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ABSTRACT

In this note we consider two classes of polynomials Un and Vn. These polynomials are
special cases of Un,m and Vn,m (see [2]), respectively. Also, Un and Vn are generalized Fibonacci
and Lucas polynomials. In fact, in this paper we study the polynomials Un,3 and Vn,3, together

with their kth−derivative sequences U
(k)
n and V

(k)
n . Some interesting identities are proved in

the paper, for Un, Vn, U
(k)
n and V

(k)
n .

1. INTRODUCTION

To begin with, we define two classes of polynomials {Un ≡ Un(x)}n∈N and {Vn ≡
Vn(x)}n∈N . These polynomials are given by recurrence relations:

Un = xUn−1 + Un−m, n ≥ m,

with U0 = 0, Un = xn−1, n = 1, . . . ,m− 1, and

Vn = xVn−1 + Vn−m, n ≥ m,

with V0 = 2, Vn = xn, n = 1, . . . ,m− 1.
These polynomials are special cases of the polynomials Un,m and Vn,m (see [2], for y = 1).

For m = 2, Un and Vn are the well-known Fibonacci and Lucas polynomials, respectively (see
[3], [4], [5], [6], [7]).

In this paper we shall consider these polynomials for m = 3. Obviously, we can say that
Un and Vn are generalized Fibonacci and generalized Lucas polynomials. Namely, they are
given by recurrence relations:

Un = xUn−1 + Un−3, n ≥ 3, (1.1)

with U0 = 0, U1 = 1, U2 = x, and

Vn = xVn−1 + Vn−3, n ≥ 3, (1.2)

with V0 = 2, V1 = x, V2 = x2.
Recall that Un is a special case of the polynomials φn(p, q;x) (see [1], for p = 0, q = −1).
Their kth-order derivative sequences are defined as

U (k)
n =

dk

dxk
Un(x), and V (k)

n =
dk

dxk
Vn(x).

290



ON THE KTH
–ORDER DERIVATIVE SEQUENCES OF ...

Let us denote the complex numbers α, β, and γ, so that they satisfy:

α + β + γ = x, αβ + αγ + βγ = 0, αβγ = 1. (1.3)

2. POLYNOMIALS U
(k)
n AND V

(k)
n

Using a known method, we can prove that the polynomials Un and Vn possess generating
functions as follows:

U(t) = t(1− xt− t3)−1 =
∞∑

n=0

Untn, (2.1)

V (t) = (2− xt)(1− xt− t3)−1 =
∞∑

n=0

Vntn. (2.2)

Differentiating both sides of (2.1), with respect to x, k-times, we get

Uk(t) =
k!tk+1

(1− xt− t3)k+1
=

∞∑
n=0

U (k)
n tn. (2.3)

Moreover, using induction on n, we can prove that the polynomials Un and Vn satisfy the
following relation

Vn = Un+1 + Un−2, n ≥ 2. (2.4)

Theorem 2.1: Let k be a positive integer. Then it follows that

Uk(t) =
k!

(αA)k+1

k∑
i=0

ak,i

(1− αt)k+1−i
+

k!
(βM)k+1

k∑
i=0

bk,i

(1− βt)k+1−i

+
k!

(γR)k+1

k∑
i=0

ck,i

(1− γt)k+1−i
, (2.5)

where

ak,i = (−1)iAi

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
AiBj−2lClak,i−j ,

bk,i = (−1)iM i

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
M iN j−2lP lbk,i−j ,

ck,i = (−1)iRi

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
RlSj−2lT lck,i−j ,
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for i = 1, . . . , k and

A = A(α) =
α2(2α− x) + 1

α3
, B = B(α) =

α2(x− α)− 2
α3

, C = C(α) =
1
α3

,

M = A(β), N = N(β), P = C(β), R = A(γ), S = B(γ), T = C(γ).

Proof: From (1.3) and (2.3), we get

tk+1

(1− xt− t3)k+1
=

k∑
i=0

Ak,i

(1− αt)k+1−i
+

k∑
i=0

Bk,i

(1− βt)k+1−i
+

k∑
i=0

Ck,i

(1− γt)k+1−i
, (2.6)

where Ak,i, Bk,i, and Ck,i are independent of t.
Multiplying (2.6) by αk+1(1− βt)k+1(1− γt)k+1, we get

(αt)k+1

(1− αt)k+1
= αk+1[A + B(1− αt) + C(1− αt)2]

k+1∑
i=0

Ak,i

(1− αt)k+1−i
+ φ(t), (2.7)

where φ(t) is an analytic function at the point t = α−1 (t is a complex variable and x is a real
constant).

Since

(αt)k+1

(1− αt)k+1
= ((1− αt)−1 − 1)k+1,

from (2.7), it follows that

k+1∑
i=0

(
k + 1

i

)
(−1)i(1− αt)−(k+1−i) =

αk+1
k+1∑
j=0

(
k + 1

j

)
Ak+1−j

j∑
l=0

(
j

l

)
Bj−lCl(1− αt)j+l

k∑
i=0

Ak,i

(1− αt)k+1−i
+ φ(t).

Using the fact that the Laurent series [6] is unique at the point t = α−1 for the function
(αt)k+1(1− αt)−(k+1), we can compare the coefficients of (1− αt)−(k+1−i)(i = 0, 1, . . . , k) on
both sides of the last equality. So, we get

αk+1
i∑

j=0

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
Ak+1−j+lBj−2lClAk,i−j ,= (−1)i

(
k + 1

i

)
, (2.8)
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where i = 0, 1, . . . , k, and

A = A(α) =
α2(2α− x) + 1

α3
, B = B(α) =

α2(x− α)− 2
α3

, C = C(α) =
1
α3

.

Let us denote
ak,i−j = αk+1Ak+1+i−jAk,i−j .

Hence, from (2.8), we get

i∑
j=0

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
AlBj−2lClak,i−j = (−1)iAi

(
k + 1

i

)
,

where ak,0 = 1.
¿From the last equality, for j = 0, it follows that

ak,i = (−1)iAi

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
AlBj−2lClak,i−j . (2.9)

In a similar way, we find that the coefficients bk,i and ck,i are given by

bk,i = (−1)iM i

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
M lN j−2lP lbk,i−j ; (2.10)

ck,i = (−1)iRi

(
k + 1

i

)
−

i∑
j=1

[j/2]∑
l=0

(
k + 1
j − l

)(
j − l

l

)
RlSj−2lT lck,i−j , (2.11)

where

bk,0 = ck,0 = 1, M = A(β), N = B(β), P = C(β), R = A(γ), S = B(γ), T = C(γ).

If we substitute (2.9), (2.10), and (2.11) in (2.3), we get

Uk(t) =
k!

(αA)k+1

k∑
i=0

ak,i

Ai(1− αt)k+1−i
+

k!
(βM)k+1

k∑
i=0

bk,i

M i(1− βt)k+1−i
+

k!
(γR)k+1

k∑
i=0

ck,i

Ri(1− γt)k+1−i
.
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3. FURTHER INTERESTING IDENTITIES

Lemma 3.1: Let n be a positive integer and r and m be nonnegative integers. Then

n∑
i=0

Ui = (Un+1 + Un + Un−1 − 1)/x, x 6= 0. (3.1)

n∑
i=0

Vi = (Vn+1 + Vn + Vn−1 − 1)/x, x 6= 0. (3.2)

n∑
i=0

(
n

i

)
xihr+2i = hr+3n (hn = Un or hn = Vn). (3.3)

n∑
i=0

(−1)i

(
n

i

)
hr+3i = (−1)nxnhr+2n (hn = Un or hn = Vn). (3.4)

Um+n = Um+1Un + UmUn−2 + Um−1Un−1, n ≥ 2. (3.5)
Vm+n = Vm+1Un + VmUn−2 + Vm−1Un−1, n ≥ 2. (3.6)

Proof: In the proof we use induction on n.
For n = 1 in (3.1), we get

U0 + U1 =
1
x

(U2 + U1 + U0 − 1) =
1
x

(x + 1 + 0− 1) = 1.

It follows that (3.1) holds for n = 1. Suppose that (3.1) holds for n ≥ 1. Then, for n + 1, it
follows that

n+1∑
i=0

Ui =
n∑

i=0

Ui + Un+1

=
1
x

(Un+1 + Un + Un−1 + xUn+1 − 1) =
1
x

(Un+2 + Un+1 + Un − 1).

Thus, we conclude that (3.1) holds for all n ∈ N .
Similarly, we can prove the equalities (3.2) and (3.3).
To prove (3.4), we also use induction on n. For n = 1 it follows that

1∑
i=0

(−1)i 1
i
hr+3i = hr + hr+3 = −xhr+2 (by (1.1) and (1.2)).
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Hence, (3.4) is true for n = 1. Suppose that (3.4) is true for n ≥ 1. Then, for n = n + 1,
we get

(−1)n+1xn+1hr+2n+2 = −x(−1)nxnhr+2+2n = −x
n∑

i=0

(−1)i

(
n

i

)
hr+2+3i

=
n∑

i=0

(−1)i+1

(
n

i

)
xhr+2+3i =

n∑
i=0

(−1)i+1

(
n

i

)
(hr+3+3i − hr+3i)

=
n∑

i=0

(−1)i+1

(
n

i

)
hr+3(i+1) +

n∑
i=0

(−1)i

(
n

i

)
hr+3i

=
n+1∑
i=1

(−1)i

(
n

i− 1

)
hr+3i +

n∑
i=0

(−1)i

(
n

i

)
hr+3i

=
n∑

i=1

(−1)i

((
n

n− 1

)
+

(
n

i

))
hr+3i + (−1)n+1hr+3(n+1) + hr

=
n+1∑
i=0

(−1)i

(
n + 1

i

)
hr+3i.

So, we conclude that (3.4) is true for all n ∈ N .
Equalities (3.5) and (3.6) can be proved using recurrence relations (1.1) and (1.2), and

applying induction on n.
Theorem 3.1: Let n be a positive integer and k be a nonnegative integer.

x
n∑

i=0

U
(k)
i = U

(k)
n+1 + U (k)

n + U
(k)
n−1 − k

n∑
i=0

U
(k−1)
i , x 6= 0; (3.7)

x
n∑

i=0

V
(k)
i = V

(k)
n+1 + V (k)

n + V
(k)
n−1 − k

n∑
i=0

V
(k−1)
i , x 6= 0; (3.8)

n∑
i=0

k∑
j=0

(
n

i

)(
k

j

)
(xi)(j)h(k−j)

r+2i = h
(k)
r+3n; (3.9)

n∑
i=0

(−1)i

(
n

i

)
h

(k)
r+3i = (−1)n

k∑
j=0

(
k

j

)
(n− j + 1)jx

n−jh
(k−j)
r+2n , (3.10)

where hn = Un or hn = Vn.
Proof: Equalities (3.7), (3.8), and (3.10), can be proved in a straightforward manner by

differentiating the corresponding equalities (3.1), (3.2), and (3.4). Here, we prove (3.9).
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If k = 0, then (3.9) becomes

hr+3n =
n∑

i=0

(
n

i

)
xihr+2i.

It follows that (3.4) is true. Suppose that (3.9) is true for k ≥ 0. Then, for k + 1, we get

h
(k+1)
r+3n =

d

dx

(
h

(k)
r+3n

)
=

n∑
i=0

k∑
j=0

(
n

i

)(
k

j

)
d

dx

(
(xi)(j)h(k−j)

r+2i

)

=
n∑

i=0

k∑
j=0

(
n

i

)(
k

j

) (
(xi)(j+1)h

(k−j)
r+2i + (xi)(j)h(k+1−j)

r+2i

)
(j + 1 := j)

=
n∑

i=0

k+1∑
j=1

(
n

i

)(
k

j − 1

)
(xi)(j)h(k+1−j)

r+2i +
n∑

i=0

k∑
j=0

(
n

i

)(
k

j

)
(xi)(j)h(k+1−j)

r+2i

=
n∑

i=0

k∑
j=1

(
n

i

) ((
k

j − 1

)
+

(
k

j

))
(xi)(j)h(k+1−j)

r+2i +
n∑

i=0

(
n

i

)(
k

k

)
(xi)(k+1)hr+2i

+
n∑

i=0

(
n

i

)(
k + 1

0

)
xih

(k+1)
r+2i =

n∑
i=0

k+1∑
j=0

(
n

i

)(
k + 1

j

)
(xi)(j)h(k+1−j)

r+2i .

Theorem 3.2: Let n be a positive integer and k be a nonnegative integer. Then

h(k)
n = xh

(k)
n−1 + h

(k)
n−3 + kh

(k−1)
n−1 , k ≥ 0, (hn = Un or hn = Vn). (3.11)

V (k)
n = U

(k)
n+1 + U

(k)
n−2, n ≥ 2. (3.12)

U
(k)
n+m =

k∑
i=0

(
k

i

) (
U

(k−i)
m+1 U (i)

n + U (k−i)
m U

(i)
n−2 + U

(k−i)
m−1 U

(i)
n−1

)
. (3.13)

V
(k)
m+n =

k∑
i=0

(
k

i

) (
V

(k−i)
m+1 U (i)

n + V (k−i)
m U

(i)
n−2 + V

(k−i)
m−1 U

(i)
n−1

)
. (3.14)

Proof: Equalities (3.11), (3.12), (3.13), and (3.14) can be proved by differentiating the
corresponding equalities (1.1), (1.2), (2.4), (3.5), and (3.6).

Next, if we differentiate (2.2), with respect to x, k-times, we get

Vk(t) =
k!tk(1 + t3)

(1− xt− t3)k+1
=

∞∑
n=0

V (k)
n tn.
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So, using Uk(t) and Vr(t), we can easily prove the following identities:

Uk(t)Ur(t) =
k!r!

(k + r + 1)!
Uk+r+1(t);

Uk(t)V (t) =
1

k + 1
(2t−1 − x)Uk+1(t);

Vk(t)Vr(t) =
k!r!

(k + r + 1)!
(t2 + t−1)Vk+r+1(t) (k, r ≥ 1);

Uk(t)Vr(t) =
k!r!

(k + r + 1)!
Vk+r+1(t) (r, k ≥ 1);

Vk(t)V (t) =
1

k + 1
(2t−1 − x)Vk+1(t);

V (t)V (t) = (2t−1 − x)2U1(t).

Thus, comparing the coefficients of tn both sides in the last equalities, we can prove the
following theorem.
Theorem 3.3: Let n be a positive integer and k be a nonnegative integer. Then

n∑
i=0

U
(k)
i U

(r)
n−i =

k!r!
(1 + k + r)!

U (k+r+1)
n ;

n∑
i=0

U
(k)
i Vn−i =

1
k + 1

(
2U

(k+1)
n+1 − xU (k+1)

n

)
(k, r ≥ 1);

n∑
i=0

V
(k)
i V

(r)
n−i =

k!r!
(k + r + 1)!

(
V

(k+r+1)
n−2 + V

(k+r+1)
n+1

)
;

n∑
i=0

U
(k)
i V

(r)
n−i =

k!r!
(k + r + 1)!

V (k+r+1)
n (r ≥ 1);

n∑
i=0

V
(k)
i Vn−i =

1
k + 1

(
2V

(k+1)
n+1 − xV (k+1)

n

)
;

n∑
i=0

ViVn−i = 4U
(1)
n+2 − 4xU

(1)
n+1 + x2U (1)

n .
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[1] G.B. Djordjević. “On a Generalization of a Class of Polynomials.” The Fibonacci Quar-
terly 36.2 (1998): 110-117.
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