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ABSTRACT

Estimating the growth rate of random Fibonacci-type sequences is both challenging and
fascinating. In this paper, by using ergodic theory, we prove a new result in this area. Let a
denote an infinite sequence of natural numbers {a1, a2, · · · } and define a random Fibonacci-
type sequence by f−1 = 0, f0 = 1, a0 = 0, and

fk = 2akfk−1 + 2ak−1fk−2

for k ≥ 1. Then, for almost all such infinite sequences a, we have

lim
n→∞

1
n

ln fn = 1.30022988 · · · .

1. INTRODUCTION

It is well-known that the Fibonacci numbers, Fn, are given by Binet’s formula:

Fn =
1√
5

(
1 +
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
. (1)

With (1), we can compute the asymptotic growth rate of the sequence {Fk}, which is given by

lim
n→∞

1
n

lnFn = ln

(
1 +
√

5
2

)
= 0.4812 · · · .

In the case of random Fibonacci type sequences, defined by (with fixed f1 and f2)

fk = a(k) fk−1 + b(k) fk−2,

where a(k) and b(k) are random coefficients, the quest for the asymptotic growth rate will be
much more difficult, if not impossible.

Recently, Viswanath made a surprising breakthrough in [26]. He considered the random
Fibonacci sequences defined by f1 = f2 = 1 and

fk = ±fk−1 ± fk−2, (2)

where the signs are chosen independently and with equal probabilities. He proved the following
remarkable result
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Theorem 1: (Viswanath, 2000) The asymptotic growth rate of the random Fibonacci sequences
defined in (2) is given by

lim
n→∞

1
n

ln fn = ln(1.13198824 · · · ) = 0.12397559 · · · (3)

with probability 1.
For an interesting introduction, see Peterson’s article [18]. The hard part of Viswanath’s

work is the computation of a fractal measure. That involves a large system of equations with
dimension in the order of millions. Since then, some authors ([4, 29]) have generalized this
result in various directions.

Viswanath’s method is not the only way to estimate the growth rate of random Fibonacci
type sequences. Write x ∈ [0, 1) as

x =
2−a1

1 +
2−a2

1 +
2−a3

1 + · · ·

, (4)

where ak = ak(x) ∈ {0, 1, 2, · · · } (see Section 2). Note that, in terms of the following compact
notation (which we will use in the rest of this paper)

A1

B1 +
A2

B2 + · · ·

≡ A1|
|B1

+
A2|
|B2

+ · · · , (5)

the above can be written as

x =
2−a1 |
| 1

+
2−a2 |
| 1

+
2−a3 |
| 1

+ · · · .

Our main result is the following theorem
Theorem 2: For each x ∈ [0, 1), we associate with it an infinite sequence of natural numbers
{a1, a2, · · · } through (4). Consider the random Fibonacci type sequences, {fk}, defined by
f−1 = 0, f0 = 1, a0 = 0, and

fk = 2akfk−1 + 2ak−1fk−2, (6)

for k ≥ 1. Then we have, for almost all x,

lim
n→∞

1
n

ln fn = 1.30022988 · · · . (7)

In fact, this is a generalization of the following theorem, which is proved by Lévy [11]:
Theorem 3: (Levy, 1929) For each x ∈ [0, 1), we associate with it an infinite sequence
{b1, b2, · · · } (bk = 1, 2, · · · ) through the regular continued fraction representation of x; i.e.,

x =
1 |
| b1

+
1 |
| b2

+ · · · .

244



THE ASYMPTOTIC GROWTH RATE OF RANDOM FIBONACCI TYPE SEQUENCES

Consider the random Fibonacci type sequences, {Qk}, defined by Q−1 = 0, Q0 = 1, and

Qk = bkQk−1 +Qk−2 (8)

for k ≥ 1. Then we have, for almost all x,

lim
n→∞

1
n

lnQn =
π2

12 ln 2
= 1.186569110 · · · . (9)

See also Khintchin [8, 9]. Later, the same theorem is proved using ergodic theory; e.g.,
see [1, 3, 13, 19, 21]. See also Kac [7]. We will prove Theorem 2 by following the same strategy
that uses ergodic theory.

A question may be raised at this point: what is ergodic theory and why is it able to
compute the asymptotic growth rate of random recurrences like that of (6) and (8)?

The concept of ergodicity was originated in physics in the nineteenth century. Given a
system that evolves dynamically, suppose one would like to study the behavior of a certain
physical quantity P of this system. The “ergodic hypothesis” asserts that, under certain
conditions, the time average of P should be the same as the phase space average of P . For
example, consider a sealed box with a permeable partition that divides the box into two equal
chambers. Then the “ergodic hypothesis” asserts that an air molecule should spend half of
its time in each chamber. In the early part of the twentieth century, Birkhoff, von Neumann,
Khintchin and others developed this into a mathematical theory which is now known as the
ergodic theory. For a physicist’s introduction, see [24] . Ergodic theory is closely related to
the theory of chaos, see [2, 6, 16]. For introductions (in the form of book) to ergodic theory,
consult [1, 3, 13, 17, 19, 23, 27]. See also Young’s lecture [30]. Kac [7] gave a very readable
account that connects the physicist’s concept of the ergodic hypothesis and the mathematical
foundation of ergodic theory.

With the above understood, we can look into the reason why ergodic theory can be used to
compute the asymptotic growth rate of random recurrences. Random sequences, like that of (6)
or (8), can be thought of being generated by certain “dynamical systems” (in a non-technical
sense). By standard arguments (see Section 2 below), we can associate these sequences with
continued fractions, like that of (4). This induces “dynamics” on continued fractions of which
ergodic theory allows us to assert the asymptotic properties.

It should be remarked that Theorem 3 is hard to generalize: to compute explicitly the
asymptotic growth rate, one has to know the analytical closed-form of the invariant measure
(see Section 2 below) associated with the random recurrence. In the case of Theorem 2, since
we found the invariant measure involved, therefore we are able to compute the asymptotic
growth rate of the fn defined in (6).

The outline of this paper is as follows. In Section 2, we fix some notations and introduce
the generalized Gauss map associated with the random Fibonacci type sequence (6). Then
in Section 3, we prove Theorem 2. The main ingredient of this proof is the ergodicity of the
generalized Gauss map. Since the proof of ergodicity is rather long and complicated, therefore,
in order to minimize digression, we assume this property in Section 3 and prove it in Section 4.
Section 5 is our concluding remarks.
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2. THE GENERALIZED GAUSS MAP

The goal of this section is to define the generalized Gauss map. In brief, this map is the
machinery that generates random recurrences. To proceed, let us introduce a certain continued
fraction representation of all x ∈ [0, 1).
Lemma 1: For all x ∈ [0, 1), we have

x =
2−a1 |
| 1

+
2−a2 |
| 1

+ · · · ≡ [a1, a2, · · · ], (10)

where ak ∈ {0, 1, 2, · · · }.
Remark: One can think of the ak as the “digits” of x.
Proof: For any x ∈ [0, 1), we have

1
2a1+1

< x ≤ 1
2a1

,

where a1 ∈ {0, 1, 2, · · · }. This implies, for some p ∈ [0, 1),

x = (1− p) 2−a1 +
p

2
2−a1 = (1− p

2
) 2−a1 .

Define x1 ∈ [0, 1) by x1 = p/(2− p), we can write x as

x =
2−a1

1 + x1
.

Since x1 ∈ [0, 1), we can repeat the same iteration and obtain

x =
2−a1

1 +
2−a2

1 + · · ·

=
2−a1 |
| 1

+
2−a2 |
| 1

+ · · · .

Remark: If x is irrational, then x has an infinite expansion in the form of (10).
This continued fraction representation of x is closely related to the random Fibonacci type

sequence in (6). First, we fix an x and this fixes a sequence of natural numbers, {ak}, through
Lemma 1. Note that, ak are functions of x; i.e., ak = ak(x). Next, we define the following
sequences:
Definition 1: For all x = [a1, a2, · · · ] ∈ [0, 1), define

gk = 2akgk−1 + 2ak−1gk−2, k ≥ 2
fk = 2akfk−1 + 2ak−1fk−2, k ≥ 1

(11)

where g0 = 0, g1 = 1, f−1 = 0 and f0 = 1.
Note that fk and gk are integer-valued functions of x. Also, the second equation of (11)

is the defining equation for the random Fibonacci type sequences in (6). All these machinery
are tied up together by the following identity: for t ∈ [0, 1], we have

gk + t 2akgk−1

fk + t 2akfk−1
=

2−a1 |
| 1

+
2−a2 |
| 1

+ · · ·+ 2−ak |
|1 + t

. (12)
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This can be proved by standard induction arguments (see e.g., Niven’s book [15]).
With these understood, we define the generalized Gauss map:

Definition 2: For all x ∈ [0, 1), the generalized Gauss map T : [0, 1) → [0, 1) is defined as
follows: for x = 0, T 0 ≡ 0; for x 6= 0, we have, using the notation in (10),

Tx = T [a1, a2, a3, · · · ] ≡ [a2, a3, a4, · · · ]. (13)

There is a beautiful way to define T alternatively, as pointed out by the referee; see
equation (37) and the last section in this paper. One can think of T as a shift map, as it shifts
the digits of x. Note that the original Gauss map is defined as follows. Write x ∈ [0, 1) as a
regular continued fraction; i.e.,

x =
1 |
| b1

+
1 |
| b2

+ · · · ≡ [b1, b2, · · · ]G,

where bk ∈ {1, 2, · · · }. The Gauss map TG : [0, 1) → [0, 1) is defined as follows: for x = 0,
TG 0 ≡ 0; for x 6= 0, we have TG x = TG [b1, b2, b3, · · · ]G ≡ [b2, b3, b4, · · · ]G.

The following remarkable property of the generalized Gauss map (13) is the key to the
proof of Theorem 2:
Theorem 4: Given an integrable function f on the unit interval, then, for almost all x, we
have

lim
n→∞

1
n

n−1∑
k=0

f(T kx) =
∫ 1

0

ρ(x)f(x) dx. (14)

Here, ρ(x), the probability density of an invariant measure (see (31)), is given by

ρ(x) =
ρ0

(x+ 1)(x+ 2)
, (15)

where ρ−1
0 = ln (4/3).

Note that, equation (14) is the same as saying that the “time” average of f (i.e., the l.h.s.
of (14)) is the same as the “phase space” average of f (i.e., the r.h.s. of (14)). The
normalization ρ0 in (15) is chosen such that

∫ 1

0
ρ(x) dx = 1. Note that ρ(x) satisfies the

following equation: for x ∈ [0, 1], we have

ρ(x) =
∞∑
k=0

1
2k(1 + x)2

ρ

(
1

2k(1 + x)

)
.

This can be understood as the fact that ρ(x) is the eigenfunction of eigenvalue 1 of the
Frobenius-Perron operator; e.g., see [5, 22]. This will be explored elsewhere.

The integrability in Theorem 4 is defined with respect to the Lebesgue measure, or an
equivalent (invariant) measure (the generalized Gauss measure), which will be introduced in
Section 4. In the case of the original Gauss map, we have a similar theorem, with T replaced
by TG, and ρ(x) replaced by ρG(x) = 1/(x+ 1). Note that this Gauss map (and its ergodicity)
is closely related to the Gauss-Kusmin-Lévy problem; see [1, 5, 10, 13, 20, 22, 25].
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With the generalized Gauss map (13), we can derive a formula (cf. (20)) which will be
useful in the subsequent sections. Using the T map, we can write x as

x =
2−a1

1 + Tx
= · · · = 2−a1 |

| 1
+

2−a2 |
| 1

+ · · ·+ 2−an |
|1 + Tnx

. (16)

Note that we have used the iteration procedure used in the proof of Lemma 1. Equations (16)
and (12) imply

x =
gn(x) + (Tnx) 2an(x)gn−1(x)
fn(x) + (Tnx) 2an(x)fn−1(x)

. (17)

For subsequent sections, we define the following:
Definition 3: For n ≥ 1,

An(x) ≡ gn(x) + (Tnx) 2an(x)gn−1(x) (18)

Bn(x) ≡ fn(x) + (Tnx) 2an(x)fn−1(x). (19)

Of course, An(x) and Bn(x) are simply the numerator and the denominator of the
quotient in (17); i.e., x = An(x)/Bn(x). Note that, in the same manner, we have Tx =
An−1(Tx)/Bn−1(Tx). This is because, the expansion of Tx is obtained by removing the top
level of x; i.e.,

Tx =
2−a2 |
| 1

+
2−a3 |
| 1

+ · · ·+ 2−an |
|1 + Tnx

,

and there are n− 1 levels in this expansion. In particular, we have

Bn−1(Tx) = An(x). (20)

To see this, we compare the numerator in the first quotient and the numerator in the last
quotients in the following equation:

x =
An(x)
Bn(x)

=
2−a1

1 + Tx
=

2−a1

1 +An−1(Tx)/Bn−1(Tx)
=

Bn−1(Tx)
2a1 [An−1(Tx) +Bn−1(Tx)]

.

In order to minimize digression, we will assume and apply Theorem 4 in the next section.
We will come back for a proof of this theorem in Section 4. As we will see, Theorem 4 is a
consequence of the ergodicity of the generalized Gauss map.

3. PROOF OF THEOREM 2

In this section, following the strategy in chapter 24 of Schweiger’s book [22], we prove
Theorem 2 by applying Theorem 4. See also [1, 2].
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• Step 1
We need to establish the following formula

n−1∏
k=0

T kx =
1

fn + (Tnx) 2anfn−1
=

1
Bn(x)

. (21)

Indeed, write the product on the left by Ak and Bk defined in the last section:

n−1∏
k=0

T kx =
An(x)
Bn(x)

An−1(Tx)
Bn−1(Tx)

· · · A1(Tn−1x)
B1(Tn−1x)

.

Using (20) repeatedly, we have most of the factors canceled, except the denominator of
the first factor (i.e. Bn(x)), and the numerator of the last factor (i.e. A1(Tn−1x)). This gives
the desired result as A1(Tn−1x) = 1.

• Step 2
Equation (21) and the fact that 0 ≤ Tnx ≤ 1 imply

1
2fn
≤
n−1∏
k=0

T kx ≤ 1
fn
. (22)

Note that, in the upper inequality, we have used (21) and the fact that, for k ≥ 0, fk > 0
(this can be shown by induction). For the lower inequality, we have used the fact that

fn + (Tnx)2anfn−1 ≤ fn + 2anfn−1 ≤ fn + (2anfn−1 + 2an−1fn−2) = 2fn.

The log of inequality (22) will be useful in the next and final step:

− ln fn
n
− 2
n
≤ 1
n

n−1∑
k=0

lnT kx ≤ − ln fn
n

. (23)

• Step 3
Taking the limit n → ∞ in (23) and using Theorem 4 (with f(x) = lnx) , we have a.e.

(“almost everywhere”)

lim
n→∞

1
n

ln fn = − lim
n→∞

1
n

n−1∑
k=0

ln T kx = −ρ0

∫ 1

0

lnx
(x+ 1)(x+ 2)

dx. (24)

Since, for x ∈ [0, 1],

0 ≤ 1
(x+ 1)(x+ 2)

≤ −1
3
x+

1
2
,

the last integral in (24) can be shown to be bounded:∫ 1

0

− lnx
(x+ 1)(x+ 2)

dx ≤
∫ 1

0

(− lnx)
(
−1

3
x+

1
2

)
dx =

5
12
.
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Numerical integration gives

lim
n→∞

1
n

ln fn = 1.30022988 · · · .

This completes the proof of Theorem 2.

4. THE ERGODICITY OF THE GENERALIZED GAUSS MAP

It is time to prove Theorem 4. To this end, all we need to do is to establish the ergodicity
of the generalized Gauss map. Then Theorem 4 follows by applying the ergodic theorem (see [1,
3, 13, 17, 23, 27]). We will proceed as follows. First, in Section 4.1, we introduce the concept of
cylinders. It is a special way to partition the unit interval so that the subsequent computations
may be simplified. Next, in Section 4.2, we introduce the generalized Gauss measure; cf. the
probability density ρ(x) in (15). With these two major ingredients defined, we proceed to
prove Theorem 4 in Section 4.3.

4.1 Cylinders
Fix non-negative integers a1, · · · , ak. Let t ∈ [0, 1) and define ψa1···ak by

ψa1···ak(t) ≡ 2−a1 |
| 1

+
2−a2 |
| 1

+ · · ·+ 2−ak |
|1 + t

=
gk + t 2akgk−1

fk + t 2akfk−1
. (25)

For the second equality, we have used (12). The cylinder (or fundamental interval) of rank k
is defined by 4a1···ak = {ψa1···ak(t); t ∈ [0, 1)}. A crucial property is that the lengths of these
cylinders shrink to zero: let λ denote the Lebesque measure and we have
Lemma 2:

lim
k→∞

λ(4a1···ak) = 0. (26)

Remarks: The implication of this lemma is as follows. Let B(k) denote the σ-algebra generated
by the cylinders of order k and F denote the σ-algebra of the Borel sets. Then Lemma 2 implies

∞∨
k=1

B(k) = F ; (27)

i.e., the class of all cylinders generates the σ-algebra F of Borel sets. For a proof, see p. 48
of [22]. This fact allows us to reduce many calculations in the subsequent sections to be done
in terms of cylinders. We now turn to the proof of Lemma 2.

Proof: All we need to do is to establish, for a constant, D∗, which is independent of k,

λ(4a1···ak) ≤ D∗
2k
. (28)

In particular, this implies Lemma 2.
Indeed, by direct computation, we can show that

λ(4a1···ak) = |ψa1···ak(1)− ψa1···ak(0)| =
∏k
i=1 2ai

fk(fk + 2akfk−1)
≤
∏k
i=1 2ai

f2
k

. (29)
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To obtain the desired bound, we consider first the case of an odd k. To this end, since
fk ≥ fk−1, which can be shown by induction, we have

fi = 2aifi−1 + 2ai−1fi−2 ≥ (2ai + 2ai−1)fi−2.

This implies
fk ≥ f1

∏
m=3,5,··· ,k

(2am + 2am−1). (30)

By combining (29) and (30), we obtain

λ(4a1···ak) ≤ 2a1

f2
1

∏
m=3,5,··· ,k

2am 2am−1

(2am + 2am−1)2

=
2a1

f2
1

∏
m=3,5,··· ,k

(
2 +

2am

2am−1
+

2am−1

2am

)−1

≤ 2a1

f2
1

∏
m=3,5,··· ,k

1
22

≤ 1
2k−1

=
2
2k
.

Note that f1 = 2a1 and therefore the prefactor 2a1/f2
1 = 1/f1 ≤ 1. For the inequality in the

third line, we set x = 2am/2am−1 and used the fact that, for x > 0, x+ x−1 ≥ 2. This proves
the case of k being odd. The case of an even k can be shown in a similar manner. Therefore
we establish (28).

4.2 The Generalized Gauss Measure
In this section, we define the generalized Gauss measure and study some of its crucial

properties.
Definition 4: The generalized Gauss measure is given by

P (A) = ρ0

∫
A

dx

(x+ 1)(x+ 2)
, (31)

where A ∈ F and ρ0 is given in Theorem 4.
By using the inequality

1
6
≤ 1

(x+ 1)(x+ 2)
≤ 1

2
, x ∈ [0, 1]

we obtain

λ(A)
6 ln(4/3)

≤ P (A) ≤ λ(A)
2 ln(4/3)

. (32)
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Note that P and λ are absolutely continuous with respect to each other (they have the same
set of measure zero). This implies that if the sequence a1(x), a2(x), · · · has a certain property
a.e. with respect to P , it will also have the same property a.e. with respect to λ.

An important property of P is that it is preserved by the generalized Gauss map T
(measure − preserving); i.e., we have P (T−1A) = P (A) for every A ∈ F . To establish this,
we need
Lemma 3: For t > 0, we have P

(
T−1[0, t]

)
= P ([0, t]) .

Proof: Let us set γ = 1/2 and note that

T−1[0, t] = {x : 0 ≤ Tx ≤ t} =
∞⋃
k=0

[
γk

1 + t
, γk

]
.

With these understood, we proceed to compute P (T−1[0, t]):

P (T−1[0, t]) = ρ0

∞∑
k=0

∫ γk

γk

1+t

dx

(x+ 1)(x+ 2)

= ρ0

∞∑
k=0

ln

(
γk + 1
γk

1+t + 1

)
− ln

(
γk+1 + 1
γk+1

1+t + 1

)

= ρ0 ln

(
2

1
1+t + 1

)
= ρ0

[
ln 2 + ln

(
t+ 1
t+ 2

)]
.

Note that the infinite sum is a telescoping sum and only the first term survives. Next, we
proceed to compute P ([0, t]):

P ([0, t]) = ρ0

∫ t

0

dx

(x+ 1)(x+ 2)
= ρ0

[
ln
(
t+ 1
t+ 2

)
− ln

1
2

]
.

This proves the lemma.
Remark: let F0 be the sub-algebra of disjoint unions of intervals contained in [0, 1].

Lemma 3 implies that P (T−1A) = P (A) for every A ∈ F0. By Proposition 2.1 in p. 27 of [13],
this can be extended to every A ∈ F . This shows that T is measure-preserving.

4.3 Proof of Theorem 4
The crux of the issue is the following theorem:

Theorem 5: T is ergodic with respect to P .
Proof: To prove this, we follow standard procedure (e.g., see [1]): we need to show that

if A ∈ F is such that T−1A = A and P (A) > 0, then P (A) = 1.
Fix a1, · · · , ak. First, we show that, for all A ∈ F , we have

1
2
λ(A) ≤ λ

(
T−kA|4a1···ak

)
. (33)

Here, λ(A|B) = λ(A ∩B)/λ(B).
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To this end, we first consider the interval B = [x, y), where 0 ≤ x < y ≤ 1 and we have

λ
(
T−kB|4a1···ak

)
=
|ψa1···ak(y)− ψa1···ak(x)|
|ψa1···ak(1)− ψa1···ak(0)|

= |y − x| fk(fk + 2akfk−1)
(fk + y 2akfk−1)(fk + x 2akfk−1)︸ ︷︷ ︸

h(x,y)

. (34)

Again, (25) has been used. Since h(1, 1) ≤ h(x, y) and

h(1, 1)−1 =
fk + 2akfk−1

fk
≤ fk + (2akfk−1 + 2ak−1fk−2)

fk
= 2,

therefore, (34) implies

1
2
λ(B) ≤ λ

(
T−kB|4a1···ak

)
.

The last inequality also holds if B is a disjoint union of intervals, and therefore, it is also true
for any A ∈ F . This proves (33).

By (32) and (33), we have a similar inequality for P (A):

1
C
P (A) ≤ P

(
T−kA|4a1···ak

)
. (35)

Here, the constant C is given by 3
ln(4/3) . To complete the proof of Theorem 5, we proceed as

follows. Suppose A is invariant under T (i.e., T−1A = A) and P (A) > 0. Then inequality (35)
implies P (A) ≤ C P (A|4a1···ak); i.e.,

P (A) ≤ C P (A ∩4a1···ak)
P (4a1···ak)

.

We multiply both sides by P (4a1···ak)/P (A) and obtain P (4a1···ak) ≤ C P (4a1···ak |A). This
implies

P (E) ≤ C P (E|A) (36)

for all finite disjoint unions E of cylinders; since the sets of cylinders generate F , (36) is also
true for any E ∈ F . Setting E = Ac (the complement of A), (36) implies P (Ac) = 0 and so
P (A) = 1. This completes the proof of Theorem 5.

Finally, Theorem 4 follows immediately as the consequence of Theorem 5 and the ergodic
theorem.

5. CONCLUDING REMARKS

In this paper, we have applied ergodic theory in computing the asymptotic growth rate
of random Fibonacci type sequences. The key ingredients are the generalized Gauss map (13)
and its ergodicity with respect to the generalized Gauss measure (31). The result obtained
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here can be used to estimate the effectiveness of continued fractions in the form of (10) (in the
sense of Lochs [12]). This will be addressed in a forthcoming paper.

By imitating Mayer [14] and Wirsing [28], one can derive not just the constant but also
the rate of convergence to the constant. Again, this will be addressed in a future paper.

Note added: The anonymous referee pointed out a beautiful generalization of the gen-
eralized Gauss map: Let k = 2, 3, · · · , we have

Tx =
k(logk

1
x ) mod 1 − 1
k − 1

. (37)

Denote the density of the invariant measure by ρk(x). Then, for x ∈ (0, 1), one can show that
(with C being a normalizing constant)

ρk(x) =
C

(1 + (k − 1)x)(k + (k − 1)x)
,

as it is the eigenfunction of eigenvalue 1 of the corresponding Frobenius-Perron operator; i.e.,
it satisfies

ρk(x) =
∞∑
a=0

k − 1
ka(1 + (k − 1)x)2

ρk

(
1

ka(1 + (k − 1)x)

)
.

The situation discussed in this paper corresponds to k = 2.
Note that (37) leads to a continued fraction expansion: following the notation in (5), this

expansion will have Bi = 1 for i ≥ 1; A1 = k−a1 and Am = (k − 1)k−am for m ≥ 2. It will be
interesting to generalize Theorem 2 for the interval map (37).
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[13] R. Mañé. Ergodic Theory and Differentiable Dynamics. Springer-Verlag, New York, 1987.
[14] D. Mayer. “Continued Fractions and Related Transformations.” Ergodic Theory, Symbolic

Dynamics and Hyperbolic Spaces. Ed. Tim Bedford et al., Oxford, 1991.
[15] I. M. Niven. Irrational Numbers. John Wiley & Sons, New York, 1967.
[16] A. M. Ozorio de Almeida. Hamiltonian System: Chaos and Quantization. Cambridge

University Press, New York, 1988.
[17] K. Petersen. Ergodic Theory. Cambridge University Press, New York, 1989.
[18] I. Peterson. “Uncovering a New Mathematical Constant.” Science News Online 155

(1999): available at http://sciencenews.org/sn arc99/6 12 99/bob1.htm.
[19] M. Pollicott and M. Yuri. Dynamical Systems and Ergodic Theory. Cambridge University

Press, New York, 1998.
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