ON THE K™-ORDER DERIVATIVE SEQUENCES OF
GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

. . . »
Gospava B. Djordjevié
University of Ni§, Faculty of Technology, 16000 Leskovac, Serbia and Montenegro
(Submitted January 2003-Final Revision July 2008)

ABSTRACT

In this note we consider two classes of polynomials U, and V,,. These polynomials are
special cases of U, ,,, and V;, ,,, (see [2]), respectively. Also, U,, and V;, are generalized Fibonacci

and Lucas polynomials. In fact, in this paper we study the polynomials U,, 3 and V,, 3, together
with their k*"—derivative sequences Uy(zk) and Vn(k). Some interesting identities are proved in

the paper, for U,,, V,, U,(Lk) and Vn(k).

1. INTRODUCTION

To begin with, we define two classes of polynomials {U, = U,(x)}n,en and {V, =
Vi(z) }nen- These polynomials are given by recurrence relations:

Up=2Up1 + Un—ma n =m,
with Uy =0,U,, = 2" ', n=1,...,m —1, and
Vin=2V,_1+ Vn—ma n =m,

with Vo =2, V, =2", n=1,...,m—1.
These polynomials are special cases of the polynomials U, ,, and V;, ,,, (see [2], for y = 1).
For m =2, U, and V,, are the well-known Fibonacci and Lucas polynomials, respectively (see

3], [4], 5], [6], [7])-

In this paper we shall consider these polynomials for m = 3. Obviously, we can say that
U, and V,, are generalized Fibonacci and generalized Lucas polynomials. Namely, they are
given by recurrence relations:

U,=2U,_1+U,_3, n>3, (1.1)
with Uy = 0,U; = 1,U; = x, and

Vo=aVu_1+V,_3, n>3, (1.2)
with Vo =2,V; =z, Vo = 22

Recall that U, is a special case of the polynomials ¢, (p, ¢; x) (see [1], for p =0,q = —1).
Their k*'-order derivative sequences are defined as

m _ A
Un = WUn(.T), and Vn = EVTL(Z’)
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Let us denote the complex numbers «, (3, and 7, so that they satisfy:
at+fB+y=r, af+ay+pfy=0, afy=1. (1.3)

2. POLYNOMIALS U*) AND V%)

Using a known method, we can prove that the polynomials U,, and V,, possess generating
functions as follows:

Ut) =t(1 —at —t3)~ ZU £, (2.1)

V(t) = (2 —xt)(1 —xt — %)~ Z Vt™. (2.2)

Differentiating both sides of (2.1), with respect to =, k-times, we get

k[tk-‘rl 0 n
Up(t) = R ZU t (2.3)

Moreover, using induction on n, we can prove that the polynomials U,, and V,, satisfy the
following relation
Vi=Ups1 +Up—2, n>2. (24)

Theorem 2.1: Let k be a positive integer. Then it follows that

Qi bk: )%
U(t) aA)kJrl Z — at)Fti=i ﬁM YRt Z — Bt)kri-i

Ck,i
’VR k—i—l Z 1 _ 7t k—i—l 7 (25)

where

i [3/2]
k—+1 k—+1 —1
i = (214 ( ; ) <]t1)( )AZB] FClani,
1 7=0

Jj=

i 15/2] .
bri=(-1)'M" — E M'N7"* Pby i,
b = <Z) - <j—l)(l) o

Jj=11=0
J= U\ pi qj—207
] —l I RS T Ck,i—j,
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M:A(B)> N:N(ﬁ)’ P:C(ﬂ)7 R:A(’Y)’ S:B(V)a TZC(’Y)'

Proof: From (1.3) and (2.3), we get

tk_'_l i Ak ) i Bk 7
(1— ot — (3)k+1 :Z (1 — at)ktl=i +Z (1— Bt)Fi- T gpkrizi ™
i=0 =0
k
Ch.i
Z (1 — qt)kt1=i’ (2.6)

where Ay, ;, By s, and Cj,; are independent of ¢.
Multiplying (2.6) by a*t1(1 — Bt)*T1(1 — )k 1 we get

a k+1 k+1 ‘
(I(_ZW =" A+ B(1—at)+C(1 —at)2]2$ +6(b), (2.7)
1=0

where ¢(t) is an analytic function at the point t = a1 (¢ is a complex variable and z is a real
constant).
Since

(at)k+1
- o =

from (2.7), it follows that

k+1

]
=0

k+1kJrl k+1 k1l —1 j+1
Z A JZ BTl t)’ Z k+1 5 T o).

Using the fact that the Laurent series [6] is unique at the point ¢ = a~! for the function
(at)*+1(1 — at)~*+D we can compare the coefficients of (1 — at)~k*+1=9(; = 0,1,...,k) on
both sides of the last equality. So, we get

k+1i§ l Ak+1 j+lB] 2lClA _(_1)i k+1 (2 8)
]—l kyii—j> i ) .

7=0 [=0
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where ¢ =0,1,...,k, and

Let us denote
Qi j = ak:—i—lAk-i-l-H—jAk’i_

Hence, from (2.8), we get

i [3/2]
(""“)( Z)AlBﬂ Ay —(—1>iA"(k+.1),

j=1 )

IMs

b

where a0 = 1.
L From the last equality, for j = 0, it follows that

R (SR I 35 o1 (i) | () VS SR

=1 1=0

In a similar way, we find that the coefficients by ; and ¢y ; are given by

= o (FEY S (Y (0 Y e

7j=11=0

i [3/2]

k+1 k+1 —1

ki = (—1)'R < ) E <] - l) < )RISJ ATl i, (2.11)
7=1 1=0

where

bro=cro=1, M =A(B), N=B(f), P=C(B), R=A(),S=B(y), T =C(v)

If we substitute (2.9), (2.10), and (2.11) in (2.3), we get

k! k. k! bk@'
Uk(t) = klz i s g klz i Vv
(@A) £ Ai(1 — at)F 1= (BAYFH 2 N (1— Br)FT

k! Ck,i
(,)/R)k-i-l ; Ri(l _ fyt)k—i-l—i‘ O
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3. FURTHER INTERESTING IDENTITIES

Lemma 3.1: Let n be a positive integer and r and m be nonnegative integers. Then

S Ui=(Unp1+ Un+Upor = 1) /z, z#0. (3.1)
1=0
D Vi=Vapr +Va+Var —D/a, z#0. (3.2)
=0
n n '
> (_)xzhwgi = hygsn  (hn=U, or h, =V,). (3.3)
(2
=0
Z(—ni(?) hossi = (=1)"@"hyyon (e = U or hn = Vi), (3.4)
1=0
Um+n == m+1Un + UmUn—2 + Um—lUn—17 n Z 2. (35)
Vm+n = Vm+1Un + VmUn—Z + Vm—lUn—h n > 2. (36)

Proof: In the proof we use induction on n.
For n=11n (3.1), we get

1 1
U0+U1:E(U2+U1+U0—1):E(:I}—l—l—i—o—l):l.

It follows that (3.1) holds for n = 1. Suppose that (3.1) holds for n > 1. Then, for n + 1, it
follows that

n+1 n
ZUi :ZUi+Un+1
1=0 =0

1 1
= E(Un—kl +U,+Up1+2Upp1 —1) = ;(Un+2 +Upt1+ U, —1).

Thus, we conclude that (3.1) holds for all n € N.
Similarly, we can prove the equalities (3.2) and (3.3).
To prove (3.4), we also use induction on n. For n =1 it follows that

1

1
Z(—l)lzh%i = hp + hypys = —xhygs  (by (1.1) and (1.2)).
1=0
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Hence, (3.4) is true for n = 1. Suppose that (3.4) is true for n > 1. Then, for n =n + 1,

we get

(—1)n+1$n+1hr+2n+2 =

—z(=1)"z"hypyoyon = —x Z

( ) r+2+437
n

— Z Z“( )xhr+2+3l = Z(—l)i+1 (7;) (hrt3+3i — hrysi)

i=0
= Z( 1) ”1( > r3(i41) +§(—1)i<?> hirt3i
(" e S (e

= g(—l)i ((n i 1) + (?)) hrgsi + (=) heygngn) + e
- ji:(—l)i (n j 1> Py 3i-

So, we conclude that (3.4) is true for all n € N.
Equalities (3.5) and (3.6) can be proved using recurrence relations (1.1) and (1.2), and

applying induction on n.

a

Theorem 3.1: Let n be a positive integer and k be a nonnegative integer.

xZU(k) U +U® U kZU B0 w0 (3.7)
2y VI =y v® 4 y®) ka(’“ Voow o (38)
i=0
n k
k— k
ZZ( )(5) @ =, 3.9
=0 j=
n n k
A n n— k
(_1> (Z) r+3i Z( > n — j+ ) ]h£+231), (310)
i=0 j=
where h,, = U, or h,, = V,.

Proof: Equalities (3

.7), (3.8), and (3.10), can be proved in a straightforward manner by

differentiating the corresponding equalities (3.1), (3.2), and (3.4). Here, we prove (3.9).
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If £ =0, then (3.9) becomes

n
n .
hr+3n = Z (i)l‘%hr—i—%-
i=0

It follows that (3.4) is true. Suppose that (3.9) is true for £ > 0. Then, for k + 1, we get

(k+1) (k) . INOIAGET))
hT+3n - (hr+3n> - ZZ ( > ( ) ((‘T )(])hrJr z )
1=0 57=0
n k
n\ (k Ny i

=S ()(5) (oot + @) G =
i=0 j=0 J

:Zn:lﬁ—l n k ( )(j)h (k4+1— j)+ n zk: k J)h(k—|—1 3)
. . i ] -1 r+21 ] r+21
=0 j=1 =0
n k n

k k

SO O e

i=0 j=1 g—1 J i=

n n k+1
n\ (k+1\ 5, (k+1) k+1 k41—
* (z)( 0) = ZZ()( ) @)Ohn™ B
0

1=0 57=0

Theorem 3.2: Let n be a positive integer and k be a nonnegative integer. Then

h® = 2b™ 4 h® L kR k>0, (hy = U, or by = V). (3.11)
vih =g UM, > (3.12)
k
k —1 (3 (3
v, =3 <Z> (T o + uloul, + ol Pl ) . (3.13)
1=0
k
k (3 K3 (3 K3
Vil =3 (Z) (ViU + Vo, +viPu ). (3.14)
1=0

Proof: Equalities (3.11), (3.12), (3.13), and (3.14) can be proved by differentiating the

corresponding equalities (1.1), (1.2), (2.4), (3.5), and (3.6). O
Next, if we differentiate (2.2), with respect to x, k-times, we get

Ktk (1 +13) (k) pm
Vi(t) = (1 — at — {3)k+1 ZV .
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So, using U (t) and V,.(t), we can easily prove the following identities:

klr!

Ur(t)U,(t) = GrreD)

Uk+r41(1);

UV (1) = —— (267" — ) U ()

k+1
klr! o
Vi(O)Vi (1) = m(t + 7 ) Wagrs1(t) (k,r > 1);
klr!
Ur(t)V (1) = G Dl 1)!Vk+r+1(t) (r k= 1);

Vi)V (t) = %ﬂ(%l — @)V (0);

V)V (t) = (27 — 2)?Ui(t).

Thus, comparing the coefficients of t” both sides in the last equalities, we can prove the
following theorem.

Theorem 3.3: Let n be a positive integer and k be a nonnegative integer. Then

ZU“‘“)U” _ kY e,
A

L+Ek+r)! " ’
ZU(’“VH o= g (20U = aU ) (2 1)
Ry k! ( (b4r+1) | (etr D)) |
2V = G (e Ve )
ZU(k)V(T) _ k!r! (k+r+1) (’I“ > 1)

Zvvn =40, — 42Ul + 22UV,
=0
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