HEPTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS $x^2(5x-3)^2 = 8y^2 \pm 4$

B. Srinivasa Rao

1-5-478/1, New Maruthinagar, Dilsukhnagar, Hyderabad-500 060, A.P., India (Submitted January 2003)

1. INTRODUCTION

We denote the m^{th} g-gonal number by

$$\mathcal{G}_{m,g} = m\{(g-2)m - (g-4)\}/2$$
 (see [1]).

If m is positive and $g=3,4,5,6,7,8,\ldots$, etc., then the number $\mathcal{G}_{m,g}$ is triangular, square, pentagonal, hexagonal, heptagonal and octagonal etc., respectively. Finding the numbers common to any two infinite sequences is one of the problems in Number Theory. Several papers (See [2] to [15]) have appeared identifying the numbers $\mathcal{G}_{m,g}$ (for g=3,4,5 and 7) in the sequences $\{F_n\},\{L_n\},\{P_n\}$ and $\{Q_n\}$ (the Fibonacci, Lucas, Pell and Associated Pell sequences respectively). We will summarize these results in Table A, including the present result that 1, 7 and 99 are the only generalized heptagonal numbers in the associated Pell sequence $\{Q_n\}$ defined by

$$Q_0 = Q_1 = 1$$
 and $Q_{n+2} = 2Q_{n+1} + Q_n$ for any integer n.

This result also solves the two Diophantine equations in the title.

Sequences		Triangular	Square	Pentagonal	Heptagonal
[12]		(A000217)	(A000290)	(A000326)	(A000566)
Fibonacci	by	Ming Luo [4]	J.H.E. Cohn [2]	Ming Luo [6]	B. Srinivasa Rao [14]
$\{\mathbf{F_n}\}$	n	$0, \pm 1, 2, 4, 8, 10$	$0, \pm 1, 2, 12$	$0, \pm 1, 2, \pm 5$	$0, \pm 1, 2, \pm 7, \pm 9, 10$
(A000045)	$\mathbf{F_n}$	0, 1, 3, 21, 55	0, 1, 144	0, 1, 5	0, 1, 13, 34, 55
Lucas	by	Ming Luo [5]	J.H.E. Cohn [2]	Ming Luo [7]	B. Srinivasa Rao [13]
$\{\mathbf{L_n}\}$	n	1, ±2	1, 3	$0, 1, \pm 4$	$1, 3, \pm 4, \pm 6$
(A000032)	$\mathbf{L_n}$	1, 3	1, 4	2, 1, 7	1, 4, 7, 18
		Wayne McDaniel	Katayama, S.I. &	V.S.R. Prasad &	B. Srinivasa Rao
Pell	by	[8]	Katayama, S.G. [3]	B. Srinivasa Rao [10]	[15]
$\{\mathbf{P_n}\}$	n	0, ±1	$0, \pm 1, \pm 7$	$0, \pm 1, 2, \pm 3, 4, 6$	$0, \pm 1, 6$
(A000129)	0129) P_n 0, 1		0, 1, 169	0, 1, 2, 5, 12, 70	0, 1, 70
Associated		V.S.R. Prasad &	Katayama, S.I. &	V.S.R. Prasad &	Present
Pell	Pell by B. Srinivasa Rao [11]		Katayama, S.G. [3]	B. Srinivasa Rao [9]	Result
$\{\mathbf{Q_n}\}$	n	$0, 1, \pm 2$	0, 1	0, 1, 3	$0, 1, 3, \pm 6$
(A001333)	$\mathbf{Q_n}$	1, 3	1	1, 7	1, 7, 99

Table A.

In the above table, by a polygonal number we mean a generalized polygonal number (with m any integer). Further, each cell where a column and a row meet represents the numbers common to both the corresponding sequences named after the person who identified them.

2. MAIN THEOREM

We need the following well known properties of $\{P_n\}$ and $\{Q_n\}$: For all integers k, m and n.

$$P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}} \text{ and } Q_n = \frac{\alpha^n + \beta^n}{2}$$
where $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$ (1)

$$P_{-n} = (-1)^{n+1} P_n \text{ and } Q_{-n} = (-1)^n Q_n$$
 (2)

$$Q_n^2 = 2P_n^2 + (-1)^n (3)$$

$$Q_{m+n} = 2Q_m Q_n - (-1)^n Q_{m-n} (4)$$

$$3|P_n \text{ iff } 4|n \text{ and } 3|Q_n \text{ iff } n \equiv 2 \pmod{4}$$
 (5)

$$9|P_n \text{ iff } 12|n \text{ and } 9|Q_n \text{ iff } n \equiv 6 \pmod{12} \tag{6}$$

If m is even, then (see [9])

$$Q_{n+2km} \equiv (-1)^k Q_n \pmod{Q_m} \tag{7}$$

Theorem: (a) Q_n is a generalized heptagonal number only for n = 0, 1, 3 or ± 6 ; and (b) Q_n is a heptagonal number only for n = 0, 1 or 3.

Proof: (a) Case 1: Suppose $n \equiv 0, 1, 3, \pm 6 \pmod{600}$.

Then it is sufficient to prove that $40Q_n + 9$ is a perfect square if and only if $n = 0, 1, 3, \pm 6$. To prove this, we adopt the following procedure which enables us to tabulate the corresponding values reducing repetition and space.

Suppose $n \equiv \varepsilon \pmod{N}$ and $n \neq \varepsilon$. Then n can be written as $n = 2 \cdot \delta \cdot 2^{\theta} \cdot g + \varepsilon$, where $\theta \geq \gamma$ and $2 \mid g$. Furthermore, $n = 2km + \varepsilon$, where k is odd and m is even.

Now, using (7), we get

$$40Q_n + 9 = 40Q_{2km+\varepsilon} + 9 \equiv 40(-1)^k Q_{\varepsilon} + 9 \pmod{Q_m}.$$

Therefore, the Jacobi symbol

$$\left(\frac{40Q_n+9}{Q_m}\right) = \left(\frac{-40Q_{\epsilon}+9}{Q_m}\right) = \left(\frac{Q_m}{M}\right).$$
(8)

But modulo M, $\{Q_n\}$ is periodic with period P (here if $n \equiv 2 \pmod{4}$), then we choose P as a multiple of 4 so that $3 \not | Q_m$). Now, since for $\theta \ge \gamma, 2^{\theta+s} \equiv 2^{\theta} \pmod{P}$, choosing $m = \mu \cdot 2^{\theta}$ if $\theta \equiv \zeta \pmod{s}$ and $m = 2^{\theta}$ otherwise, we have $m \equiv c \pmod{P}$ and $\left(\frac{Q_m}{M}\right) = -1$, for all values of m. From (8), it follows that $\left(\frac{40Q_n+9}{Q_m}\right) = -1$, for $n \ne \varepsilon$. For each value of ε , the corresponding values are tabulated in this way (Table B).

ε	N	δ	γ	s	M	P	μ	$\zeta \pmod{\mathbf{s}}$	$\mathbf{c} \pmod{\mathbf{P}}$
0, 1	20	5	1	4	31	30	5	0, 3	$2, 4, \pm 10.$
							25	6, 7, 15, 24.	$2, \pm 10, \pm 20, 32,$
									$34, \pm 40, 70, 76,$
									$\pm 80, 94, 106,$
								0, 2, 3, 4,	140, 152, 154,
3	100	25	1	36	271	270		10, 12, 13,	158, 166, 182,
							5	$\pm 17, 18, 21,$	184, 188, 196,
								22, 31, 35.	212, 242, 248
									256.
							25	3, 7.	4, 16, 32, 64,
							5	10, 12, 13.	192, 200, 220,
						2.438			256, 296, 332,
±6	600	75	2	18	439	=876			440, 512, 548,
							3	15.	572, 616, 664.
									712, 740.

Table B.

Since L.C.M. of (20, 100, 600)=600, the first part of the theorem follows for $n \equiv 0, 1, 3$ or $\pm 6 \pmod{600}$.

Case 2: Suppose $n \not\equiv 0, 1, 3$ or $\pm 6 \pmod{600}$. Step by step we proceed to eliminate certain integers n congruent modulo 600 for which $40Q_n + 9$ is not a square. In each step we choose an integer m such that the period k (of the sequence $\{Q_n\}$ mod m) is a divisor of 600 and thereby eliminate certain residue classes modulo k. For example.

Mod 41: The sequence $\{Q_n\}$ mod 41 has period 10. We can eliminate $n \equiv \pm 2 \pmod{10}$, since $40Q_n + 9 \equiv 6 \pmod{41}$ and 6 is a quadratic nonresidue modulo 41. There remain $n \equiv 0, 1, 3, 4, 5, 6, 7$ or 9 (mod 10).

Similarly we can eliminate the remaining values of n. We tabulate them in the following way (Table C) which proves part (a) of the theorem completely.

Period k	Modulus m	Required values of n where $\left(\frac{40Q_n+9}{m}\right)=-1$	Left out values of n (mod t) where t is a positive integer
10	41	±2.	$0, \pm 1, \pm 3, \pm 4, $ or 5 (mod 10)
20	29	10, 11, 13, 17 and 19	$0, 1, 3, \pm 4, \pm 5, \pm 6, 7 \text{ or } 9 \pmod{20}$
		$15, \pm 16, \pm 20, 21, 29, 35, \pm 46, 55,$	
	1549	63, 69, 81, 87 and 95,	$0, 1, 3, \pm 6, 9, \pm 14, 23, \pm 24, \pm 25,$
100		$\pm 4, 5, 7, \pm 34, 43, \pm 44, 45, 65$ and	$\pm 26, \ 27, \ \pm 36, \ \pm 40, \ 41, \ 47, \ 49, \ 61,$
	29201	85.	67, 83 or 89 (mod 100)
30	31	$\pm 5, 7, \pm 9, 11 $ and $17.$	
60	269	43 and 49.	
	751	$\pm 14, \pm 24, 27, \pm 36, \pm 40, \pm 44, 49, $ $\pm 56, \pm 61, \pm 64, \pm 74, 117, 133,$	
		139, and 147.	$0, 1, 3, \pm 6, \pm 75 \text{ or } 183 \pmod{300}$
150		$\pm 26, \pm 50, 59, \pm 60, 73, 83, 123$	
	151	and 149.	
	1201	$\pm 10, \ 23, \ 53 \ {f and} \ \ 91.$	
		$\pm 75, \ 183, \ \pm 225, \ \pm 294, \ 300, \ 301,$	
600	9001	303 and 483 .	$0, 1, 3, \mathbf{or} \pm 6 \pmod{600}$

Table C.

For part (b), since, an integer N is heptagonal if and only if $40N + 9 = (10 \cdot m - 3)^2$ where m is a positive integer, we have the following table which proves the theorem.

n	0	1	3	±6
Q_n	1	1	7	99
$40Q_{n} + 9$	7^2	7^2	17^{2}	63^{2}
m	1	1	2	-6
P_n	0	1	5	± 70

Table D.

If d is a positive integer which is not a perfect square it is well known that $x^2 - dy^2 = \pm 1$ is called the Pell's equation and that if $x_1 + y_1\sqrt{d}$ is the fundamental solution of it (that is, x_1 and y_1 are least positive integers), then $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^n$ is also a solution of the same equation; and conversely every solution of it is of this form. Now by (3), it follows that

$$Q_{2n} + \sqrt{2}P_{2n}$$
 is a solution of $x^2 - 2y^2 = 1$,

while

$$Q_{2n+1} + \sqrt{2}P_{2n+1}$$
 is a solution of $x^2 - 2y^2 = -1$.

Therefore, by Table D and the Theorem, the two corollaries follows.

Corollary 1: The solution set of the Diophantine equation $x^2(5x-3)^2 = 8y^2 - 4$ is $\{(1,\pm 1),(2,\pm 5)\}.$

Corollary 2: The solution set of the Diophantine equation $x^2(5x-3)^2 = 8y^2 + 4$ is $\{(1,0),(-6,\pm70)\}.$

REFERENCES

- [1] Shiro Ando. "A Note on the Polygonal Numbers." The Fibonacci Quarterly 19 (1981): 180-183.
- [2] J. H. E. Cohn. "Lucas and Fibonacci Numbers and Some Diophantine Equations." *Proc. Glasgow Math. Assn.* **7** (1965): 24-28.
- [3] Shin-Ichi Katayama and Shigeru Katayama. "Fibonacci, Lucas and Pell Numbers and Class Numbers of Bicyclic Biquadratic Fields." *Math. Japonica* **42.1** (1995): 121-126.
- [4] Ming Luo. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989): 98-108.
- [5] Ming Luo. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers. Volume 4. Ed. G.E. Bergum, et. al. Kluwer Academic Pub., 1991, pp. 231-240.
- [6] Ming Luo. "Pentagonal Numbers in the Fibonacci Sequence." Applications of Fibonacci Numbers. Volume 6. Ed. G.E. Bergum, et. al. Kluwer Academic Pub., 1994.
- [7] Ming Luo. "Pentagonal Numbers in the Lucas Sequence." *Portugaliae Mathematica* **53.3** (1996): 325-329.
- [8] W. L. McDaniel. "Triangular Numbers in the Pell Sequence." The Fibonacci Quarterly **34.2** (1996): 105-107.
- [9] V. Siva Rama Prasad and B. Srinivasa Rao. "Pentagonal Numbers in the Associated Pell Sequence and Diophantine Equations $x^2(3x-1)^2 = 8y^2 \pm 4$." The Fibonacci Quarterly **39.4** (2001): 299-303.
- [10] V. Siva Rama Prasad and B. Srinivasa Rao. "Pentagonal Numbers in the Pell Sequence and Diophantine Equations $2x^2 = y^2(3y-1)^2 \pm 2$." The Fibonacci Quarterly **40.3** (2002): 233-241.
- [11] V. Siva Rama Prasad and B. Srinivasa Rao. "Triangular Numbers in the Associated Pell Sequence and Diophantine Equations $x^2(x+1)^2 = 8y^2 \pm 4$." Indian J. Pure Appl. Math **33.11** (2002): 1643-1648.
- [12] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences, A00032, A000129, A000045, A000217, A000290, A000326, A000566, A001333.
- [13] B. Srinivasa Rao. "Heptagonal Numbers in the Lucas Sequence and Diophantine Equations $x^2(5x-3)^2 = 20y^2 \pm 16$." The Fibonacci Quarterly **40.4** (2002): 319-322.
- [14] B. Srinivasa Rao. "Heptagonal Numbers in the Fibonacci Sequence and Diophantine Equations $4x^2 = 5y^2(5y-3)^2 \pm 16$." The Fibonacci Quarterly **41.5** (2003): 414-420.
- [15] B. Srinivasa Rao. "Heptagonal Numbers in the Pell Sequence and Diophantine Equations $2x^2 = y^2(5y-3)^2 \pm 2$." The Fibonacci Quarterly **43.3** (2005): 194-201.

AMS Classification Numbers: 11B39, 11D25, 11B37

 $X \times X$