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1. INTRODUCTION AND RESULTS

Let x be a complex number with |x| < 2π. The Bernoulli numbers Bn(n = 0, 1, 2, · · · ) are
defined by the coefficients in the expansion of (see [1], [3] and [4])

x

ex − 1
=
∞∑

n=0

Bn
xn

n!
, |x| < 2π. (1)

By (1), we have B0 = 1, B1 = −1
2 , B2 = 1

6 , · · · , and Bn = 0 for odd n ≥ 3. For even n ≥ 2, we
have (see [2])

Bn = − 1
n+ 1

n−1∑
m=0

(
n+ 1
m

)
Bm. (2)

The main purpose of this paper is to prove some new identities involving Bernoulli num-
bers. That is, we shall prove the following main conclusion.
Theorem 1: Let n ≥ 1, k ≥ 0 be any integers, then

(a) n∑
j=0

(
2n+ 1

2j

)
2− 22j

(2k + 1)2j
B2j =

(2n+ 1)22n+1

(2k + 1)2n+1

k∑
i=0

i2n. (3)

(b) n∑
j=0

(
2n+ 1

2j

)
2− 22j

(2k + 2)2j
B2j =

2n+ 1
22n(k + 1)2n+1

k∑
i=0

(2i+ 1)2n. (4)

Taking k = 0, 1, 2 in Theorem 1, we may immediately deduce the following Corollary 1:
Corollary 1: Let n ≥ 1 be any integers, then

(a) n∑
j=0

(
2n+ 1

2j

)(
2− 22j

)
B2j = 0, (5)

n∑
j=0

(
2n+ 1

2j

)
2− 22j

32j
B2j =

(2n+ 1)22n+1

32n+1
, (6)

n∑
j=0

(
2n+ 1

2j

)
2− 22j

52j
B2j =

2(2n+ 1)(42n + 22n)
52n+1

. (7)
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(b) n∑
j=0

(
2n+ 1

2j

)
2− 22j

22j
B2j =

2n+ 1
22n

, (8)

n∑
j=0

(
2n+ 1

2j

)
2− 22j

42j
B2j =

(2n+ 1)(1 + 32n)
24n+1

, (9)

n∑
j=0

(
2n+ 1

2j

)
2− 22j

62j
B2j =

(2n+ 1))(1 + 32n + 52n)
22n32n+1

. (10)

Theorem 2: Let n ≥ 0, k ≥ 0 be any integers, then

(a)
n∑

j=0

(
2n
2j

) k∑
i=0

(2i+ 1)2n−2j(2− 22j)(2k + 2)2jB2j = (k + 1)(2− 22n)B2n, (11)

(b)
n∑

j=0

(
2n
2j

) k∑
i=1

(2i)2n−2j(2− 22j)(2k + 1)2jB2j

= (2k + 1)(1− 22n−1)(1− (2k + 1)2n−1)B2n. (12)

Taking k = 0, 1, 2 in Theorem 2(a) and k = 1, 2, 3 in Theorem 2(b), we may immediately
deduce the following Corollary 2:
Corollary 2: Let n ≥ 0 be any integer, then

(a)
n∑

j=0

(
2n
2j

)(
2− 22j

)
22jB2j = (2− 22n)B2n, (13)

n∑
j=0

(
2n
2j

)
(1 + 32n−2j)(2− 22j)42jB2j = 2(2− 22n)B2n, (14)

n∑
j=0

(
2n
2j

)
(1 + 32n−2j + 52n−2j)(2− 22j)62jB2j = 3(2− 22n)B2n. (15)

(b)
n∑

j=0

(
2n
2j

)
22n−2j

(
2− 22j

)
32jB2j = 3(1− 22n−1)(1− 32n−1)B2n, (16)

n∑
j=0

(
2n
2j

)
(22n−2j + 42n−2j)(2− 22j)52jB2j = 5(1− 22n−1)(1− 52n−1)B2n, (17)

n∑
j=0

(
2n
2j

)
(22n−2j + 42n−2j + 62n−2j)(2− 22j)72jB2j = 7(1− 22n−1)(1− 72n−1)B2n.

(18)

2. SOME LEMMAS

Lemma 1: (see [3, p. 260])

1
sinx

=
1
x

+
∞∑

n=1

(−1)n(2− 22n)
B2n

(2n)!
x2n−1, 0 < |x| < π. (19)
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Proof:
x

sinx
=

2ix
eix − e−ix

=
2ix

eix − 1
− 2ix
e2ix − 1

= 2
∞∑

n=0

Bn(ix)n

n!
−
∞∑

n=0

Bn(2ix)n

n!
, |x| < π.

Take the real part of this expansion.
Lemma 2:

(a)
∞∑

n=0

(sinnx)tn =
t sinx

1− 2t cosx+ t2
, |t| < 1 (20)

(b)
∞∑

n=0

(cosnx)tn =
1− t cosx

1− 2t cosx+ t2
, |t| < 1. (21)

Proof:
∞∑

n=0

(cosnx+ i sinnx)tn =
∞∑

n=0

(eixt)n =
1

1− eixt
=

1
1− t cosx− it sinx

=
1− t cosx

1− 2t cosx+ t2
+

it sinx
1− 2t cosx+ t2

, |t| < 1.

Take the real and imaginary parts.
Lemma 3:

∞∑
n=0

sin(n+ 1)xtn =
sinx

1− 2t cosx+ t2
, |t| < 1. (22)

Proof:

∞∑
n=0

sin(n+ 1)xtn = Im

( ∞∑
n=0

ei(n+1)xtn

)
= Im

(
eix

∞∑
n=0

(eixt)n

)

=
t sinx cosx+ sinx(1− t cosx)

1− 2t cosx+ t2
=

sinx
1− 2t cosx+ t2

.

Lemma 4:
m∑

j=0

cos(m− 2j)x =
sin(m+ 1)x

sinx
. (23)
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Proof:
m∑

j=0

ei(m−2j)x = eimx
m∑

j=0

(e−2ix)j = eimx 1− e(−2ix)(m+1)

1− e−2ix

= ei(m+1)x 1− e(−2ix)(m+1)

eix − e−ix
=

(ei(m+1)x − e−i(m+1)x)/2i
(eix − e−ix)/2i

=
sin(m+ 1)x

sinx
.

Take the real part of this equation.

3. PROOF OF THE THEOREMS

Proof of Theorem 1: By Lemmas 1 and 4, since cos(m− 2i)x =
∑∞

n=0(−1)n

(m− 2i)2n x2n

(2n)! and sin(m+ 1)x =
∑∞

n=0(−1)n(m+ 1)2n+1 x2n+1

(2n+1)! , we have

m∑
i=0

∞∑
n=0

(−1)n(m− 2i)2n x2n

(2n)!

=

(
1
x

+
∞∑

n=1

(−1)n(2− 22n)
B2n

(2n)!
x2n−1

)( ∞∑
n=0

(−1)n(m+ 1)2n+1 x2n+1

(2n+ 1)!

)

=

( ∞∑
n=0

(−1)n(2− 22n)
B2n

(2n)!
x2n

)( ∞∑
n=0

(−1)n(m+ 1)2n+1 x2n

(2n+ 1)!

)

=
∞∑

n=0

(−1)n(m+ 1)2n+1
n∑

j=0

(
2n+ 1

2j

)
2− 22j

(m+ 1)2j
B2j

x2n

(2n+ 1)!
. (26)

Comparing the coefficient of x2n on both sides of (26), we get

(−1)n

(2n)!

m∑
i=0

(m− 2i)2n =
(−1)n(m+ 1)2n+1

(2n+ 1)!

n∑
j=0

(
2n+ 1

2j

)
2− 22j

(m+ 1)2j
B2j , i.e.

n∑
j=0

(
2n+ 1

2j

)
2− 22j

(m+ 1)2j
B2j =

2n+ 1
(m+ 1)2n+1

m∑
i=0

(m− 2i)2n. (27)

Set m = 2k in (27) we immediately obtain (3). Set m = 2k+ 1 in (27), we immediately obtain
(4).

Proof of Theorem 2: By Lemma 4, we have

1
sinx

=
1

sin(m+ 1)x

m∑
i=0

cos(m− 2i)x. (28)
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By

cos(m− 2i)x =
∞∑

n=0

(−1)n(m− 2i)2n x2n

(2n)!
, sin(m+ 1)x =

∞∑
n=0

(−1)n(m+ 1)2n+1 x2n+1

(2n+ 1)!
,

(28) and Lemma 1, we have

1
x

+
∞∑

n=1

(−1)n(2− 22n)
B2n

(2n)!
x2n−1 =

(
1

(m+ 1)x
+
∞∑

n=1

(−1)n(2− 22n)(m+ 1)2n−1 B2n

(2n)!
x2n−1

)
m∑

i=0

∞∑
n=0

(−1)n(m− 2i)2n x2n

(2n)!
, i.e.

∞∑
n=0

(−1)n(2− 22n)B2n
x2n

(2n)!

=

( ∞∑
n=0

(−1)n(2− 22n)(m+ 1)2n−1 B2n

(2n)!
x2n

)
m∑

i=0

∞∑
n=0

(−1)n(m− 2i)2n x2n

(2n)!

=
∞∑

n=0

(−1)n
n∑

j=0

(
2n
2j

) m∑
i=0

(m− 2i)2n−2j(2− 22j)(m+ 1)2j−1B2j
x2n

(2n)!
, (29)

and comparing the coefficient of x2n on both sides of (29), we get

n∑
j=0

(
2n
2j

) m∑
i=0

(m− 2i)2n−2j(2− 22j)(m+ 1)2j−1B2j = (2− 22n)B2n. (30)

Set m = 2k + 1 in (30) we immediately obtain (11). Set m = 2k in (30) and bring the term
with i = k to the other side of the equation, to immediately obtain (12).
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