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ABSTRACT

Given a sequence (uy) of positive integers generated by uy = 1,us = a,u, = aup—1 +
bun,—o(n > 3), define the generalized factorial by [n]! = ujus - - - u,, and the generalized binomial
coefficient by C(i,7) = [i + 7]'/([¢]![j]!). Assume that the prime p does not divide b. Let
r = min{n : plu,}. Theorem 1 (Asymptotic abundance of residues): #{(i,j)[0 <
i,j < rp¥ and C(i, ) = p(mod p)} ~ %(m;)k ask —ooforp=1,...,p— 1. Theorem
2 (Fractal dimension): Let s; = 7p*. The Hausdorff dimension of Ny U; j<s, {[i/sk, (i +

1)/sk) x [3/sk, (7 +1)/sk) 1 p /C (i, §)} is log (P3)/ log p.
1. INTRODUCTION

A classical theorem of E. Lucas [15] expresses the binomial coefficient (an) modulo a prime
p in terms of the binomial coefficients of the base-p digits of N and m: If N = ) ijj and
m =Y m;p’ where 0 < N;,m; < p, then

()-1() i

m+n\  (m+n)
~ mln!

Alternatively, letting

Bm.n) = (

bl

m

we have
B(m,n) = B(m + p,n + p)B(m mod p,n mod p) (mod p)

where m = p is the integer quotient of m by p, and m mod p is the remainder. As noted in [18],
this implies that, modulo p, the matrix [B(m,n) mod p] with 0 < m,n < p* is equivalent to
B®F¥ the k-fold tensor (or, Kronecker) product of B = [B(4,j) mod p| where 0 < i,j < p. Note
that matrix indices start at index pair (0,0). This is an algebraic and “square” representation
of the oft-noted self-similarity structure of Pascal’s “triangle”; see, e.g., [19], [2], [7], [8], [14],
[22], and [1]. For example, if p = 3, then the matrix [B(m,n) mod p] for 0 < m,n < 9 is given
as follows:
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11 1 1 1 1 1 1 17
12 01 2 01 2 0
1001 0 01 00
1 1 1.2 2 2 0 00 1B 1B 1B
1 2021000 O0(=|1B 2B 0B|=B®B (modp),
10 02 00 00 O 1B 0B 0B
1110 0 0 0 0 O
12 0 0 0 0 0 0 O
L1 0 0 00 0 0 0 04
where
1 1 1 11
B=|1 2 3|=|1 2 0 (mod p).
1 3 6 1 0 0

The nonzero residues of the matrix B®* may be associated with the subset By of [0,1) x
[0, 1) formed by taking the union of those squares [m/p*, (m + 1)/p*) x [n/p*, (n +1)/p*) for
which p |/B(m,n) (0 < m,n < p¥). Then B := NBy is the union of N = p+ (p—1)+---+1=
(P1') self-similar sets. Its “self-similarity dimension” (see Mandelbrot [16], [17, p. 37]), also
called the “box-counting dimension” [4, p. 20], is D = log N/log(1/r) where r = 1/p is the
scaling ratio. This result was noted by Wolfram [22] in 1984. Using a different geometric
construction, Flath and Peele [5] solved the more difficult problem of determining that the
Hausdorff dimension of B is also log (’Hz'l)/ logp. The Hausdorff dimension dimg(B) of a
subset B of R? is defined as follows. See, e.g., [4, p. 22]. First, for s > 0, define the Hausdorff
measure

H? = sup inf U;

(B) 6>0 {Ui} Z L

where |U;| is the diameter of U; and the infimum is taken over all countable covers {U;} of B
with every |U;| < d. Then

dimgy (B) = inf{s : H*(B) = 0} = sup{s : H*(B) = co}.

The purpose of this paper is to provide proofs of similar fractal dimension results and den-
sity results (previously announced in [11]) for a large class of generalized binomial coefficients.
The matrix of generalized binomial coefficients modulo a prime turns out to be formed of basic
building blocks arrayed in a pattern that results from superimposing binomial self-similarity
upon a doubly periodic “tiling.” The proof relates the enumeration of these building blocks to
a Markov chain, and invokes Perron-Frobenius theory to obtain the box-counting-type fractal
dimension result. The more challenging Hausdorff dimension result is achieved by employing
the mass distribution principle of fractal geometry. Multifractal results have been published
elsewhere [9)].
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2. GENERALIZED BINOMIAL COEFFICIENTS

Generalized binomial coefficients corresponding to a given sequence (u,,) are defined anal-
ogously to B(m,n) by replacing n! by the product of u; through wu,,,

(]! := Hu]

and then defining

C(m,n):= [m + n]!
[m]![n]!
(assuming any zero factors in the numerator and denominator are first paired and then can-
celled).
In this paper we assume that the sequence is defined by a second-order recurrence relation
as follows:
ug = 0;u1 = L;u, = aup_1 + bu,_o forn=2,3,4,...

where a and b are integers.

When a = 2 and b = —1, then u,, = n and the generalized binomial coefficients become
the ordinary binomial coefficients: C(m,n) = B(m,n). When a = 1 + g and b = —q, then
Up =14+q+q>+---+¢" ! and the generalized binomial coefficients are the Gauss g-binomial
coefficients. When ¢ = 1 and b = 1, then u, = F),, the n'® Fibonacci number, and the
generalized binomial coefficients become the fibonomial coefficients.

3. WELLS’S THEOREM AND THE PATTERN OF THE RESIDUES

Wells [20] [21] has proved a generalization of the Lucas theorem for these generalized
binomial coefficients. For the purposes of our fractal dimension calculations, we use one of the
alternative versions given in [10]. To state it, we need to introduce the following definitions
and notations.

Definition 1: Let r denote the rank of apparition of p; thus, r := min{n € N : u, =
0 (mod p)}. Let t denote the (least) period of (u, mod p), if it exists. Let s :=t¢/r.

Notation: If r < oo, then for each nonnegative integer n, let

ng :=n mod r,

n=n-<+r,
n* :=n mod t,
n :=n*+r=n' mod s.

Definition 2: For i¢,5 > 0 and for 0 < k,I < r, let A, ;(k,l) denote the solution of the
modulo-p recurrence relation

A@j(k‘, l) = uir+k+1Ai7j(k,‘,l - 1) -+ ijT+l_1Ai,j(k' — 1, l)
for 0 < k,l < r together with the boundary conditions
A j(k,—1)=0 (modp) for 1<k<r
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and
A j(-1,1)=0 (modp) for 1<I<r

and
A;;(0,0) =1 (mod p).

Definition 3: For 7,7 > 0 and 0 < k,l < r, define
Hi,j(ka l) = u:fglAi,j (k’,l)

Asnoted in [10], H; ; = H; mod s,j mod s (mod p), s0 Hyyr nr(mo, o) = Hyprr mrr (Mo, no) (mod p).
Also Hypr (Mo, o) = 0 (mod p) if mo +ng > .
Here is the generalization of Lucas’s theorem from [10] that we shall use.

Proposition 1: If p |/b, then, for m,n > 0,
C(m,n) = B(m',n')Hp i (mo,no)  (mod p).

This result simplifies nicely when s = 1. Then m” = n” = 0, and Hyo(mo,no) =
C(mo,ng) (mod p) for 0 < mg,ng < r. Thus, in this case, as in the Pascal triangle case, the
pattern of residues exhibits self-similarity upon scaling by p.

Corollary: If p |/b and s =1, then, for m,n >0,
C(m,n) = B(m',n")C(mo,no) (mod p),

or, letting B denote the matriz [B(i,5)] with 0 < 4,7 < p and C*) = [C(m,n)] with 0 <
m,n < rp*, we have
c® =B% C® (mod p).

The following examples are borrowed from [10].

Example 1: g-binomial coefficients. Take u, = Zz;é ¢* to obtain the g-binomial
coefficients. For a numerical example, take ¢ = 2 and p = 5. Then uy = 1,us = 3,u3 = 7,uq =
15,u5 = 31,..., whence r = 4, and

1 1 1 1 11 1 1
@_ |1 3 7 15| _|1 320
. 1 7 35 155 |=|1 2 0 of (medd)
1 15 155 1395 1 0 0 0
so, for k=0,1,2,...,
1c® 1c® 1c® 1c® 1c®
1c® oc® 3c®) 4c® oC®
ctH =Bgc® =|1c® 3¢® 1c® oc® oCc® | (mod 5).
1% 4c® oc® oc®) oCc*)
1k oc® oc® oc* oCc
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Example 2: Fibonomial coefficients modulo p. Let a = b = 1 so that u, = F,,, and
consider the case p = 3. Then r =4, t = 8, and s = 2. By Definition 3,

101 1 17 101 1 17
1 1 2 0 2 2 1 0
Hoo=17 9 o o|iHua=11 5 ¢ o|’
1 0 0 0. (2 0 0 0
102 1 27 102 1 27
1 2 20 2 110
Hio=17 1 g o'Hu1=11 1 ¢ o
1 0 0 0. (2 0 0 0

The structure of the matrix of fibonomial coefficients modulo 3, in accordance with Proposition
1, is given in Table 1.

B ]_H070 1H071 1H0’0 1H0’1 ]_H070 1H071 1H0’0 1H071 ]-HO,O s
1H170 2H1,1 OHI,O 1H171 2H1,0 0H1,1 1H170 2H171 OHI,O .-
lHoyo 0H071 0H070 ]-HO,l OH()’(] 0H071 1H070 OHoyl 0H070
1H, 1H1’1 1H, 2H1’1 2H, 2H171 0H; g OHl,l 0H;
1H, 2H0,1 OHQ’O 2H071 1H, OHOJ 0Hy o OHo’l 0Hy
1H, 0H171 0H 2H1’1 0H; o 0H171 0H; g 0H1’1 0H, o
1H, g 1H0’1 1H, OHO’l 0Hg o 0H071 0Hy g OH()’l 0Hy o
1H, 2H171 0H; o OHl,l 0H; o 0H1,1 0H, g 0H171 0H,
1Hyo OHy: OHyo OHy: OHyo OHgy; OHpo OHp: OHpp

Table 1. Submatrices of the fibonomial coefficients mod 3

Proposition 1 and the example show that the infinite matrix [C(7, j) mod p] may be par-
titioned into r x r submatrices which form basic, natural “tiling units.” The pattern of the
residues is obtained by superimposing the self-similar array of binomial coefficients modulo p
upon the doubly periodic “tiling” of the plane by “hidden” r x » H matrices. The binomial
structure is self-similar upon scaling by the factor p. The r x r tiling structure has period s
both horizontally and vertically, and so the period is ¢ at the element level. When s = 1, there
are p — 1 different nonzero r x r submatrices, one for each nonzero residue value of B(m/,n’)
mod p times C(®). In the general case, there are also s - s different H,,. ,»-matrices. In fact,
there are (p — 1)s? different nonzero “tiles,” by the following proposition of [10, p. 234].

Proposition 2: Assume p |/b. The number of different nonzero r x r submatrices of the
infinite matriz (C(i,j) mod p] is (p — 1)s®. Furthermore, the mapping (p, p,v) — pH,, is
one to one from {1,... ,p—1} x{0,... ,s =1} x{0,...,s — 1} into the set of r X r matrices
mod p.

In the case of the the fibonomial coefficients modulo 3, the matrix exhibited in Table 1
shows these seven submatrices:

1Hyo,1Hy1,1H, 9,1H, 1,2H,,2H, o,2H, ;.
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The places of the missing 2H o are farther out—at (5,11), (11,5),(5,13),(13,5) ... in Table
1.

4. SCALING-UP RECURSION FORMULA

Define
Ca.p(m,n) = B(m',n")Hotm» g+n(mo,ng) (mod p).
By Proposition 1, if p |/b, then Cy o(m,n) = C(m,n) (mod p).
Proposition 3: Assume p |/b. If m = mup*~lr + m®*) and n = ngp* " 1r + n*) where
0 <m® nk) < rphk=1 then
Ca(m, 1) = By 1) Catmy (M, M) (mod p).

Proof: Here m’' := m +r = mgp*~' + (m™)’, so, by Lucas’s Theorem, B(m',n') =
B(my,ni)B(m®)’ n®)’) (mod p). Also m” := m/ mod s = my + m¥)’ (mod s), because
p¥~1 =1 (mod s), a consequence of s|p — 1 ([10, p. 229]), so by s-periodicity, Hoim gin =
Hy oy +m®7 ging+ntos (mod p). Invoke the definitions of Cy 5(m,n)

and Co iy gin, (m®*, n*)) to complete the proof. O
5. ASYMPTOTIC ABUNDANCE OF RESIDUES

Define the matrices

and let
P vy = #{(1.5) 0 < i j < pF,

Co pir + 19, j7 + jo) = pHp,. (G0, jo) (mod p) for 0 < g, jo < 7}

and B}
F®p, p,v) = f559 (o, 1, v).

The quantity f*)(p, u,v) is our focus for now. It is the number of pH,,, tiles in the initial
rp¥ x rp* square of C(i,7) values.

Lemma 1: i
(i,g’(puua V) = f(k)(Paﬂ - o,V — 6)

Proof: Use the definitions of f ((fg, f*) and Cy 3, together with the fact that the mapping
(p, p,v) — pH,, , is one to one on {1,... ,p—1} x {0,... ,s =1} x{0,... ,s—1}. O
Lemma 2: For 1 <p<pand0 < pu,v <s,
FB vy = > (B, o — v —j).

0<i,7<p
i+7<p
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Here B(i,7)~! and B(i,j)"p are calculated modulo p.
Proof: By Proposition 3, Cgfg is a pxp block matrix whose (i,5) block is
B(i, ')(C(k_l) (0<14,j <p). Fori+j <p, the number of pH, , tiles in the (i,j) block is

f(k b ( (i,5) " tp,p,v). (For i+ j > p, we have B(i,7) =0 (mod p).) The proof is completed
by applying Lemma 1. O

Let 7 :={1,... ,p—1}x{0,... ,s—1}x{0,... ,s—1}. For I = (p,u,v),J = (p, i, V) € J,
define

= #{(6,5) : 0 <i,j <p,i+j <p,B(i,5)"'p=p (mod p),
g—i=p(mods), 7—j =v(mods)}
=#{(i,7): 0<4,j<p,i+j<p B(i,j)p=p (modp),
p+i=p(mods), v+j = (mods)}
and the matrix
= [Qf].
Lemma 3:
p(p+1) p+U
I RV e
JeJg Ieg
Proof:
/ . . L p(p+1)
D Qi =#{(i.j):0<ij<pi+i<pl="75—.

JeJg

Likewise for ., Q%. O
Accordingly, let

2
I_ I
I )@
Then
P := [P]]

is a doubly stochastic matrix.

Lemma 4: Regarding f*) as a row vector with indices I = (p, u,v), we have

f(k‘) — f(O)@k.
Proof: By Lemma 2,

fPG o)=Y B b i, 7 - )

0<4,5<p
i+7<p
_ (k— 1) (p,p,v) (k— 1)
= > Qi =3 f
(p,pu,v)€T Ieg
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so f(F) = f=1Q, whence f¥) = fOQF. O

Note: f©(p, p,v) = 1if (p,p,v) = (1,0,0) and otherwise equals 0.

A nonnegative matrix is primitive if some power of it has all positive entries. A Markov
chain is regular if its transition probability matrix is primitive.

Lemma 5: Every entry of Q3 is positive, and so is every entry of P3. Consequently, the finite
Markov chain having P as its transition matriz is reqular.

Proof: Note that (Q3)] > QL Q¥ Q% and QEZ;Z;Z;% > 0 if and only if there exists (i, j)

with 0 < 4,7 < p and i + j < p such that B(i,j)p1 = p2 (mod p), u1 + i = pg (mod s), and
v1 +j =1 (mod s). Let I = (p,pu,v) and J = (p, i, 7). For the first factor, let iy = 1,71 =
(prp~t —1) mod p,p1 = p,p1 = (u+i1) mod s,v1 = (v + j1) mod s, and K = (p1, fu1,11).
Then QL > 0. Second, let ia = (i — 1) mod s,ja = 0,p3 = p1,p2 = fi,v2 = v1, and
L = (pa, pi2,v2). Then Q¥ > 0. Finally, let i3 = 0 and j3 = (7 — ) mod s to show Q% > 0.
Therefore, (Q3)4 >0. 0O

The example of the fibonomials modulo 3 shows that 3 is the least power that will work
in this lemma.

Theorem 1: For 1 <p<p and 0 < pu,v < s,

f(n)(p’,u,’y) ~

1 [p(p +

1 n
) as n — oo
(p—1)s2 2

and

o Jog ™) (p, p,v) _ logp(p +1)/2
n—00 log p™ logp

For p =0 we have that
S o mv) = p*" = [plp+1)/2" = p™ 1 = {(p+1)/(2p)}"]

is the number of zero tiles in C™).
Proof: By Lemma 3, the stationary vector of the matrix Pis ——(1,...,1). Since P
(p—1)s
is the transition matrix of a regular Markov chain, by Lemma 4, then f(OP" converges to
this stationary vector as n — oo, by Perron-Frobenius theory (see, e.g., [12, p. 125]). Finally,

according to Kummer’s theorem [13], the number of pairs (i, 7) with 0 < 4,5 < p™ for which p
does not divide the binomial coefficient B(i,j) is the same as the number of pairs of n-digit

p-ary numbers (ZZ;& irpt, Zz;é jxp®) for which there are no carries when added in base-p
arithmetic. This is the same as the number of digit pairs (ix, jx) with ix + jr < p, which is
[p(p + 1)/2]™. Therefore the number of nonzero tiles B(i, j)pH, , in C™ is precisely [p(p +
1)/2]™, and the number of zero tiles is p*™ — [p(p + 1)/2]". O

Corollary 1: Let

RM(p) := #{(i,5) : 0 < i,j <rp",C(i,5) = p (mod p)},
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the number of C(i,j)’s in the initial rp™ X rp™ square congruent to p modulo p. Then the
asymptotic abundance of the residue p, where 1 < p < p, is given by

gl

and so the logarithmic density, or box-counting dimension, of the set of generalized binomial
coefficients that are congruent to p s

R™(p) ~

log R™ (p)  log[p(p +1)/2]
11m =
n—oo  logp" logp

Proof: Let

g(p, s v) == #{(4,3) : 0 <4,j <7, Hy,(i,5) =p (mod p)},
the number of entries in the r x r matrix H, , that are congruent to p modulo p. Then

R™ ()= > > f"op " mv)g(p, p,v),

1<p<p 0<p,v<s
SO

R~ 3 S PP )

1<p<p0<p,v<s

6. HAUSDORFF DIMENSION OF C(m,n) mod p

A “fractal set” corresponding to the pattern of all nonzero residues of the generalized
binomial coefficients modulo a prime p is constructed as a subset of the square [0,1) x [0, 1)
by “tremas” as follows. We combine all the nonzero residues because the construction below
for a fixed residue will not always yield nested sets. Flath and Peele [5] give an alternative,
rescaled lattice construction.

For each k let G, denote the class of sets

Gﬁff,)n B U [mr—Fi mr+i—|—1) y {m’—i—j m‘—l—j+1>

- ok rpF rpk 0 rpk

0<i,i<r
i+i<r

with 0 < m,n < p* and p|/B(m,n), and let Gy be their union. Proposition 1 and Lucas’s

theorem imply that Gg;?n is contained in some set in G,_1 and contains a finite number of
disjoint sets of Gi11, and Ggy1 C Gi. Accordingly our fractal set is

keN
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Figure 1 shows a density plot of a pre-fractal image of the fibonomial residues modulo 3; the
nonwhite squares are components of Gs.

FIGURE 1. Fibonomial coefficients mod 3

Theorem 2: If p is a prime that does not divide b, then the fractal set G constructed above
has Hausdorff dimension
lo p+1
dimpr(G) = 82 )
logp
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Proof: The proof uses (1) the fact [3, p. 43] that
dimH G S dimB G,

where dimpg G is the box-counting dimension of G, and (2) the mass distribution principle |3,
p. 55]: if u is a measure on a set F' and for some s there are numbers ¢ > 0, > 0 such that

wU) < U

for all sets U with |U| < ¢ (where |U] is the diameter of U), then the Hausdorff measure
H*(F) > p(F)/c and s < dimpy (F'). The box-counting dimension of G may be calculated [3,
p. 41] by the formula

log N, (G
dimp G = lim 208 Vo ) 5 (G)
k—oo — log (Sk

where N(G) is the smallest number of §-mesh squares that intersect the set G, provided that
the sequence () decreases to zero and 01 > ndy for some positive constant 7. Let us choose
8k = 1/(rp*) (and n = 1/p). Then

N5k (G) =

r(r2+1> [p<p2+1>]’“’

SO

log N,
dimB(G) - klggo O§ 10(;((55)

k
log (r(r;l) = )
= lim

b —log[1/(rp")]

o log —r(r;l) + klog —p(p2+1)
el logr + klogp

~ log (P31)

a logp

Now let p be the “natural measure” defined by repeated subdivision [3, pp. 13—14] that
assigns weight (pgl) ¥ to each set in Gr and weight 0 to the complement of G: At stage k+1,
the weight of each G,(fﬁf,)n is evenly divided among the (p ’51) sets in G4+ contained therein. We
shall see that there exist ¢ > 0 and § > 0 such that
log (")

< d h =
w(U) < clU|* where d og p
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for all sets U with diameter |[U| < ¢. Let 6 € (0,1). Suppose |U| < §. Let k be the integer
such that 1/p*+! < |U| < 1/p*. Note that then 1/p* < p|U| and U meets at most four of the
sets in Gy, (because U is contained in a square of side |U| with sides parallel the coordinate

. . . k
axes, and this containing square can intersect no more than four ng,)n’s). Therefore,

1
<
u(U) 4(p+1)k
2
4 1 p+1
= — % because d = M
(p9) log p
1\
-+(5)
< 4(p|U))?,

so u(U) < ¢|U|? for all sets U with |U| < § where ¢ = 4p?. By the mass distribution principle,
d < dimgy G. But from before, dimp G = d, and we know dimy G < dimpg G, so we must have
dimy G =d =log ("5')/logp. O

1]

<
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