)
9 , · · · , P (9)

0 is typical, we may infer the general rule:
Rule of Convolution Transformation:

For two successive rows in (6.5) and for each U ,
(a)

P (k)
n −→ P

(k+1)
n−1 ⇒ U

(k)
n−2j −→ U

(k+1)
n−2j−1

{
j = 0, 1, 2, · · · , n

2 (n even)
j = 0, 1, 2, · · · , n−1

2 (n odd),
(6.6)

(b) as k increases, the fixed pattern of coefficients of the U gradually contracts on the right-
hand side.
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A2. Chebyshev −→ Pell U −→ P :
Manipulating the Chebyshev and Pell recurrences (1.7) and (6.1) as in A, we obtain

the patterned behaviour of the relationships among the U ’s and the P ’s identical with those
obtained in A except that the signs in even-numbered columns are - instead of +. Calculation
yields

U1 = P1

U2 = P2

U3 = P3 − 2P1

U4 = P4 − 4P2

U5 = P5 − 6P3 + 6P1

U6 = P6 − 8P4 + 16P2

U7 = P7 − 10P5 + 30P3 − 22P1

U8 = P8 − 12P6 + 48P4 − 68P2

U9 = P9 − 14P7 + 70P5 − 146P3 + 90P1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(6.7)

Table 3. Un in terms of Pn.
Next, let

pn,n−2k = the absolute value of the coefficient of Pn−2k in the expansion in (6.2) of Un.
(6.8)

Then, the law of transformation embodied in (6.4) carries over to the
Law of Transformation | A |:

pn,n−2k = pn−1,n−2k−1 + pn−1,n−2k+1 + pn−2,n−2k. (6.9)

So for example, P10,4 = p9,3 + p9,5 + p8,4(= 246).
mth Convolutions:

Not unexpectedly, we again reach a system of expressions identical with that in (6.5)
except for - signs instead of + signs in the even-numbered columns. Accordingly, for instance,

U
(2)
5 = P

(2)
5 − 10P (2)

3 + 30P (2)
1 (= 126),

U
(2)
7 = P

(2)
7 − 14P (2)

5 + 70P (2)
3 − 146P (2)

1 (= 532).

A law of convolution transformations corresponding to (6.6) is discernible.

Properties of P (m)
n and U

(m)
n set out in A1 and A2 are special to these convolutions and

do not carry over to other pairs of convolutions.
Efforts to obtain Pn as a compact closed summation form involving U ’s, and reversely,

have been of no avail.
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B. Pell-Lucas - Chebyshev Q↔ T :
Pell-Lucas numbers Qn are defined recursively [7; (1.2), x = 1] by

Qn = 2Qn−1 +Qn−2(n ≥ 2), Q0 = 2, Q1 = 2. (6.10)

Recall (1.11) that T0 = 2, T1 = 2 also, i.e., Q,T are of Lucas type.
B. Q −→ T :

Take (1.8), with x = 1, and (6.10) together to produce Table 4.

Q0 = T0

Q1 = T1

Q2 = T2 + 2T0

Q3 = T3 + 6T1

Q4 = T4 + 8T2 + 8T0

Q5 = T5 + 10T3 + 30T1

Q6 = T6 + 12T4 + 48T2 + 38T0

Q7 = T7 + 14T5 + 70T3 + 154T1

Q8 = T8 + 16T6 + 96T4 + 272T2 + 192T0

Q9 = T9 + 18T7 + 126T5 + 438T3 + 810T1

Q10 = T10 + 20T8 + 160T6 + 660T4 + 1520T2 + 1002T0

(6.11)

Table 4. Qn in terms of Tn.

Letting

tn,n−2k = the coefficient of Tn−2k in the expansion of Qn in Table 4, (6.12)

we discover the
Law of Formation B:

tn,n−2k = δqn−1,n−2k−1 + qn−1,n−2k+1 + qn−2,n−2k (6.13)

in which

δ =
{

1 n even
2 n odd, n− 2k = 1.

For instance, n = 9, k = 4 yeilds t9,1 = 2× 192 + 272 + 154(= 810).
Observe that

[ n
2 ]∑

k=0

tn,n−2k =
1
2
Qn.
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Convolutions Q(1) −→ T (1):
We need

Q
(1)
n+1 = 2Q(1)

n +Q
(1)
n−1 + 8Pn+1, Q

(1)
0 = 0[8; (5.4), x = 1; (5.1)], (6.14)

T
(1)
n+1 = 2T (1)

n − T (1)
n−1, T

(1)
0 = 0 (observation). (6.15)

Then

Q
(1)
1 = T

(1)
1 + 8(P (1)

1 − P1)

Q
(1)
2 = T

(1)
2 + 8(P (1)

2 − P2)

Q
(1)
3 = T

(1)
3 + 2T (1)

1 + 8(P (1)
3 − P3)

Q
(1)
4 = T

(1)
4 + 4T (1)

2 + 8(P (1)
4 − P4)

Q
(1)
5 = T

(1)
5 + 6T (1)

3 + 6(1)
1 + 8(P (1)

5 − P5)

Q
(1)
6 = T

(1)
6 + 8T (1)

4 + 16T (1)
2 + 8(P (1)

6 − P6)

Q
(1)
7 = T

(1)
7 + 10T (1)

5 + 30T (1)
3 + 22T (1)

1 + 8(P (1)
7 − P7)

Q
(1)
8 = T

(1)
8 + 12T (1)

6 + 48T (1)
4 + 68T (1)

2 + 8(P (1)
8 − P8)

(6.16)

Table 5. Q(21)
n in terms of T (1)

n and P
(1)
n − Pn.

Note that the pattern of coefficients of T (1) is identical with the pattern of coefficients of
Un in Table 2 (but not Table 4), i.e., Law of Formation B applies to the main (non-bracketed)
portion of Table 5. [Question: Does a similar situation relate T (1)

n to U (1)
n ?]

B2. Chebyshev-Pell-Lucas T −→ Q:
Proceeding as in B1 : Q −→ T , we find the same pattern of formation as in (6.12) but

with even-numbered columns distinguished by − signs so that a table is readily constructible.
For example

T7 = Q7 − 14Q5 + 70Q3 − 154Q1(= 2).

Convolutions T (1) −→ Q(1):
These commence in an encouraging way in relation to Table 5, subject to change of signs

in the non-bracketed portion, but soon deviate from it. For instance,

T
(1)
5 = Q

(1)
5 − 6Q(1)

3 + 6Q(1)
1 − 8 (a complicated expression involving P ’s).

The sign proceeding 8 here is always −.
Faced with increasing difficulties, we reluctantly abandon further considerations of con-

volutions connecting Q and T .
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C. Hybrid Transformations P ↔ Q,U ↔ T, P ↔ T,Q↔ U :
Tables have been developed for these mixed Fibonacci and Lucas type polynomials i.e.,

for which the initial conditions are different. Much variety appears in these structures. Some
patterns follow previous principles, some have no apparent underlying form. Fractions may
be necessary, e.g., P1 = 1

2Q0(= 1), U1 = 1
2T0(= 1). No convolution properties have been

considered.
¿From the special nature of U (1.10) and T (1.11), the compositions of the tables are

exceedingly simple, as expected.
A few random examples of the hybrid transformations are listed, merely for interest.

U7 = T7 + T5 + T3 +
1
2
T1, T9 = U9 − U7

U6 = U7 + 11U5 + 36U3 + 28U1, U5 = Q4 − 7Q2 + 6
1
2
Q0,

P7 = Q6 −Q4 +Q2 −
1
2
Q0, Q5 = 2P5 + 6P3 − 6P1,

T8 = 2P8 − 27P6 + 121P4 − 188P2, P5 = 2T3 + 12T1 +
1
2
T−1(T−1 = 2).

7. CONCLUDING REMARKS

Negative Subscripts R−n, S−n; c−n, d−n:

Replace n by −n in the definitions (1.1), (1.3) for R(r,u)
n (x), with c(r,u)

n,k , and (1.4), (1.6)

for S(r,u)
n (x), with d

(r,u)
n,k . Negative subscripts have already been introduced in [4, pp.189-191]

to express R(r,u)
n (x) and S

(r,u)
n (x) in terms of each other.

Steady calculations lead us to the empirically-derived Propositions 1 and 2 in which, by
1 we understand the non-r, non-u unit constant in c

(r,u)
n,k and d

(r,u)
n,h . Notation is now reduced

to a minimum, for simplicity.
Proposition 1:

Rn −→ R−n

cn −→ c−n

}
⇒ u −→ u, r −→ −r, 1 −→ u− 1. (7.1)

Proposition 2:

Sn −→ S−n

dn −→ d−n

}
⇒
{
u −→ u, r −→ −r, 1 −→ −1 + u n even
u −→ −u, r −→ r, 1 −→ 1− u n odd

. (7.2)

Examples:
(i) R3 = u+ 3r + (3 + 3u+ 4r)x+ (4 + u+ r)x2 + x3 becomes by (7.1)

R−3 = u− 3r + (−3 + 6u− 4r)x+ (−4 + 5u− r)x2 + (u− 1)x3.
(ii) S4 = 17u+ 12r + (12 + 18u+ 14r)x+ (14 + 7u+ 6r)x2 + (6 + r + u)x3 + x4 becomes by

(7.2)

S−4 = 17u− 12r + (−12 + 30u− 14r)x+ (−14 + 21u− 6r)x2 + (−6 + 7u− r)x3

+ (−1 + u)x4.

These calculations may be checked by means of (1.1) and (1.4) on allowing n to be negative.
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Example (ii) means, for instance, that d4,1 = 12 + 18u+ 4r transforms to d−4,1 = −12 +
30u− 14r by Proposition 2, n even.

What connection is there between c
(r,u)
n,k and d

(r,u)
n,k for negative n? Suffice it here to

illustrate this extensive area of information with R3 = S3 − 4S1 + 2S−1 [4, p. 188] and
S−3 = −R−3− 4R−1− 2R1 [4, p. 189]. Comparison of coefficients of xk(k = 0, 1, 2, 3) on both
sides in each case reveals that

c3,0 = d3,0 − 4d1,0 + 2d−1,0, c3,1 = d3,1 − 4d1,1 + 2d−1,1,

c3,2 = d3,2, c3,3 = d3,3, and
d−3,0 = −c−3,0 − 4c−1,0 − 2c1,0, d−3,1 = −c−3,1 − 4c−1,1 − 2c1,1,

d−3,2 = −c−3,2, d−3,3 = −c−3,3.

For the general situation, which is very complicated, one may refer to [4, Theorem 7(a),
(b), (c), (d), pp. 189-191].
Rising and Descending Diagonal Polynomials:

No attempt has been made to investigate rising and falling diagonal convolution
polynomials for T (m)

n (x) and U
(m)
n (x). However, rising and falling diagonal polynomials for

Pn(x), Qn(x), Tn(x) and Un(x), occurring when m = 0, have been examined elsewhere in the
literature, e.g. [2], and A.F. Horadam The Fibonacci Quarterly 16.1 (1978) pp. 33-36 and 18.1
(1980) pp. 3-8.

Strictures of time and space preclude a deeper, though desired, treatment of the objectives
of this paper, stated in Section 1 (Motivation). Along the way, signposts have indicated
directions for possible further analysis.
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