SYMMETRIC ARGUMENTS IN THE DEDEKIND SUM

Jeffrey L. Meyer

Department of Mathematics, 215 Carnegie Library, Syracuse University, Syracuse, New York 13244
(Submitted July 2002-Final Revision September 2002)

1. INTRODUCTION

R. Dedekind [1] derived the following formula for the logarithm of the eta-function. Let $\eta(z)=e^{\pi i z / 12} \prod_{m=1}^{\infty}\left(1-e^{2 \pi i m z}\right)$. And let $V=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c=1$ and $V z=(a z+$ $b) /(c z+d)$. Then, for $\operatorname{Im}(z)>0$ and $c>0$,

$$
\log \eta(V z)=\log \eta(z)+\frac{1}{2} \log (c z+d)+\frac{\pi i(a+d)}{12 c}-\frac{1}{4} \pi i-\pi i s(d, c),
$$

where

$$
s(d, c)=\sum_{j=1}^{c}\left(\left(\frac{j}{c}\right)\right)\left(\left(\frac{d j}{c}\right)\right),
$$

with

$$
((x))= \begin{cases}0, & \text { if } x \in \mathbb{Z} \\ x-[x]-\frac{1}{2}, & \text { otherwise }\end{cases}
$$

The sum appearing in Dedekind's formula, $s(d, c)$, is called the Dedekind sum. The sum has been studied extensively by many authors. See Rademacher and Grosswald [3] for a bibliography. The most important result about Dedekind sums, proved by Dedekind in his paper, is the reciprocity law. There are many different proofs in the literature, including four in [3].
Theorem 1 (Reciprocity Law): If $(h, k)=1$ and $h, k>0$, then

$$
\begin{equation*}
s(k, h)+s(h, k)=-\frac{1}{4}+\frac{1}{12}\left(\frac{h}{k}+\frac{k}{h}+\frac{1}{k h}\right) . \tag{1.1}
\end{equation*}
$$

Our purpose in this paper is to examine the pairs of integers $\{h, k\}$ for which $s(h, k)=$ $s(k, h)$. We will call $\{h, k\}$ a symmetric pair if this property holds. We show that $\{h, k\}$ is a symmetric pair if and only if $h=F_{2 n+1}$ and $k=F_{2 n+3}$ for $n \in \mathbb{N}$ and F_{m} is the $m^{\text {th }}$ Fibonacci number.

2. SYMMETRIC PAIRS

We need the following facts about Dedekind sums. The properties are elementary and proofs can be found in [3]. Throughout the paper we will assume that h and k are relatively prime.

Property 1: The denominator of $s(h, k)$ is a divisor of $2 k(3, k)$.
Property 2: The only integer value taken by $s(h, k)$ is zero. This occurs if and only if $h^{2}+1 \equiv 0(\bmod k)$.

The next theorem gives a necessary condition for $\{h, k\}$ to be a symmetric pair.
Theorem 2: If $(h, k)=1$ and $\{h, k\}$ is a symmetric pair, then $s(h, k)=0$.
Proof: Let D be the denominator of $s(h, k)$, and thus of $s(k, h)$. Then $D \mid 6 k$ and $D \mid 6 h$ by Property 1. From this and the fact that $(h, k)=1$, we deduce that $D=1,2,3$ or 6 . If $D=1$, then we are done by Property 2 . Suppose that $D=2,3$ or 6 . Then $12 s(h, k) \in \mathbb{Z}$. Let us rewrite the reciprocity law (1.1) as

$$
\begin{equation*}
12 h k s(k, h)+12 h k s(h, k)=-3 h k+h^{2}+k^{2}+1 . \tag{2.1}
\end{equation*}
$$

Since $6 h s(k, h) \in \mathbb{Z}$ by Property $1,(2.1)$ becomes

$$
A k+2 B k=-3 h k+h^{2}+k^{2}+1
$$

for some $A, B \in \mathbb{Z}$. Thus $h^{2}+1 \equiv 0(\bmod k)$ and, from Property 2 , we conclude that $s(h, k)=$ 0.

Since we now know that for a symmetric pair $\{h, k\}$ we must have $s(h, k)=0$. From (2.1), any such h and k must solve the Diophantine equation

$$
\begin{equation*}
h^{2}-3 h k+k^{2}=-1 \tag{2.2}
\end{equation*}
$$

Theorem 3: The positive integral solutions to (2.2) are $h=F_{2 n+1}, k=F_{2 n+3}$ for $n \in$ $\{0,1,2, \ldots\}$ where F_{m} is the $m^{\text {th }}$ Fibonacci number.

Proof: Under the change of variable $\bar{k}=2 k-3 h$, the equation (2.2) becomes

$$
\begin{equation*}
\bar{k}^{2}-5 h^{2}=-4 \tag{2.3}
\end{equation*}
$$

Now [2], Theorem 7, implies that $\bar{k}=L_{2 n+1}, h=F_{2 n+1}$, where L_{n} denotes the $n^{\text {th }}$ Lucas number. We conclude the proof with the observation that

$$
k=\frac{\bar{k}+3 h}{2}=\frac{L_{2 n+1}+3 F_{2 n+1}}{2}=F_{2 n+3} .
$$

Theorem 2 and Theorem 3 imply the following characterization.
Theorem 4: The pair $\{h, k\}$ is a symmetric pair if and only if $h=F_{2 n+1}$ and $k=F_{2 n+3}$ for $n \in \mathbb{N}$ and F_{m} is the $m^{\text {th }}$ Fibonacci number.

REFERENCES

[1] R. Dedekind. Erläuterungen zu zwei Fragmenten von Riemann - Riemann's Gesammelte Math. Werke, 2nd edition, Dover, New York, (1892), pp. 466-472.
[2] D.A. Lind. "The Quadratic Field $\mathbb{Q}(\sqrt{5})$ and a Certain Diophantine Equation." The Fibonacci Quarterly 6.3 (1968): 86-93.
[3] H. Rademacher and E. Grosswald. Dedekind Sums, Carus Math. Monogr., vol. 16, Mathematical Association of America, Washington, D.C., (1972).

AMS Classification Numbers: 11F20, 11B39

必必

