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1. INTRODUCTION

We denote the mth g-gonal number by

Gm,g = m{(g − 2)m− (g − 4)}/2 (see [1]).

If m is positive and g = 3, 4, 5, 6, 7, 8, . . . , etc., then the number Gm,g is triangular, square,
pentagonal, hexagonal, heptagonal and octagonal etc., respectively. Finding the numbers
common to any two infinite sequences is one of the problems in Number Theory. Several
papers (See [2] to [15]) have appeared identifying the numbers Gm,g (for g = 3, 4, 5 and 7)
in the sequences {Fn}, {Ln}, {Pn} and {Qn} (the Fibonacci, Lucas, Pell and Associated Pell
sequences respectively). We will summarize these results in Table A, including the present
result that 1, 7 and 99 are the only generalized heptagonal numbers in the associated Pell
sequence {Qn} defined by

Q0 = Q1 = 1 and Qn+2 = 2Qn+1 + Qn for any integer n.

This result also solves the two Diophantine equations in the title.

Sequences Triangular Square Pentagonal Heptagonal

[12] (A000217) (A000290) (A000326) (A000566)

Fibonacci by Ming Luo [4] J.H.E. Cohn [2] Ming Luo [6] B. Srinivasa Rao [14]

{Fn} n 0, ±1, 2, 4, 8, 10 0, ±1, 2, 12 0, ±1, 2, ±5 0, ±1, 2, ±7, ±9, 10

(A000045) Fn 0, 1, 3, 21, 55 0, 1, 144 0, 1, 5 0, 1, 13, 34, 55

Lucas by Ming Luo [5] J.H.E. Cohn [2] Ming Luo [7] B. Srinivasa Rao [13]

{Ln} n 1, ±2 1, 3 0, 1, ±4 1, 3, ±4, ±6

(A000032) Ln 1, 3 1, 4 2, 1, 7 1, 4, 7, 18

Wayne McDaniel Katayama, S.I. & V.S.R. Prasad & B. Srinivasa Rao

Pell by [8] Katayama, S.G. [3] B. Srinivasa Rao [10] [15]

{Pn} n 0, ±1 0, ±1, ±7 0, ±1, 2, ±3, 4, 6 0, ±1, 6

(A000129) Pn 0, 1 0, 1, 169 0, 1, 2, 5, 12, 70 0, 1, 70

Associated V.S.R. Prasad & Katayama, S.I. & V.S.R. Prasad & Present

Pell by B. Srinivasa Rao [11] Katayama, S.G. [3] B. Srinivasa Rao [9] Result

{Qn} n 0, 1, ±2 0, 1 0, 1, 3 0, 1, 3, ±6

(A001333) Qn 1, 3 1 1, 7 1, 7, 99

Table A.

In the above table, by a polygonal number we mean a generalized polygonal number (with
m any integer). Further, each cell where a column and a row meet represents the numbers
common to both the corresponding sequences named after the person who identified them.
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2. MAIN THEOREM

We need the following well known properties of {Pn} and {Qn}: For all integers k, m and
n.

Pn = αn−βn

2
√

2
and Qn = αn+βn

2

where α = 1 +
√

2 and β = 1−
√

2

}
(1)

P−n = (−1)n+1Pn and Q−n = (−1)nQn (2)

Q2
n = 2P 2

n + (−1)n (3)

Qm+n = 2QmQn − (−1)nQm−n (4)

3|Pn iff 4|n and 3|Qn iff n ≡ 2 (mod 4) (5)

9|Pn iff 12|n and 9|Qn iff n ≡ 6 (mod 12) (6)

If m is even, then (see [9])

Qn+2km ≡ (−1)kQn (mod Qm) (7)

Theorem: (a) Qn is a generalized heptagonal number only for n = 0, 1, 3 or ±6;
and (b) Qn is a heptagonal number only for n = 0, 1 or 3.
Proof: (a) Case 1: Suppose n ≡ 0, 1, 3,±6 (mod 600).
Then it is sufficient to prove that 40Qn +9 is a perfect square if and only if n = 0, 1, 3,±6.

To prove this, we adopt the following procedure which enables us to tabulate the corresponding
values reducing repetition and space.

Suppose n ≡ ε (mod N) and n 6= ε. Then n can be written as n = 2 · δ · 2θ · g + ε, where
θ ≥ γ and 2 6| g. Furthermore, n = 2km + ε, where k is odd and m is even.

Now, using (7), we get

40Qn + 9 = 40Q2km+ε + 9 ≡ 40(−1)kQε + 9 (mod Qm).

Therefore, the Jacobi symbol

(
40Qn + 9

Qm

)
=

(
−40Qε + 9

Qm

)
=

(
Qm

M

)
. (8)

But modulo M , {Qn} is periodic with period P (here if n ≡ 2 (mod 4), then we choose P as
a multiple of 4 so that 3 6| Qm). Now, since for θ ≥ γ, 2θ+s ≡ 2θ (mod P ), choosing m = µ · 2θ

if θ ≡ ζ (mod s) and m = 2θ otherwise, we have m ≡ c (mod P ) and
(

Qm

M

)
= −1, for all

values of m. From (8), it follows that
(

40Qn+9
Qm

)
= −1, for n 6= ε. For each value of ε, the

corresponding values are tabulated in this way (Table B).
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ε N δ γ s M P µ ζ (mod s) c (mod P)

0, 1 20 5 1 4 31 30 5 0, 3 2, 4, ±10.

25 6, 7, 15, 24. 2, ±10, ±20, 32,

34, ±40, 70, 76,

±80, 94, 106,

0, 2, 3, 4, 140, 152, 154,

3 100 25 1 36 271 270 10, 12, 13, 158, 166, 182,

5 ±17, 18, 21, 184, 188, 196,

22, 31, 35. 212, 242, 248

256.

25 3, 7. 4, 16, 32, 64,

5 10, 12, 13. 192, 200, 220,

2·438 256, 296, 332,

±6 600 75 2 18 439 =876 440, 512, 548,

3 15. 572, 616, 664.

712, 740.

Table B.

Since L.C.M. of (20, 100, 600)=600, the first part of the theorem follows for n ≡ 0, 1, 3 or
±6 (mod 600).
Case 2: Suppose n 6≡ 0, 1, 3 or ±6 (mod 600). Step by step we proceed to eliminate certain
integers n congruent modulo 600 for which 40Qn + 9 is not a square. In each step we choose
an integer m such that the period k (of the sequence {Qn}mod m) is a divisor of 600 and
thereby eliminate certain residue classes modulo k. For example.
Mod 41: The sequence {Qn} mod 41 has period 10. We can eliminate n ≡ ±2 (mod 10),
since 40Qn + 9 ≡ 6 (mod 41) and 6 is a quadratic nonresidue modulo 41. There remain
n ≡ 0, 1, 3, 4, 5, 6, 7 or 9 (mod 10).

Similarly we can eliminate the remaining values of n. We tabulate them in the following
way (Table C) which proves part (a) of the theorem completely.
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Period Modulus Required values of n where Left out values of n (mod t)

k m ( 40Qn+9
m )=−1 where t is a positive

integer

10 41 ±2. 0, ±1, ±3, ±4, or 5 (mod 10)

20 29 10, 11, 13, 17 and 19 0, 1, 3, ±4, ±5, ±6, 7 or 9 (mod 20)

15, ±16, ±20, 21, 29, 35, ±46, 55,

1549 63, 69, 81, 87 and 95, 0, 1, 3, ±6, 9, ±14, 23, ±24, ±25,

100 ±4, 5, 7, ±34, 43, ±44, 45, 65 and ±26, 27, ±36, ±40, 41, 47, 49, 61,

29201 85. 67, 83 or 89 (mod 100)

30 31 ±5, 7, ±9, 11 and 17.

60 269 43 and 49.

±14, ±24, 27, ±36, ±40, ±44, 49,

751 ±56, ±61, ±64, ±74, 117, 133,

139, and 147. 0, 1, 3, ±6, ±75 or 183 (mod 300)

150 ±26, ±50, 59, ±60, 73, 83, 123

151 and 149.

1201 ±10, 23, 53 and 91.

±75, 183, ±225, ±294, 300, 301,

600 9001 303 and 483. 0, 1, 3, or ±6 (mod 600)

Table C.

For part (b), since, an integer N is heptagonal if and only if 40N + 9 = (10 ·m− 3)2 where m
is a positive integer, we have the following table which proves the theorem.

n 0 1 3 ±6
Qn 1 1 7 99

40Qn + 9 72 72 172 632

m 1 1 2 −6
Pn 0 1 5 ±70

Table D.
If d is a positive integer which is not a perfect square it is well known that x2− dy2 = ±1

is called the Pell’s equation and that if x1 + y1

√
d is the fundamental solution of it (that is,

x1 and y1 are least positive integers), then xn + yn

√
d = (x1 + y1

√
d)n is also a solution of the

same equation; and conversely every solution of it is of this form. Now by (3), it follows that

Q2n +
√

2P2n is a solution of x2 − 2y2 = 1,

while
Q2n+1 +

√
2P2n+1 is a solution of x2 − 2y2 = −1.

Therefore, by Table D and the Theorem, the two corollaries follows.
Corollary 1: The solution set of the Diophantine equation x2(5x − 3)2 = 8y2 − 4 is
{(1,±1), (2,±5)}.
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Corollary 2: The solution set of the Diophantine equation x2(5x − 3)2 = 8y2 + 4 is
{(1, 0), (−6,±70)}.
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