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ABSTRACT

In this paper, we use ergodic theory to compute the aysmptotic growth rate of a family
of random Fibonacci type sequences. This extends the result in [2]. We also prove some
Lochs-type results regarding the effectiveness of various number theoretic expansions.

1. INTRODUCTION

Let x ∈ [0, 1) and k be a fixed integer greater than or equal to 2. As we shall show in the
next section, we can write x as

x =
k−a1

1 +
(k − 1)k−a2

1 +
(k − 1)k−a3

1 + · · ·

≡ [a1, a2, a3, · · · ]k, (1)

where the “digits” am = am(x) are natural numbers. The main result of this paper is the
following theorem:
Theorem 1: For each x ∈ [0, 1), we associate with it an infinite sequence of natural numbers
{a1, a2, · · · } through (1). Consider the random Fibonacci type sequences, {Qm}, defined by
Q−1 = 0, Q0 = 1, a0 = 0, and

Qm = kamQm−1 + (k − 1)kam−1Qm−2, (2)

for m ≥ 1. Then, for almost all x with reference to the Lebesgue measure, the asymptotic
growth rate of Qn is given by

β∗(k) ≡ lim
n→∞

1
n

lnQn = ck

∫ 1

0

ln(1/x)
(1 + (k − 1)x)(k + (k − 1)x)

dx ≤ ck
3k − 1

2k(2k − 1)
, (3)

where ck = (k − 1)2/ log(k2/(2k − 1)).
The case of k = 2 was first proved in [2] and it was motivated by the work of

Viswanath [19]; see also [7, 21]. For an interesting introduction, see Peterson’s article [14].
Theorem 1 is a generalization of the case of k = 2, and its proof (cf. Section 4) uses the same
strategy used in [2]. Precisely, it makes use of an interval map, Tk (defined in Section 2) and
its ergodicity (cf. Section 3). A key ingredient of the proof of Theorem 1 is the invariant prob-
ability density of the map Tk (cf. equation (15)). The explicit form of the invariant probability
density was kindly pointed out by the referee of [2]. It should be noted that, given an interval

73



THE ASYMPTOTIC GROWTH RATE OF RANDOM FIBONACCI TYPE SEQUENCES II

map, in general, it is a difficult task to obtain the explicit form of its invariant probability den-
sity; for some non-trivial examples, see, e.g., [5, 13, 17] (see also [6, 10, 18] and the references
quoted therein). As an application of the ergodicity of Tk, we prove a Khintchin-type result
in Section 3.

In Section 5, we compute the entropy of Tk. In brief, the entropy of an interval map
reflects the amount of randomness generated by the map. It is also an isomorphism invariant,
so that isomorphic transformations would have the same entropy. For an introduction, see,
e.g., [1]. As an application, we prove results regarding the effectiveness of various number
theoretic expansions. For example, consider a real number x ∈ [0, 1). On the one hand, we
can write x in the decimal expansion, i.e., x = 0.d1d2d3 · · · . On the other hand, we write
x = [a1, a2, a3, · · · ]2. For notation, see (1). Suppose we are given the first n digits of the
decimal expansion of x. Then these n digits determine mD2(n, x) digits of the expansion
[a1, a2, a3, · · · ]2. We shall prove that, for almost all x ∈ [0, 1) with respect to the Lebesgue
measure, we have

lim
n→∞

mD2(n, x)
n

= 1.41826 · · · . (4)

In the rest of the paper, k always denotes a fixed integer greater than or equal to 2.

2. THE INTERVAL MAP Tk

The goal of this section is to define the interval map Tk and set up the preliminaries that
are needed for the rest of the paper.

First, we prove that
Lemma 1: For all x ∈ [0, 1), we have x = [a1, a2, a3, · · · ]k, where am are natural numbers.

Proof: For x ∈ [0, 1), we can find a natural number a1 such that k−a1−1 < x ≤ k−a1 .
We can also write this as

k−a1

1 + (k − 1)
< x ≤ k−a1

1 + 0
.

This means we can find a unique x1 ∈ [0, 1) such that

x =
k−a1

1 + (k − 1)x1
.

Since x1 ∈ [0, 1), we can repeat the same iteration and obtain

x =
k−a1

1 +
(k − 1)k−a2

1 +
(k − 1)k−a3

1 + · · ·

= [a1, a2, a3, · · · ]k.

As an example, we have π − 3 = [2, 0, 1, 0, 0, 0, 1, 1, · · · ]2 = [1, 1, 0, 0, 1, 0, 1, 1, · · · ]5.
Next, we define Tk:
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Definition 1: Define the interval map Tk : [0, 1) → [0, 1) as follows: for x = 0, Tk0 ≡ 0;
for x 6= 0, Tkx = Tk[a1, a2, a3, · · · ]k ≡ [a2, a3, a4, · · · ]k. There is another way to define Tk for
x 6= 0. With b•c denoting the floor function, define

a(x) ≡
⌊

log(1/x)
log k

⌋
.

Then we have

Tkx =
1

k − 1

(
k−a(x)

x
− 1
)
. (5)

To see (5), observe that x = k−a(x)/(1 + (k − 1)Tkx). Below are the graphs for T2 and T5:

With the above understood, we define the following recursions:
Definition 2: For all x = [a1, a2, · · · ]k ∈ [0, 1), define

Pm(x) = kam(x)Pm−1(x) + (k − 1)kam−1(x)Pm−2(x), k ≥ 2

Qm(x) = kam(x)Qm−1(x) + (k − 1)kam−1(x)Qm−2(x), k ≥ 1
(6)

where P0 = 0, P1 = 1, Q−1 = 0, Q0 = 1 and a0(x) ≡ 0.
Note that the second equation in (6) is the recursion in (2). Note that Pm and Qm depend

on k, even though the explicit dependence is suppressed in the present notation. Note also
that (6) is related to continued fractions [a1, a2, · · · ]k. Define the compact notation

b1

d1 +
b2

d2 + · · ·

≡ b1|
|d1

+
b2|
|d2

+ · · · .

With this understood, we can write

[a1, a2, a3, · · · ]k =
k−a1 |
| 1

+
(k − 1) k−a2 |
| 1

+
(k − 1) k−a3 |
| 1

+ · · · .
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Standard induction shows that

k−a1 |
| 1

+
(k − 1) k−a2 |
| 1

+ · · ·+ (k − 1) k−an |
|1 + (k − 1) t

=
Pn + t (k − 1) kanPn−1

Qn + t (k − 1) kanQn−1
, (7)

for 0 ≤ t ≤ 1, and

Pn−1(x)Qn(x)− Pn(x)Qn−1(x) = (−1)n (k − 1)n−1ka1 · · · kan−1 . (8)

By combining Lemma 1 and (7), we have, for x ∈ [0, 1),

x =
Pn(x) + t (k − 1) kan(x)Pn−1(x)
Qn(x) + t (k − 1) kan(x)Qn−1(x)

, (9)

where t = Tn
k x (i.e., iterating the map Tk for n times). Taking t = 0 in (9) gives the nth

approximation of x:

[a1, a2, · · · , an]k ≡
Pn(x)
Qn(x)

. (10)

Furthermore, we can show by induction that Pn(x) = Qn−1(Tkx). In fact, a similar result also
holds for the deformation of Pn and Qn. Precisely, we have:
Definition 3: For n = 1, 2, · · · , let t = Tn

k x and define

An(x) = Pn(x) + t (k − 1) kan(x)Pn−1(x),

Bn(x) = Qn(x) + t (k − 1) kan(x)Qn−1(x).
(11)

Note that (9) and (11) imply x = An(x)/Bn(x). By induction, we can show that

An(x) = Bn−1(Tkx). (12)

By combining (8)-(10), we have

|x− [a1, · · · , an]k| =
(k − 1)nka1+···+an

Qn (t−1Qn + (k − 1)kanQn−1)
, (13)

where t = Tn
k x. Note that this equation, which measures the difference between x and its nth

approximation, is the key ingredient of the following estimate:
Lemma 2: For all x ∈ [0, 1), we have |x− [a1, · · · , an]k| ≤ ((k − 1)/k)n.

Remarks: This implies the limit x = limn→∞[a1, a2, · · · , an]k exists, as (k − 1)/k < 1.
Proof: Denote λ = (k − 1)/k. By using (13) and the fact that t−1 ≥ 1, we have

|x− [a1, · · · , an]k| ≤
(k − 1)nka1+···+an

Qn (Qn + (k − 1) kanQn−1)
≡ sn.
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We claim that sn ≤ λ sn−1. Indeed, by (6), Qn + (k − 1) kanQn−1 ≥ k kanQn−1, therefore

sn ≤ λ

(
(k − 1)n−1ka1+···+an−1

QnQn−1

)
≤ λ

(
(k − 1)n−1ka1+···+an−1

Qn−1 (Qn−1 + (k − 1) kan−1Qn−2)

)
= λ sn−1.

In obtaining the second inequality, we have used the fact that Qn ≥ Qn−1 +(k−1) kan−1Qn−2.
This proves the claim. By direct computation, we have s1 ≤ λ k−a1 ≤ λ. This, with sn ≤
λ sn−1, shows that sn ≤ λn. This proves the lemma.

Finally, we define the fundamental cylinders. They are a particular partition that is
natural to continued fractions of type (1). First, let t ∈ [0, 1) and define ψa1···an(t) by

ψa1···an(t) =
k−a1 |
| 1

+
(k − 1) k−a2 |
| 1

+ · · ·+ (k − 1) k−an |
|1 + (k − 1) t

. (14)

We define 4a1···an
= {ψa1···an

(t); t ∈ [0, 1)} to be the fundamental cylinder of rank n. We also
define 4a (i.e., the cylinders of rank one) to be the atoms of the partition.

A key property of the cylinders is that
Lemma 3: Let l denote the Lebesgue measure; then l(4a1···an) ≤ ((k − 1)/k)n.
Remark: this lemma implies that the class of all cylinders generates the σ-algebra F of Borel
sets. Now, we turn to the proof of this lemma.

Proof: By direct computation, we have

l(4a1···an
) = |ψa1···an

(1)− ψa1···an
(0)| = (k − 1)nka1+···+an

Qn (Qn + (k − 1) kanQn−1)
= sn.

Note that, in the second equality, we have used (7) and mimicked the same tricks used in
showing (13). The present lemma is proven by noting that sn ≤ ((k− 1)/k)n, as shown in the
proof of the previous lemma.

This concludes the preliminary set up and we are ready to study the ergodicity of Tk, to
which we now turn.

3. THE ERGODICITY OF Tk

In this section, we prove that Tk is ergodic with respect to the following measure:

µk(A) = ck

∫
A

dx

(1 + (k − 1)x)(k + (k − 1)x)
, (15)

where A is an element of the σ-algebra F of Borel sets. Here, the normalization ck, defined
in Theorem 1, is chosen so that µk([0, 1]) = 1. µ2 was first discovered by the author in [2].
Thanks to the referee of the same paper who pointed out the explicit expression of (15) for
k ≥ 3.

Since, for x ∈ [0, 1), the integrand in (15) is bounded between ck/(k (2k − 1)) and ck/k,
therefore, we can find constants dL and dU with 0 < dL < dU <∞, such that

dL l(A) ≤ µk(A) ≤ dU l(A). (16)
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An important property of µk is that it is preserved by the interval map Tk; i.e., µk(T−1
k A) =

µk(A) for every A ∈ F . To establish this, it is enough to show that
Lemma 4: For t > 0, we have µk

(
T−1

k [0, t]
)

= µk ([0, t]).

Proof: Let γ = 1/k and define W (m) = log (1 + (k − 1) γm)− log
(
1 + (k−1) γm

1+(k−1) t

)
. Then

we have

µk

(
T−1

k [0, t]
)

= µk

( ∞⋃
m=0

[
γm

1 + (k − 1) t
, γm

])
=

∞∑
m=0

µk

([
γm

1 + (k − 1) t
, γm

])

=
∞∑

m=0

∫ γm

γm/(1+(k−1) t)

dµk

=
ck

(k − 1)2

∞∑
m=0

W (m)−W (m+ 1)

=
ck

(k − 1)2
W (0) =

ck
(k − 1)2

log
(
k(1 + (k − 1) t)
k + (k − 1) t

)
.

Direct computation shows that the last expression is µk([0, t]).
With this understood, we prove the following:

Theorem 2: Tk is ergodic with respect to µk.
Proof: Our proof follows the same strategy used in [2]. It is the strategy used by

Billingsley [1] to prove the ergodicity of the continued fraction map; see also [3, 6, 9, 10, 15].
All we need to do is to show that if A ∈ F is such that T−1A = A and µk(A) > 0, then
µk(A) = 1. To proceed, for fixed a1, · · · , an, let us denote ψa1···an

and 4a1···an
, which are

defined in (14) and the sentence right after it, by ψ(n) and 4(n) respectively.
First, we want to prove that, for A ∈ F , we have

l
(
T−n

k A ∩4(n)

)
≥ 1
k
l(A) l(4(n)). (17)

To this end, we first consider A being an interval [x, y), where 0 ≤ x < y ≤ 1. Observe that

l
(
T−n

k A ∩4(n)

)
l
(
4(n)

) =

∣∣ψ(n)(y)− ψ(n)(x)
∣∣∣∣ψ(n)(1)− ψ(n)(0)
∣∣

= l(A)
(

Qn(Qn+(k − 1) kanQn−1)
(Qn+x (k − 1) kanQn−1)(Qn+y (k − 1) kanQn−1)

)
︸ ︷︷ ︸

≡ h(x,y)

(18)

Note that, in obtaining the second equality, we have used the fact that l(A) = |y−x| and have
mimicked similar tricks that are used in the proof of Lemma 2 and 3.
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Since h(x, y) ≥ h(1, 1) = 1/k, therefore (18) implies that (17) holds for A being an interval.
¿From this, with the inner and outer regularity of measures, it follows that (17) holds also if
A is a disjoint union of intervals, and hence holds for any A ∈ F .

Because of (16), inequality (17) implies an analogous result for µk(A); precisely, for A ∈ F ,
we have

µk

(
T−n

k A ∩4(n)

)
≥ C∗µk(A)µk(4(n)) (19)

for some positive constant C∗. Now, this inequality implies the theorem. Indeed, let A be
such that T−1

k A = A and suppose µk(A) > 0. Then, inequality (19) implies that µk (A ∩ E) ≥
C∗µk(A)µk(E) holds for finite disjoint unions E of fundamental cylinders; since these sets
generate F , we have µk (A ∩ E) ≥ C∗µk(A)µk(E) for any E ∈ F . Taking E = Ac, the
complement of A, we see that µk(Ac) = 0 and so µk(A) = 1.

With the ergodicity of Tk proven, we can apply the Ergodic Theorem to prove:
Theorem 3: For almost all x = [a1, a2, · · · ]k ∈ (0, 1), we have

α∗(k) ≡ lim
n→∞

log
(
ka1+···+an

)1/n

=
ck log k
(k − 1)2

∞∑
m=0

log

1 +
(k − 1)3

km+2 + 2 (k − 1) k +
(k − 1)2

km


m

.

(20)

Proof: To prove this Khintchin-type result, we proceed as follows. See Finch’s book [8]
on the orginal Khintchin constant. Again, let γ = 1/k. Consider the integer-valued function
a(x) which gives the first digit of x; cf. Definition 1. Note that a(x) = m whenever k−(1+m) <
x ≤ k−m. Consider, then, the following integral

∫ 1

0

a(x) dµk =
∞∑

m=0

m

∫ γm

γm+1
dµk

=
ck

(k − 1)2

∞∑
m=0

m log

1 +
(k − 1)3

km+2 + 2 (k − 1) k +
(k − 1)2

km


︸ ︷︷ ︸

≡Hm

.

(21)

Since

logHm ≤ log
(

1 +
k3

km+2

)
≤ k

km
,

therefore
∑
m logHm ≤ (1− 1/k)−2; i.e., the series is convergent. Therefore, we can apply

the Ergodic Theorem: for almost all x, we have

α∗(k) = lim
n→∞

log
(
ka1+···+an

)1/n =log k lim
n→∞

1
n

n−1∑
m=0

a(Tm
k x) =log k

∫ 1

0

a(x) dµk. (22)
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This, with (21), completes the proof of the theorem.
As examples, we have α∗(2) = 0.97693 · · · , α∗(3) = 0.95476 · · · and α∗(100) =

0.80902 · · · .

4. PROOF OF THEOREM 1

We follow the strategy used in [2]; see also [1, 3, 6, 18]. Recall that x = An(x)/Bn(x);
cf. Definition 3 and the sentence immediately following it. Similarly, we have Tm

k x =
An−m(Tm

k x)/Bn−m(Tm
k x). With this understood, we have

n−1∏
i=0

T i
kx =

An(x)
Bn(x)

An−1(Tkx)
Bn−1(Tkx)

· · ·
A1(Tn−1

k x)
B1(Tn−1

k x)
=

1
Bn(x)

. (23)

Because of (12) we have almost all factors canceled, except Bn(x) and A1(Tn−1
k x) = 1.

By using the definition of Bn(x) (cf. 11) and the fact that 0 ≤ Tn
k x < 1, we have

Qn ≤ Bn ≤ kQn. This, with (23), implies

1
kQn(x)

≤
n−1∏
i=0

T i
kx ≤

1
Qn(x)

.

This shows that − log k− logQn(x) ≤
∑

log T i
kx ≤ − logQn(x). By the Ergodic Theorem, we

have, for almost all x,

β∗(k) = lim
n→∞

1
n

logQn = − lim
n→∞

1
n

n−1∑
i=0

log T i
kx =

∫ 1

0

log(1/x) dµk. (24)

To find the upper bound stated in Theorem 1, we observe that, for x ∈ [0, 1],

0 ≤ 1
(1 + (k − 1)x)(k + (k − 1)x)

≤ − 2(k − 1)
k (2k − 1)

x+
1
k
.

This, with
∫ 1

0
(ax+ b) log(1/x) dx = b+ (a/4), where a and b are constants, implies

∫ 1

0

log(1/x) dµk ≤ ck

∫ 1

0

log(1/x)
(
− 2(k − 1)
k (2k − 1)

x+
1
k

)
dx = ck

3k − 1
2k(2k − 1)

.

This proves Theorem 1.
As examples, we have β∗(2) = 1.30022 · · · (proven in [2]), β∗(3) = 1.45799 · · · and

β∗(100) = 2.90446 · · · .

5. THE ENTROPY OF Tk

The main result of this section is
Theorem 4: The entropy of Tk, denoted by h(Tk), on the unit interval with respect to the
measure µk is given by h(Tk) = 2β∗(k)−α∗(k)− log(k−1), where β∗(k) and α∗(k) are defined
in Theorems 1 and 3 respectively.
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Proof: Let 4(n)(x) be the fundamental cylinder of rank n that contains the point x.
Then, by using the same tricks for proving Lemma 3, we have

l(4(n)(x))
(k − 1)nka1+···+an

Qn (Qn + (k − 1) kanQn−1)
.

Since Qn ≤ Qn + (k − 1) kanQn−1 ≤ Qn + (k − 1)Qn = kQn, we have

1
k

(
(k − 1)nka1+···+an

Q2
n

)
≤ l(4(n)(x)) ≤

(
(k − 1)nka1+···+an

Q2
n

)
.

This implies, for almost all x,

lim
n→∞

− log l(4(n)(x))
n

= 2 lim
n→∞

1
n

logQn − lim
n→∞

log
(
ka1+···+an

)1/n − log(k − 1)

= 2β∗(k)− α∗(k)− log(k − 1),

and we are done.
Remarks: We could have used the Rohlin Entropy Formula; cf. [16]; see also [15]. All we
have to do is to check Rényi’s condition: we can show that

∣∣ψ′a1···an
(t)
∣∣∣∣ψ′a1···an

(r)
∣∣ =

(
Qn + r (k − 1) kanQn−1

Qn + t (k − 1) kanQn−1

)2

≤
(
Qn + (k − 1) kanQn−1

Qn

)2

≤ k2.

Here, ψ′a1···(t) denotes the derivative of ψa1···(t) with respect to t. The first equality is due
to (7) and (14). The first inequality is obtained when setting r = 1 and t = 0. In the last
inequality, again, we have used Qn + (k − 1) kanQn−1 ≤ kQn. So the ratio of the derivatives
is bounded and Rényi’s condition is satisfied.

Now, by using Rohlin’s formula, we have (Tk(x) ≡ Tkx)

h(Tk) =
∫ 1

0

log |T ′k(x)| dµk

=
∫ 1

0

log
(

k−a(x)

(k − 1)x2

)
dµk

=
∫ 1

0

(2 log(1/x)− a(x) log k − log(k − 1)) dµk.

= 2β∗(k)− α∗(k)− log(k − 1).

Note that the derivative of Tk(x) is calculated using (5). The last line is due to (22) and (24).
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As examples, we have, h(T2) = 1.62352 · · · , h(T3) = 1.26808 · · · and h(T100) =
0.40478 · · · . This implies the maps T2, T3 and T100 are not isomorphic to each other (be-
cause entropy is an isomorphism invariant; e.g., see Theorem 6.1.7 in [6]). This observation
leads to
Conjecture 1: Tk is not isomorphic to Tl if k 6= l.

Lastly, we prove some results regarding the effectiveness of various number theoretic ex-
pansions. In the 60s, Lochs proved the following striking result. Write x ∈ [0, 1) as a regular
continued fraction (RCF); i.e.,

x =
1 |
| c1

+
1 |
| c2

+
1 |
| c3

+ · · · .

Here, the digits cm are integers greater than or equal to 1. Represent the same x by its decimal
representation; i.e., x = 0.d1d2d3 · · · . Denote by mDR(n, x) the number of digits of the RCF
that are determined by the first n digits of the decimal expansion of x. Here, the subscript
DR stands for the two different number theoretic expansions (“D” stands for “decimal” and
“R” for “regular ” in RCF). Lochs proved the following [11]:
Theorem 5: For almost all x ∈ [0, 1) with respect to the Lebesgue measure, we have

lim
n→∞

mDR(n, x)
n

=
6 log 2 log 10

π2
= 0.970270 · · · .

Remarkably, Bosma, Dajani and Kraaikamp (Entropy and Counting Correct Digits, Rap-
porten Mathematisch Instituut preprint, June 1999) generalized Lochs’ result, comparing the
rate of approximation of a wide range of number theoretic expansions (such as the alternating
Lüroth expansion and the g-adic expansions). Quite recently, this result was beautifully ex-
tended by Dajani and Fieldsteel [4] to the most general setting, and based on this result, we
shall prove results such as that of (4).

In order to prove (4), we need to know the interval maps that generate the expansions. The
expansions of the type of (1), i.e., [a1, a2, · · · ]k, are generated by iteration of Tk. The interval
map that generates the decimal representation is well-known (e.g., cf. [6]): it is defined by
Sx = 10x (mod 1), where x ∈ [0, 1). Analogous to 4a1···ak

, we define, Bd1···dn , the decimal
cylinder of order n. Here, dk ∈ {0, 1, · · · , 9}. Let y = 0.d1d2 · · · dn and z = y + 10−n. Then,
we define Bd1···dn

= [y, z]. We also define the atoms of this partition to be Bd.
It is well-known that S preserves the Lebesgue measure and its entropy is given by log 10.

Note that, cf. [4], mD2(n, x) in (4) can also be defined as

mD2(n, x) = sup {m; Bd1···dn(x) ⊂ 4a1···am(x)}.

Here, the subscript “2” stands for the expansion [a1, · · · ]2 (i.e., the case of k = 2).
Next we introduce the notion of the number theoretic fibered maps (NTFMs), to which

the result of Dajani and Fieldsteel applies. Precisely, a surjective map U : [0, 1) → [0, 1) is
a NTFM if it satisfies ( [4]; see also [18] and the preprint by Bosma, Dajani and Kraaikamp
cited above):

1. there exists a finite or countable partition of intervals P = {Pα; α ∈ D} (here D is the
digit set) such that U restricted to each atom of P is monotone, continuous and injective,

2. U is ergodic with respect to the Lebesgue measure l, and there exists a U invariant
probability measure µ equivalent to l with bounded density.
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Maps such as S and the continued fraction map (TCF (x) = 1/x− b1/xc) are NTFMs (cf. [4]).
It is not hard to see that Tk, which is analogous to TCF (x), is also a NTFM. With this
understood, consider NTFMs U and V on [0, 1), with invariant measures µU and µV (equivalent
to the Lebesgue measure) and with partitions P and Q respectively. Denote by P(n)(x) the
cylinder of rank n that contains x ∈ [0, 1) (a similar definition for Q(m)(x)). Let m(n, x) =
sup {m; P(n)(x) ⊂ Q(m)(x)}. Suppose that h(U) > 0 and h(V ) > 0. Then we have (Theorem
4 in [4]):
Theorem 6: (Dajani and Fieldsteel, 2001) Under the conditions just stated, with respect to
the Lebesgue measure, we have, for almost all x ∈ [0, 1),

lim
n→∞

m(n, x)
n

=
h(U)
h(V )

.

Apply this theorem with U = S and V = TCF (the continued fraction map), we get back
Lochs’ result (Theorem 5), as h(S) = log 10 and h(TCF ) = π2/(6 log 2).

Equation (4) also follows immediately from this beautiful theorem. Set U = S and V = T2.
Since h(S) = log 10 and h(T2) = 2β∗(2) − α∗(2) = 1.62352 · · · (cf. the examples listed after
the proof of Theorem 4), Theorem 6 implies, for almost all x,

lim
n→∞

mD2(n, x)
n

=
h(S)
h(T2)

= 1.41826 · · · .

We can also compare the effectiveness of the expansion in (1) with different k. For example,
write x ∈ [0, 1) as

x = [d1, d2, · · · ]2 = [e1, e2, · · · ]3.

Let m23(n, x) the number of digits of the expansion in k = 3 that are determined by the first
n digits of the expansion in k = 2. Here, the subscript “23” stands the expansions for k = 2
and for k = 3. Then, by the same argument, we have

lim
n→∞

m23(n, x)
n

=
h(T2)
h(T3)

= 1.28029 · · · .

Remarks: By imitating Mayer [12] and Wirsing [20], one can derive not just the constant
(β∗(k)) but also the rate of convergence to the constant. This will be addressed elsewhere.
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