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1. INTRODUCTION AND RESULTS

Let x be a complex number with |x| < π
2 and let the Euler numbers E2n (n = 0, 1, 2, · · · )

be defined by the coefficients in the expansion of (see [3])

secx =
∞∑
n=0

E2n
x2n

(2n)!
. (1)

That is, E0 = 1, E2 = 1, E4 = 5, E6 = 61, E8 = 1385, E10 = 50521, · · · .
In [3], W. Zhang obtained an interesting congruence for Euler numbers,

Ep−1 ≡
{

0 (mod p), p ≡ 1 (mod 4)
−2 (mod p), p ≡ 3 (mod 4)

. (2)

where p is any odd prime.
The main purpose of this paper is to prove some new congruences including a generaliza-

tion of (2). More specifically, we shall prove the following results in the next section.
Theorem 1: Let n ≥ 1, k ≥ 1 be any integers, then

E2n ≡ (−1)n+k22n+1
k∑
i=1

(−1)ii2n (mod (2k + 1)2). (3)

Remark 1: Set k = 1, 2, 3, 4 in Theorem 1, when n ≥ 1, we have following the congruences
for Euler numbers:

E2n ≡ (−1)n22n+1 (mod 9),
E2n ≡ (−1)n22n+1(22n − 1) (mod 25),
E2n ≡ (−1)n22n+1(32n − 22n + 1) (mod 49),
E2n ≡ (−1)n22n+1(42n − 32n + 22n − 1) (mod 81).

Corollary 1.1: Let p be any odd prime, then

Ep−1 ≡ 2p
(p−1)/2∑
i=1

(−1)iip−1 (mod p2). (4)

Remark 2: By Corollary 1.1 and Fermat’s little theorem (see [2]), we immediately obtain (2)
(see Zhang [3]).
Corollary 1.2: Let n ≥ 1, k ≥ 0 be any integers, p be any odd prime, then

E2n+k(p−1) ≡ (−1)
k(p−1)

2 E2n (mod p). (5)
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Theorem 2: For any odd prime p and any nonnegative integer n, we have

(p−1)/2∑
j=1

(−1)n+jE2n+2j ≡ −1 (mod p). (6)

Remark 3: Set p = 3, 5, 7, 11 in Theorem 2, when n ≥ 0, we have

E2n+2 ≡ (−1)n (mod 3),
E2n+2 − E2n+4 ≡ (−1)n (mod 5),
E2n+2 − E2n+4 + E2n+6 ≡ (−1)n (mod 7),
E2n+2 − E2n+4 + E2n+6 − E2n+8 + E2n+10 ≡ (−1)n (mod 11).

2. PROOF OF THE THEOREMS

Lemma:
∑2n
k=0(−1)kcos (2n− 2k)x =sec xcos(2n + 1)x.

Proof : Define S(t) =
∑∞
n=0 tnsin nx and C(t) =

∑∞
n=0 tncos nx. It follows from De

Moivre’s Theorem (see [1]) that, for |t| < 1,

C(t) + iS(t) =
∞∑
n=0

tn(cos x + isin x)n =
1

1− t cos x− it sin x
=

1− t cos x + it sin x

1− 2t cos x + t2
.

Therefore

S(t) =
∞∑
n=0

tn sin nx =
t sin x

1− 2t cos x + t2
, |t| < 1,

and

C(t) =
∞∑
n=0

tn cos nx =
1− t cos x

1− 2t cos x + t2
, |t| < 1.

Then

C0(t) =
∞∑
n=0

tn cos(2n + 1)x =
1

2
√

t

[
C(t)− C(−

√
t)
]

=
(1− t) cos x

(1 + t)2 − 4t cos2 x
,

and

Ce(t) =
∞∑
n=0

tn cos 2nx =
1
2

[
C(t) + C(−

√
t)
]

=
1− 2t cos2 x + t

(1 + t)2 − 4t cos2 x
.

It follows that for |t| < 1,

∞∑
n=0

tn
2n∑
k=0

(−1)k cos(2n− 2k)x =
∞∑
n=0

tn

[
2

n∑
k=0

(−1)k cos(2n− 2k)x− (−1)n
]

=
2Ce(t)
1 + t

− 1
1 + t

= C0(t) sec x,
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which completes the proof immediately.
Proof of Theorem 1: According to the Lemma and (1), we find
∞∑
n=0

E2n
x2n

(2n)!
= sec x

= sec(2k + 1)x
2k∑
i=0

(−1)i cos(2k − 2i)x

=
∞∑
j=0

(2k + 1)2jE2j
x2j

(2j)!

2k∑
i=0

(−1)i
∞∑
n=0

(−1)n(2k − 2i)2n
x2n

(2n)!

=
∞∑
n=0

n∑
j=0

(
2n

2j

)
(2k + 1)2jE2j

2k∑
i=0

(−1)i(−1)n−j(2k − 2i)2n−2j x2n

(2n)!
,

therefore,

E2n =
n∑
j=0

(−1)n−j
(

2n

2j

)
(2k + 1)2jE2j

2k∑
i=0

(−1)i(2k − 2i)2n−2j

= (2k + 1)2nE2n + 2(−1)k
n−1∑
j=0

(−1)n−j
(

2n

2j

)
(2k + 1)2jE2j

k∑
i=1

(−1)i(2i)2n−2j

= (2k + 1)2nE2n + 2(−1)n+kE0

k∑
i=1

(−1)i(2i)2n

+ 2(−1)k
n−1∑
j=1

(−1)n−j
(

2n

2j

)
(2k + 1)2jE2j

k∑
i=1

(−1)i(2i)2n−2j

= (2k + 1)2nE2n + (−1)n+k22n+1
k∑
i=1

(−1)ii2n

+ 2(−1)k
n−1∑
j=1

(−1)n−j
(

2n

2j

)
(2k + 1)2jE2j

k∑
i=1

(−1)i(2i)2n−2j . (7)

By (7), we immediately obtain (3).
This completes the proof of Theorem 1.
Proof of Corollary 1.1: Setting n = k = (p−1)/2 in Theorem 1, we immediately obtain

(4).
Proof of Corollary 1.2: Setting p = 2m + 1 in Theorem 1, we have

E2n ≡ (−1)n+(p−1)/222n+1

(p−1)/2∑
i=1

(−1)ii2n (mod p2)

≡ (−1)n+(p−1)/222n+1

(p−1)/2∑
i=1

(−1)ii2n (mod p), (8)
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from which we obtain

E2n+k(p−1) ≡ (−1)n+(k+1) p−1
2 22n+k(p−1)+1

(p−1)/2∑
i=1

(−1)ii2n+k(p−1) (mod p). (9)

By Fermat’s Little Theorem, we have

(2i)p−i ≡ 1 (mod p) (1 ≤ i ≤ (p− 1)/2). (10)

By (9) and (10), we get

E2n+k(p−1) ≡ (−1)n+(k+1) p−1
2 22n+1

(p−1)/2∑
i=1

(−1)ii2n ≡ (−1)
k(p−1)

2 E2n (mod p).

This proves Corollary 1.2.
Proof of Theorem 2: By (8), we have

(p−1)/2∑
j=1

(−1)n+jE2n+2j ≡ (−1)
p−1
2

(p−1)/2∑
j=1

22n+2j+1

(p−1)/2∑
i=1

(−1)ii2n+2j

≡ 2(p− 1)2n
(p−1)/2∑
j=1

(p− 1)2j + (−1)
p−1
2 22n+1

(p−3)/2∑
i=1

(−1)ii2n
(p−1)/2∑
j=1

(2i)2j

≡ −1 + (−1)
p−1
2 22n+3

(p−3)/2∑
i=1

(−1)ii2n+2

(
(2i)p−1 − 1
(2i)2 − 1

)
(mod p). (11)

By Fermat’s Little Theorem, we have(
(2i)p−1 − 1
(2i)2 − 1

)
≡ 0 (mod p) (1 ≤ i ≤ (p− 3)/2). (12)

By (11) and (12), we obtain

(p−1)/2∑
j=1

(−1)n+jE2n+2j ≡ −1 (mod p).

This completes the proof of Theorem 2.
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