ON THE PRIME DIVISORS OF GCD $\left(3^{n}-2,2^{n}-3\right)$

Anatoly S. Izotov

Dostoevsky str. 7, apt. 12, Novosibirsk, 630091, Russia
e-mail: izotov@nskes.ru
(Submitted August 2002-Final Revision February 2003)

In 1997 Schinzel asked for an argument to disprove that for sufficiently large prime q, the number $3^{m}-2$ is divisible by q if and only if $2^{m}-3$ is divisible by q. This was resolved by Banaszak [1]. Schinzel's question raises an interesting problem, posed by K. Szymiczek in [3], concerning $d_{n}=\operatorname{gcd}\left(3^{n}-2,2^{n}-3\right)$. It is known that for all $n<3000, d_{n}=1$ if $n \equiv 0,1,2$ $\bmod 4$, and $d_{n}=5$ if $n \equiv 3 \bmod 4$. But for $n=3783, d_{n}=26665$. In [5], by congruential techniques, the following statement was proved.

$$
26665 \mid \operatorname{gcd}\left(3^{n}-2,2^{n}-3\right) \text { if and only if } n \equiv 3783 \bmod 5332
$$

In this note we will give a condition for a prime $q>3$ to divide d_{m}, using elementary properties of linear recurrences. Let $x_{n}=3^{n}-2$ and $y_{n}=2^{n}-3$ for $n \geq 0$. We shall prove
Theorem: Let $q>3$ be a prime number. If $x_{n-1} \equiv 0 \bmod q$ and $y_{n-1} \equiv 0 \bmod q, n \geq 1$, then $u_{n} \equiv 0 \bmod q$ and $6^{n-2} \equiv 1 \bmod q$, where $\left\{u_{n}\right\}, n \geq 0$ is the recurrent sequence of order two $u_{n+2}=5 u_{n+1}-6 u_{n}, u_{0}=0, u_{1}=1$, that is, $u_{n}=3^{n}-2^{n}$.

On the other hand, if $u_{n} \equiv 0 \bmod q$ and $6^{n-2} \equiv 1 \bmod q$ then either $x_{n-1} \equiv 0 \bmod q$ and $y_{n-1} \equiv 0 \bmod q$ or $3^{n-1}+2 \equiv 0 \bmod q$ and $2^{n-1}+3 \equiv 0 \bmod q$.
Proof: Since $3 x_{n-1}=3^{n}-6 \equiv 0 \bmod q$ and $2 y_{n-1}=2^{n}-6 \equiv 0 \bmod q$ we have $3 x_{n-1}-$ $2 y_{n-1}=3^{n}-2^{n} \equiv 0 \bmod q$. Since $3^{n}-2^{n}=u_{n}, u_{n} \equiv 0 \bmod q$. Furthermore, $x_{n-1} \equiv 0$ $\bmod q$ implies $3^{n-1} \equiv 2 \bmod q$ and $y_{n-1} \equiv 0 \bmod q \operatorname{implies} 2^{n-1} \equiv 3 \bmod q$. Multiplying both part of these congruencies, we have $6^{n-1} \equiv 6 \bmod q$ implies $6^{n-2} \equiv 1 \bmod q$. The first part of the theorem is proved.

Conversely, $u_{n}=3^{n}-2^{n} \equiv 0 \bmod q$. Write $3^{n} \equiv \alpha \bmod q$ for some integer α. Then $2^{n} \equiv \alpha \bmod q$ and we have $6^{n} \equiv \alpha^{2} \bmod q$. Since $6^{n-2} \equiv 1 \bmod q$ we have $\alpha^{2} \equiv 36 \bmod q$ whence $\alpha \equiv \pm 6 \bmod q$. If $\alpha \equiv 6 \bmod q$ then $3^{n} \equiv 6 \bmod q$ implies $3^{n-1}-2=x_{n-1} \equiv 0$ $\bmod q$ and $2^{n} \equiv 6 \bmod q$ implies $2^{n-1}-3=y_{n-1} \equiv 0 \bmod q$. If $\alpha \equiv-6 \bmod q$ then $3^{n} \equiv-6 \bmod q$ implies $3^{n-1}+2 \equiv 0 \bmod q$ and $2^{n} \equiv-6 \bmod q$ implies $2^{n-1}+3 \equiv 0$ $\bmod q$. The theorem is proved.

So, if $u_{n} \equiv 0 \bmod q$ and $6^{n-2} \equiv 1 \bmod q$ then q is a possible divisor of d_{n-1}. The table of factorizations of the numbers $u_{n}=3^{n}-2^{n}$ for many n is given in [4]. By the theory of linear recurrences of order two, for each prime number $q>3$ there are infinitely many indexes m such that $u_{m} \equiv 0 \bmod q$. If l is the least of them, then $n=x l$ for any integer x. Analogously, there exists a minimal integer k such that $6^{k} \equiv 1 \bmod q$ and $n-2=y k$ for any integer y. Note, that $\operatorname{gcd}(l, k)=1$ or 2 , since $\operatorname{gcd}(n, n-2)=1$ or 2 . It is known that $q=a l+1, q=b k+1$ for some integers $a, b \geq 1$. Let $\operatorname{gcd}(l, k)=1$. We have $a l=b k$ implies $a=\gamma k, b=\gamma l$ for any integer $\gamma>1$. Therefore,

$$
\begin{equation*}
q=\gamma k l+1 . \tag{1}
\end{equation*}
$$

If $\operatorname{gcd}(l, k)=2$ and $l=2 l_{1}, k=2 k_{1}, \operatorname{gcd}\left(l_{1}, k_{1}\right)=1$ then $q=2 a l_{1}+1, q=2 b k_{1}+1$ for some integers $a, b \geq 1$. In this case

$$
\begin{equation*}
q=2 \gamma k_{1} l_{i}+1 \gamma \geq 1 \tag{2}
\end{equation*}
$$

$$
\text { ON THE PRIME DIVISORS OF } \operatorname{GCD}\left(3^{n}-2,2^{n}-3\right)
$$

For some prime q, suppose there exist k and l which satisfy (1) or (2). To determine n we have the Diophantine equation

$$
\begin{equation*}
l x-k y=2 \tag{3}
\end{equation*}
$$

The method of solution this kind of equation is described, for example, in [2]. The least solution of (3) gives $n-1=l x-1$ and d_{n-1} or $\operatorname{gcd}\left(3^{n-1}+2,2^{n-1}+3\right)$ is divisible by q.

For known q such as $q=5$ we have $l=2, k=1$. Equation (3), $2 x-y=2$ gives $x=2$, $y=2$ and $n-1=3$. For $q=5333$ we have $l=86, k=31$. Equation $86 x-31 y=2$ has the solution $x=44, y=122$ and $n-1=3783$.

Since prime q has the form (1) or (2) then either k or l is less then $\sqrt{2 q}$. Together with $\operatorname{gcd}(k, l)=1$ or 2 it gives a fast algorithm for determining such q. In this algorithm for given prime q for $j=1,2, \ldots,[\sqrt{2 q}]$ is calculated $A \equiv u_{n} \bmod q$ and $B \equiv 6^{n} \bmod q$. If $A=0$ then $l=j$, if $B=1$ then $k=j$. After then it is found m - the maximal divisor of $(q-1) / j$, such that $\operatorname{gcd}(m, j)=1$.

Further we might compute only A or B up to m or $2 m$. If $B=1(A=0)$, then $k=j(l=j)$. Now we find $d=\operatorname{gcd}(k, l)$. If $d=1$ or 2 , then we solve (3), find $n-1$ and direct compute $\alpha \equiv 2^{n-1} \bmod q, \beta \equiv 3^{n-1} \bmod q$. If $\alpha=3$ and $\beta=2$, then q is the divisor of d_{n-1}, else we give next prime q.

The search up to $2 \cdot 10^{7}$ gives, except for $q=5$ and $q=5333$, only one prime $q=18414001$. In this case, $k=99, l=7750, \operatorname{gcd}(99,7750)=1$. The Diophantine equation $7750 x-99 y=2$ has minimal solution $x=92, y=7202$, hence $n-1=712999$. Direct calculation gives $3^{712999} \equiv 2$ $\bmod 18414001,2^{712999} \equiv 3 \bmod 18414001$, so $\operatorname{gcd}\left(3^{712999}-2,2^{712999}-3\right) \geq 18414001$.

REFERENCES

[1] G. Banaszak. "Mod p Logarithms $\log _{2} 3$ and $\log _{3} 2$ Differ for Infinitely Many Primes." Ann. Math. Siles 12 (1998): 141-48.
[2] H. Davenport. The Higher Arithmetic. An Introduction in the Theory of Numbers. New York: Harper \& Brothers, 1961.
[3] "Foreword. The 2nd Czech and Polish Conference on Number Theory." Ann. Math. Siles 12 (1998): 9-172.
[4] H. Riesel. "Prime Numbers and Computer Methods for Factorization." Boston: Birkhäuser Boston Inc, 1985.
[5] K. Szymiczek. "On the Common Factor of $2^{n}-3$ and $3^{n}-2$." Funct. Approx. Comment. Math. 28 (2000): 221-32.

AMS Classification Numbers: 11A41, 11B37

至玉

