FRACTAL DIMENSION OF ARITHMETICAL STRUCTURES OF GENERALIZED BINOMIAL COEFFICIENTS MODULO A PRIME

John M. Holte

Department of Mathematics and Computer Science, Gustavus Adolphus College, St. Peter, MN 56082
(Submitted July 2003-Final Revision June 2004)

Abstract

Given a sequence (u_{n}) of positive integers generated by $u_{1}=1, u_{2}=a, u_{n}=a u_{n-1}+$ $b u_{n-2}(n \geq 3)$, define the generalized factorial by $[n]!=u_{1} u_{2} \cdots u_{n}$ and the generalized binomial coefficient by $C(i, j)=[i+j]!/([i]![j]!)$. Assume that the prime p does not divide b. Let $r=\min \left\{n: p \mid u_{n}\right\}$. Theorem 1 (Asymptotic abundance of residues): $\#\{(i, j) \mid 0 \leq$ $i, j<r p^{k}$ and $\left.C(i, j) \equiv \rho(\bmod p)\right\} \sim \frac{r(r+1)}{2(p-1)}\binom{p+1}{2}^{k}$ as $k \rightarrow \infty$ for $\rho=1, \ldots, p-1$. Theorem 2 (Fractal dimension): Let $s_{k}=r p^{k}$. The Hausdorff dimension of $\cap_{k} \cup_{i, j<s_{k}}\left\{\left[i / s_{k},(i+\right.\right.$ 1) $\left.\left./ s_{k}\right) \times\left[j / s_{k},(j+1) / s_{k}\right): p \vee C(i, j)\right\}$ is $\log \binom{p+1}{2} / \log p$.

1. INTRODUCTION

A classical theorem of E. Lucas [15] expresses the binomial coefficient $\binom{N}{m}$ modulo a prime p in terms of the binomial coefficients of the base- p digits of N and m : If $N=\sum N_{j} p^{j}$ and $m=\sum m_{j} p^{j}$ where $0 \leq N_{j}, m_{j}<p$, then

$$
\binom{N}{m} \equiv \prod\binom{N_{j}}{m_{j}} \quad(\bmod p) .
$$

Alternatively, letting

$$
B(m, n):=\binom{m+n}{m}=\frac{(m+n)!}{m!n!}
$$

we have

$$
B(m, n) \equiv B(m \div p, n \div p) B(m \bmod p, n \bmod p) \quad(\bmod p)
$$

where $m \div p$ is the integer quotient of m by p, and $m \bmod p$ is the remainder. As noted in [18], this implies that, modulo p, the matrix $[B(m, n) \bmod p]$ with $0 \leq m, n<p^{k}$ is equivalent to $\boldsymbol{B}^{\otimes k}$, the k-fold tensor (or, Kronecker) product of $\boldsymbol{B}=[B(i, j) \bmod p]$ where $0 \leq i, j<p$. Note that matrix indices start at index pair $(0,0)$. This is an algebraic and "square" representation of the oft-noted self-similarity structure of Pascal's "triangle"; see, e.g., [19], [2], [7], [8], [14], [22], and [1]. For example, if $p=3$, then the matrix $[B(m, n) \bmod p]$ for $0 \leq m, n<9$ is given as follows:

$$
\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 0 \\
1 & 2 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \equiv\left[\begin{array}{ccc}
1 \boldsymbol{B} & 1 \boldsymbol{B} & 1 \boldsymbol{B} \\
1 \boldsymbol{B} & 2 \boldsymbol{B} & 0 \boldsymbol{B} \\
1 \boldsymbol{B} & 0 \boldsymbol{B} & 0 \boldsymbol{B}
\end{array}\right] \equiv \boldsymbol{B} \otimes \boldsymbol{B} \quad(\bmod p),
$$

where

$$
\boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right] \equiv\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 0
\end{array}\right] \quad(\bmod p)
$$

The nonzero residues of the matrix $\boldsymbol{B}^{\otimes k}$ may be associated with the subset B_{k} of $[0,1) \times$ $[0,1)$ formed by taking the union of those squares $\left[m / p^{k},(m+1) / p^{k}\right) \times\left[n / p^{k},(n+1) / p^{k}\right)$ for which $p \bigvee B(m, n)\left(0 \leq m, n<p^{k}\right)$. Then $B:=\cap B_{k}$ is the union of $N=p+(p-1)+\cdots+1=$ $\binom{p+1}{2}$ self-similar sets. Its "self-similarity dimension" (see Mandelbrot [16], [17, p. 37]), also called the "box-counting dimension" [4, p. 20], is $D=\log N / \log (1 / r)$ where $r=1 / p$ is the scaling ratio. This result was noted by Wolfram [22] in 1984. Using a different geometric construction, Flath and Peele [5] solved the more difficult problem of determining that the Hausdorff dimension of B is also $\log \binom{p+1}{2} / \log p$. The Hausdorff dimension $\operatorname{dim}_{H}(B)$ of a subset B of \mathbb{R}^{2} is defined as follows. See, e.g., [4, p. 22]. First, for $s \geq 0$, define the Hausdorff measure

$$
\mathcal{H}^{s}(B)=\sup _{\delta>0} \inf _{\left\{U_{i}\right\}} \sum\left|U_{i}\right|^{s}
$$

where $\left|U_{i}\right|$ is the diameter of U_{i} and the infimum is taken over all countable covers $\left\{U_{i}\right\}$ of B with every $\left|U_{i}\right| \leq \delta$. Then

$$
\operatorname{dim}_{H}(B)=\inf \left\{s: \mathcal{H}^{s}(B)=0\right\}=\sup \left\{s: \mathcal{H}^{s}(B)=\infty\right\}
$$

The purpose of this paper is to provide proofs of similar fractal dimension results and density results (previously announced in [11]) for a large class of generalized binomial coefficients. The matrix of generalized binomial coefficients modulo a prime turns out to be formed of basic building blocks arrayed in a pattern that results from superimposing binomial self-similarity upon a doubly periodic "tiling." The proof relates the enumeration of these building blocks to a Markov chain, and invokes Perron-Frobenius theory to obtain the box-counting-type fractal dimension result. The more challenging Hausdorff dimension result is achieved by employing the mass distribution principle of fractal geometry. Multifractal results have been published elsewhere [9].

2. GENERALIZED BINOMIAL COEFFICIENTS

Generalized binomial coefficients corresponding to a given sequence (u_{n}) are defined analogously to $B(m, n)$ by replacing n ! by the product of u_{1} through u_{n},

$$
[n]!:=\prod_{j=1}^{n} u_{j}
$$

and then defining

$$
C(m, n):=\frac{[m+n]!}{[m]![n]!}
$$

(assuming any zero factors in the numerator and denominator are first paired and then cancelled).

In this paper we assume that the sequence is defined by a second-order recurrence relation as follows:

$$
u_{0}=0 ; u_{1}=1 ; u_{n}=a u_{n-1}+b u_{n-2} \text { for } n=2,3,4, \ldots
$$

where a and b are integers.
When $a=2$ and $b=-1$, then $u_{n}=n$ and the generalized binomial coefficients become the ordinary binomial coefficients: $C(m, n)=B(m, n)$. When $a=1+q$ and $b=-q$, then $u_{n}=1+q+q^{2}+\cdots+q^{n-1}$ and the generalized binomial coefficients are the Gauss q-binomial coefficients. When $a=1$ and $b=1$, then $u_{n}=F_{n}$, the $n^{t h}$ Fibonacci number, and the generalized binomial coefficients become the fibonomial coefficients.

3. WELLS'S THEOREM AND THE PATTERN OF THE RESIDUES

Wells [20] [21] has proved a generalization of the Lucas theorem for these generalized binomial coefficients. For the purposes of our fractal dimension calculations, we use one of the alternative versions given in [10]. To state it, we need to introduce the following definitions and notations.

Definition 1: Let r denote the rank of apparition of p; thus, $r:=\min \left\{n \in \mathbb{N}: u_{n} \equiv\right.$ $0(\bmod p)\}$. Let t denote the (least) period of $\left\langle u_{n} \bmod p\right\rangle$, if it exists. Let $s:=t / r$.
Notation: If $r<\infty$, then for each nonnegative integer n, let

$$
\begin{aligned}
n_{0} & :=n \bmod r, \\
n^{\prime} & :=n \div r, \\
n^{*} & :=n \bmod t, \\
n^{\prime \prime} & :=n^{*} \div r=n^{\prime} \bmod s .
\end{aligned}
$$

Definition 2: For $i, j \geq 0$ and for $0 \leq k, l<r$, let $A_{i, j}(k, l)$ denote the solution of the modulo- p recurrence relation

$$
A_{i, j}(k, l) \equiv u_{i r+k+1} A_{i, j}(k, l-1)+b u_{j r+l-1} A_{i, j}(k-1, l)
$$

for $0 \leq k, l<r$ together with the boundary conditions

$$
A_{i, j}(k,-1) \equiv 0 \quad(\bmod p) \quad \text { for } \quad 1 \leq k<r
$$

and

$$
A_{i, j}(-1, l) \equiv 0 \quad(\bmod p) \quad \text { for } \quad 1 \leq l<r
$$

and

$$
A_{i, j}(0,0) \equiv 1 \quad(\bmod p) .
$$

Definition 3: For $i, j \geq 0$ and $0 \leq k, l<r$, define

$$
H_{i, j}(k, l):=u_{r+1}^{r i j} A_{i, j}(k, l) .
$$

As noted in [10], $H_{i, j} \equiv H_{i \bmod s, j \bmod s}(\bmod p)$, so $H_{m^{\prime}, n^{\prime}}\left(m_{0}, n_{0}\right) \equiv H_{m^{\prime \prime}, n^{\prime \prime}}\left(m_{0}, n_{0}\right)(\bmod p)$. Also $H_{m^{\prime \prime}, n^{\prime \prime}}\left(m_{0}, n_{0}\right) \equiv 0(\bmod p)$ if $m_{0}+n_{0}>r$.

Here is the generalization of Lucas's theorem from [10] that we shall use.
Proposition 1: If $p \backslash b$, then, for $m, n \geq 0$,

$$
C(m, n) \equiv B\left(m^{\prime}, n^{\prime}\right) H_{m^{\prime \prime}, n^{\prime \prime}}\left(m_{0}, n_{0}\right) \quad(\bmod p) .
$$

This result simplifies nicely when $s=1$. Then $m^{\prime \prime}=n^{\prime \prime}=0$, and $H_{0,0}\left(m_{0}, n_{0}\right) \equiv$ $C\left(m_{0}, n_{0}\right)(\bmod p)$ for $0 \leq m_{0}, n_{0}<r$. Thus, in this case, as in the Pascal triangle case, the pattern of residues exhibits self-similarity upon scaling by p.
Corollary: If $p \backslash b$ and $s=1$, then, for $m, n \geq 0$,

$$
C(m, n) \equiv B\left(m^{\prime}, n^{\prime}\right) C\left(m_{0}, n_{0}\right) \quad(\bmod p),
$$

or, letting \boldsymbol{B} denote the matrix $[B(i, j)]$ with $0 \leq i, j<p$ and $\boldsymbol{C}^{(k)}=[C(m, n)]$ with $0 \leq$ $m, n<r p^{k}$, we have

$$
\boldsymbol{C}^{(k)} \equiv \boldsymbol{B}^{\otimes k} \otimes \boldsymbol{C}^{(0)} \quad(\bmod p)
$$

The following examples are borrowed from [10].
Example 1: q-binomial coefficients. Take $u_{n}=\sum_{k=0}^{n-1} q^{k}$ to obtain the q-binomial coefficients. For a numerical example, take $q=2$ and $p=5$. Then $u_{1}=1, u_{2}=3, u_{3}=7, u_{4}=$ $15, u_{5}=31, \ldots$, whence $r=4$, and

$$
\boldsymbol{C}^{(0)}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 3 & 7 & 15 \\
1 & 7 & 35 & 155 \\
1 & 15 & 155 & 1395
\end{array}\right] \equiv\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 3 & 2 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad(\bmod 5),
$$

so, for $k=0,1,2, \ldots$,

$$
\boldsymbol{C}^{(k+1)} \equiv \boldsymbol{B} \otimes \boldsymbol{C}^{(k)} \equiv\left[\begin{array}{lllll}
1 \boldsymbol{C}^{(k)} & 1 \boldsymbol{C}^{(k)} & 1 \boldsymbol{C}^{(k)} & 1 \boldsymbol{C}^{(k)} & 1 \boldsymbol{C}^{(k)} \\
1 \boldsymbol{C}^{(k)} & 2 \boldsymbol{C}^{(k)} & 3 \boldsymbol{C}^{(k)} & 4 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} \\
1 \boldsymbol{C}^{(k)} & 3 \boldsymbol{C}^{(k)} & 1 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} \\
1 \boldsymbol{C}^{(k)} & 4 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} \\
1 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)} & 0 \boldsymbol{C}^{(k)}
\end{array}\right] \quad(\bmod 5)
$$

Example 2: Fibonomial coefficients modulo p. Let $a=b=1$ so that $u_{n}=F_{n}$, and consider the case $p=3$. Then $r=4, t=8$, and $s=2$. By Definition 3,

$$
\begin{aligned}
& \boldsymbol{H}_{0,0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] ; \boldsymbol{H}_{0,1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 1 & 0 \\
1 & 2 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right] ; \\
& \boldsymbol{H}_{1,0}=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
1 & 2 & 2 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] ; \boldsymbol{H}_{1,1}=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

The structure of the matrix of fibonomial coefficients modulo 3, in accordance with Proposition 1 , is given in Table 1.
$\left[\begin{array}{cccccccccc}1 \boldsymbol{H}_{0,0} & 1 \boldsymbol{H}_{0,1} & 1 \boldsymbol{H}_{0,0} & \cdots \\ 1 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 1 \boldsymbol{H}_{1,1} & 2 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 1 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & \cdots \\ 1 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 1 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 1 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & \cdots \\ 1 \boldsymbol{H}_{1,0} & 1 \boldsymbol{H}_{1,1} & 1 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 2 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & \cdots \\ 1 \boldsymbol{H}_{0,0} & 2 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 2 \boldsymbol{H}_{0,1} & 1 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & \cdots \\ 1 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & \cdots \\ 1 \boldsymbol{H}_{0,0} & 1 \boldsymbol{H}_{0,1} & 1 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & \cdots \\ 1 \boldsymbol{H}_{1,0} & 2 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & 0 \boldsymbol{H}_{1,1} & 0 \boldsymbol{H}_{1,0} & \cdots \\ 1 \boldsymbol{H}_{0,0} & 0 \boldsymbol{H}_{0,1} & 0 \boldsymbol{H}_{0,0} & \cdots \\ \cdot & \cdots \\ \cdot & . & . & \cdots \\ \cdot & \cdot & \cdot & \cdot & . & . & . & . & . & \cdots\end{array}\right]$

Table 1. Submatrices of the fibonomial coefficients mod 3
Proposition 1 and the example show that the infinite matrix $[C(i, j) \bmod p]$ may be partitioned into $r \times r$ submatrices which form basic, natural "tiling units." The pattern of the residues is obtained by superimposing the self-similar array of binomial coefficients modulo p upon the doubly periodic "tiling" of the plane by "hidden" $r \times r \boldsymbol{H}$ matrices. The binomial structure is self-similar upon scaling by the factor p. The $r \times r$ tiling structure has period s both horizontally and vertically, and so the period is t at the element level. When $s=1$, there are $p-1$ different nonzero $r \times r$ submatrices, one for each nonzero residue value of $B\left(m^{\prime}, n^{\prime}\right)$ $\bmod p$ times $\boldsymbol{C}^{(0)}$. In the general case, there are also $s \cdot s$ different $H_{m^{\prime \prime}, n^{\prime \prime}}$-matrices. In fact, there are $(p-1) s^{2}$ different nonzero "tiles," by the following proposition of [10, p. 234].
Proposition 2: Assume $p \bigvee b$. The number of different nonzero $r \times r$ submatrices of the infinite matrix $[C(i, j) \bmod p]$ is $(p-1) s^{2}$. Furthermore, the mapping $(\rho, \mu, \nu) \mapsto \rho \boldsymbol{H}_{\mu, \nu}$ is one to one from $\{1, \ldots, p-1\} \times\{0, \ldots, s-1\} \times\{0, \ldots, s-1\}$ into the set of $r \times r$ matrices $\bmod p$.

In the case of the the fibonomial coefficients modulo 3, the matrix exhibited in Table 1 shows these seven submatrices:

$$
1 \boldsymbol{H}_{0,0}, 1 \boldsymbol{H}_{0,1}, 1 \boldsymbol{H}_{1,0}, 1 \boldsymbol{H}_{1,1}, 2 \boldsymbol{H}_{0,1}, 2 \boldsymbol{H}_{1,0}, 2 \boldsymbol{H}_{1,1} .
$$

The places of the missing $2 \boldsymbol{H}_{0,0}$ are farther out-at $(5,11),(11,5),(5,13),(13,5) \ldots$ in Table 1.

4. SCALING-UP RECURSION FORMULA

Define

$$
C_{\alpha, \beta}(m, n) \equiv B\left(m^{\prime}, n^{\prime}\right) H_{\alpha+m^{\prime \prime}, \beta+n^{\prime \prime}}\left(m_{0}, n_{0}\right) \quad(\bmod p) .
$$

By Proposition 1, if $p \bigvee b$, then $C_{0,0}(m, n) \equiv C(m, n)(\bmod p)$.
Proposition 3: Assume $p \vee b$. If $m=m_{k} p^{k-1} r+m^{(k)}$ and $n=n_{k} p^{k-1} r+n^{(k)}$ where $0 \leq m^{(k)}, n^{(k)}<r p^{k-1}$, then

$$
C_{\alpha, \beta}(m, n) \equiv B\left(m_{k}, n_{k}\right) C_{\alpha+m_{k}, \beta+n_{k}}\left(m^{(k)}, n^{(k)}\right) \quad(\bmod p) .
$$

Proof: Here $m^{\prime}:=m \div r=m_{k} p^{k-1}+\left(m^{(k)}\right)^{\prime}$, so, by Lucas's Theorem, $B\left(m^{\prime}, n^{\prime}\right) \equiv$ $B\left(m_{k}, n_{k}\right) B\left(m^{(k) \prime}, n^{(k) \prime}\right)(\bmod p)$. Also $m^{\prime \prime}:=m^{\prime} \bmod s \equiv m_{k}+m^{(k) \prime}(\bmod s)$, because $p^{k-1} \equiv 1(\bmod s)$, a consequence of $s \mid p-1([10, \mathrm{p} .229])$, so by s-periodicity, $H_{\alpha+m^{\prime \prime}, \beta+n^{\prime \prime}} \equiv$ $H_{\alpha+m_{k}+m^{(k)}, \beta+n_{k}+n^{(k)}{ }^{\prime}(\bmod p) \text {. Invoke the definitions of } C_{\alpha, \beta}(m, n) ~}^{n}$ and $C_{\alpha+m_{k}, \beta+n_{k}}\left(m^{(k)}, n^{(k)}\right)$ to complete the proof.

5. ASYMPTOTIC ABUNDANCE OF RESIDUES

Define the matrices

$$
\mathbb{C}_{\alpha, \beta}^{(k)}:=\left[C_{\alpha, \beta}(m, n)\right] \quad\left(0 \leq m, n<r p^{k}\right)
$$

and let

$$
\begin{aligned}
f_{\alpha, \beta}^{(k)}(\rho, \mu, \nu) & :=\#\left\{(i, j): 0 \leq i, j<p^{k}\right. \\
& \left.C_{\alpha, \beta}\left(i r+i_{0}, j r+j_{0}\right) \equiv \rho H_{\mu, \nu}\left(i_{0}, j_{0}\right)(\bmod p) \text { for } 0 \leq i_{0}, j_{0}<r\right\}
\end{aligned}
$$

and

$$
f^{(k)}(\rho, \mu, \nu):=f_{0,0}^{(k)}(\rho, \mu, \nu) .
$$

The quantity $f^{(k)}(\rho, \mu, \nu)$ is our focus for now. It is the number of $\rho \boldsymbol{H}_{\mu \nu}$ tiles in the initial $r p^{k} \times r p^{k}$ square of $C(i, j)$ values.

Lemma 1:

$$
f_{\alpha, \beta}^{(k)}(\rho, \mu, \nu)=f^{(k)}(\rho, \mu-\alpha, \nu-\beta) .
$$

Proof: Use the definitions of $f_{\alpha, \beta}^{(k)}, f^{(k)}$, and $C_{\alpha, \beta}$, together with the fact that the mapping $(\rho, \mu, \nu) \mapsto \rho \boldsymbol{H}_{\mu, \nu}$ is one to one on $\{1, \ldots, p-1\} \times\{0, \ldots, s-1\} \times\{0, \ldots, s-1\}$.
Lemma 2: For $1 \leq \rho<p$ and $0 \leq \mu, \nu<s$,

$$
f^{(k)}(\rho, \mu, \nu)=\sum_{\substack{0 \leq i, j<p \\ i+j<p}} f^{(k-1)}\left(B(i, j)^{-1} \rho, \mu-i, \nu-j\right) .
$$

Here $B(i, j)^{-1}$ and $B(i, j)^{-1} \rho$ are calculated modulo p.
Proof: By Proposition 3, $\mathbb{C}_{0,0}^{(k)}$ is a $p \times p$ block matrix whose (i, j) block is $B(i, j) \mathbb{C}_{i, j}^{(k-1)}(0 \leq i, j<p)$. For $i+j<p$, the number of $\rho H_{\mu, \nu}$ tiles in the (i, j) block is $f_{i, j}^{(k-1)}\left(B(i, j)^{-1} \rho, \mu, \nu\right)$. (For $i+j \geq p$, we have $B(i, j) \equiv 0(\bmod p)$.) The proof is completed by applying Lemma 1 .

Let $\mathcal{J}:=\{1, \ldots, p-1\} \times\{0, \ldots, s-1\} \times\{0, \ldots, s-1\}$. For $I=(\rho, \mu, \nu), J=(\tilde{\rho}, \tilde{\mu}, \tilde{\nu}) \in \mathcal{J}$, define

$$
\begin{array}{r}
Q_{J}^{I}:=\#\left\{(i, j): 0 \leq i, j<p, i+j<p, B(i, j)^{-1} \tilde{\rho} \equiv \rho(\bmod p),\right. \\
\tilde{\mu}-i \equiv \mu(\bmod s), \quad \tilde{\nu}-j \equiv \nu(\bmod s)\} \\
=\#\{(i, j): \quad 0 \leq i, j<p, i+j<p, B(i, j) \rho \equiv \tilde{\rho}(\bmod p), \\
\mu+i \equiv \tilde{\mu}(\bmod s), \quad \nu+j \equiv \tilde{\nu}(\bmod s)\}
\end{array}
$$

and the matrix

$$
\mathbb{Q}:=\left[Q_{J}^{I}\right] .
$$

Lemma 3:

$$
\sum_{J \in \mathcal{J}} Q_{J}^{I}=\frac{p(p+1)}{2} \quad \text { and } \quad \sum_{I \in \mathcal{J}} Q_{J}^{I}=\frac{p(p+1)}{2} .
$$

Proof:

$$
\sum_{J \in \mathcal{J}} Q_{J}^{I}=\#\{(i, j): 0 \leq i, j<p, i+j<p\}=\frac{p(p+1)}{2}
$$

Likewise for $\sum_{I \in \mathcal{J}} Q_{J}^{I}$.
Accordingly, let

$$
P_{J}^{I}=\frac{2}{p(p+1)} Q_{J}^{I}
$$

Then

$$
\mathbb{P}:=\left[P_{J}^{I}\right]
$$

is a doubly stochastic matrix.
Lemma 4: Regarding $f^{(k)}$ as a row vector with indices $I=(\rho, \mu, \nu)$, we have

$$
f^{(k)}=f^{(0)} \mathbb{Q}^{k} .
$$

Proof: By Lemma 2,

$$
\begin{aligned}
f^{(k)}(\tilde{\rho}, \tilde{\mu}, \tilde{\nu}) & =\sum_{\substack{0 \leq i, j<p \\
\tilde{i}+j<p}} f^{(k-1)}\left(B(i, j)^{-1} \tilde{\rho}, \tilde{\mu}-i, \tilde{\nu}-j\right) \\
& =\sum_{(\rho, \mu, \nu) \in \mathcal{J}} f^{(k-1)}(\rho, \mu, \nu) Q_{(\tilde{\tilde{\rho}}, \tilde{\mu}, \tilde{\nu})}^{(\rho, \mu, \nu)}=\sum_{I \in \mathcal{J}} f^{(k-1)}(I) Q_{J}^{I},
\end{aligned}
$$

so $f^{(k)}=f^{(k-1)} \mathbb{Q}$, whence $f^{(k)}=f^{(0)} \mathbb{Q}^{k}$.
Note: $f^{(0)}(\rho, \mu, \nu)=1$ if $(\rho, \mu, \nu)=(1,0,0)$ and otherwise equals 0 .
A nonnegative matrix is primitive if some power of it has all positive entries. A Markov chain is regular if its transition probability matrix is primitive.
Lemma 5: Every entry of \mathbb{Q}^{3} is positive, and so is every entry of \mathbb{P}^{3}. Consequently, the finite Markov chain having \mathbb{P} as its transition matrix is regular.

Proof: Note that $\left(\mathbb{Q}^{3}\right)_{J}^{I} \geq Q_{K}^{I} Q_{L}^{K} Q_{J}^{L}$ and $Q_{\left(\rho_{2}, \mu_{2}, \nu_{2}\right)}^{\left(\rho_{1}, \mu_{1} \nu_{1}\right)}>0$ if and only if there exists (i, j) with $0 \leq i, j<p$ and $i+j<p$ such that $B(i, j) \rho_{1} \equiv \rho_{2}(\bmod p), \mu_{1}+i \equiv \mu_{2}(\bmod s)$, and $\nu_{1}+j \equiv \nu_{2}(\bmod s)$. Let $I=(\rho, \mu, \nu)$ and $J=(\tilde{\rho}, \tilde{\mu}, \tilde{\nu})$. For the first factor, let $i_{1}=1, j_{1}=$ $\left(\rho_{1} \rho^{-1}-1\right) \bmod p, \rho_{1}=\tilde{\rho}, \mu_{1}=\left(\mu+i_{1}\right) \bmod s, \nu_{1}=\left(\nu+j_{1}\right) \bmod s$, and $K=\left(\rho_{1}, \mu_{1}, \nu_{1}\right)$. Then $Q_{K}^{I}>0$. Second, let $i_{2}=\left(\tilde{\mu}-\mu_{1}\right) \bmod s, j_{2}=0, \rho_{2}=\rho_{1}, \mu_{2}=\tilde{\mu}, \nu_{2}=\nu_{1}$, and $L=\left(\rho_{2}, \mu_{2}, \nu_{2}\right)$. Then $Q_{L}^{K}>0$. Finally, let $i_{3}=0$ and $j_{3}=\left(\tilde{\nu}-\nu_{2}\right) \bmod s$ to show $Q_{J}^{L}>0$. Therefore, $\left(\mathbb{Q}^{3}\right)_{J}^{I}>0$.

The example of the fibonomials modulo 3 shows that 3 is the least power that will work in this lemma.
Theorem 1: For $1 \leq \rho<p$ and $0 \leq \mu, \nu<s$,

$$
f^{(n)}(\rho, \mu, \nu) \sim \frac{1}{(p-1) s^{2}}\left[\frac{p(p+1)}{2}\right]^{n} \quad \text { as } \quad n \rightarrow \infty
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\log f^{(n)}(\rho, \mu, \nu)}{\log p^{n}}=\frac{\log p(p+1) / 2}{\log p}
$$

For $\rho=0$ we have that

$$
\sum_{\mu, \nu} f^{(n)}(\rho, \mu, \nu)=p^{2 n}-[p(p+1) / 2]^{n}=p^{2 n}\left[1-\{(p+1) /(2 p)\}^{n}\right]
$$

is the number of zero tiles in $\mathbb{C}^{(n)}$.
Proof: By Lemma 3, the stationary vector of the matrix \mathbb{P} is $\frac{1}{(p-1) s^{2}}(1, \ldots, 1)$. Since \mathbb{P} is the transition matrix of a regular Markov chain, by Lemma 4 , then $f^{(0)} \mathbb{P}^{n}$ converges to this stationary vector as $n \rightarrow \infty$, by Perron-Frobenius theory (see, e.g., [12, p. 125]). Finally, according to Kummer's theorem [13], the number of pairs (i, j) with $0 \leq i, j<p^{n}$ for which p does not divide the binomial coefficient $B(i, j)$ is the same as the number of pairs of n-digit p-ary numbers $\left(\sum_{k=0}^{n-1} i_{k} p^{k}, \sum_{k=0}^{n-1} j_{k} p^{k}\right)$ for which there are no carries when added in base- p arithmetic. This is the same as the number of digit pairs $\left(i_{k}, j_{k}\right)$ with $i_{k}+j_{k}<p$, which is $[p(p+1) / 2]^{n}$. Therefore the number of nonzero tiles $B(i, j) \rho H_{\mu, \nu}$ in $\mathbb{C}^{(n)}$ is precisely $[p(p+$ 1)/2 $]^{n}$, and the number of zero tiles is $p^{2 n}-[p(p+1) / 2]^{n}$.

Corollary 1: Let

$$
R^{(n)}(\rho):=\#\left\{(i, j): 0 \leq i, j<r p^{n}, C(i, j) \equiv \rho \quad(\bmod p)\right\},
$$

the number of $C(i, j)$'s in the initial $r p^{n} \times r p^{n}$ square congruent to ρ modulo p. Then the asymptotic abundance of the residue ρ, where $1 \leq \rho<p$, is given by

$$
R^{(n)}(\rho) \sim \frac{r(r+1)}{2(p-1)}\left[\frac{p(p+1)}{2}\right]^{n}
$$

and so the logarithmic density, or box-counting dimension, of the set of generalized binomial coefficients that are congruent to ρ is

$$
\lim _{n \rightarrow \infty} \frac{\log R^{(n)}(\rho)}{\log p^{n}}=\frac{\log [p(p+1) / 2]}{\log p}
$$

Proof: Let

$$
g(\rho, \mu, \nu):=\#\left\{(i, j): 0 \leq i, j<r, H_{\mu, \nu}(i, j) \equiv \rho \quad(\bmod p)\right\},
$$

the number of entries in the $r \times r$ matrix $H_{\mu, \nu}$ that are congruent to ρ modulo p. Then

$$
R^{(n)}(\rho)=\sum_{1 \leq \tilde{\rho}<p} \sum_{0 \leq \mu, \nu<s} f^{(n)}\left(\rho \tilde{\rho}^{-1}, \mu, \nu\right) g(\tilde{\rho}, \mu, \nu)
$$

so

$$
\begin{aligned}
R^{(n)}(\rho) & \sim \sum_{1 \leq \tilde{\rho}<p} \sum_{0 \leq \mu, \nu<s} \frac{[p(p+1) / 2]^{n}}{(p-1) s^{2}} g(\tilde{\rho}, \mu, \nu) \\
& =\frac{[p(p+1) / 2]^{n}}{(p-1) s^{2}} \sum_{0 \leq \mu, \nu<s} \sum_{1 \leq \tilde{\rho}<p} g(\tilde{\rho}, \mu, \nu) \\
& =\frac{[p(p+1) / 2]^{n}}{(p-1) s^{2}} \cdot s^{2} \cdot \frac{r(r+1)}{2} \cdot
\end{aligned}
$$

6. HAUSDORFF DIMENSION OF $C(m, n) \bmod p$

A "fractal set" corresponding to the pattern of all nonzero residues of the generalized binomial coefficients modulo a prime p is constructed as a subset of the square $[0,1) \times[0,1)$ by "tremas" as follows. We combine all the nonzero residues because the construction below for a fixed residue will not always yield nested sets. Flath and Peele [5] give an alternative, rescaled lattice construction.

For each k let \mathcal{G}_{k} denote the class of sets

$$
G_{m, n}^{(k)}=\bigcup_{\substack{0 \leq i, j<r \\ i+j<r}}\left[\frac{m r+i}{r p^{k}}, \frac{m r+i+1}{r p^{k}}\right) \times\left[\frac{n r+j}{r p^{k}}, \frac{n r+j+1}{r p^{k}}\right)
$$

with $0 \leq m, n<p^{k}$ and $p \bigvee B(m, n)$, and let G_{k} be their union. Proposition 1 and Lucas's theorem imply that $G_{m, n}^{(k)}$ is contained in some set in \mathcal{G}_{k-1} and contains a finite number of disjoint sets of \mathcal{G}_{k+1}, and $G_{k+1} \subset G_{k}$. Accordingly our fractal set is

$$
G:=\bigcap_{k \in \mathbb{N}} G_{k} .
$$

Figure 1 shows a density plot of a pre-fractal image of the fibonomial residues modulo 3 ; the nonwhite squares are components of G_{3}.

FIGURE 1. Fibonomial coefficients mod 3
Theorem 2: If p is a prime that does not divide b, then the fractal set G constructed above has Hausdorff dimension

$$
\operatorname{dim}_{H}(G)=\frac{\log \binom{p+1}{2}}{\log p} .
$$

Proof: The proof uses (1) the fact [3, p. 43] that

$$
\operatorname{dim}_{H} G \leq \operatorname{dim}_{B} G,
$$

where $\operatorname{dim}_{B} G$ is the box-counting dimension of G, and (2) the mass distribution principle [3, p. 55]: if μ is a measure on a set F and for some s there are numbers $c>0, \delta>0$ such that

$$
\mu(U) \leq c|U|^{s}
$$

for all sets U with $|U| \leq \delta$ (where $|U|$ is the diameter of U), then the Hausdorff measure $\mathcal{H}^{s}(F) \geq \mu(F) / c$ and $s \leq \operatorname{dim}_{H}(F)$. The box-counting dimension of G may be calculated [3, p. 41] by the formula

$$
\operatorname{dim}_{B} G=\lim _{k \rightarrow \infty} \frac{\log N_{\delta_{k}}(G)}{-\log \delta_{k}}
$$

where $N_{\delta}(G)$ is the smallest number of δ-mesh squares that intersect the set G, provided that the sequence $\left(\delta_{k}\right)$ decreases to zero and $\delta_{k+1} \geq \eta \delta_{k}$ for some positive constant η. Let us choose $\delta_{k}=1 /\left(r p^{k}\right)$ (and $\left.\eta=1 / p\right)$. Then

$$
N_{\delta_{k}}(G)=\frac{r(r+1)}{2}\left[\frac{p(p+1)}{2}\right]^{k}
$$

so

$$
\begin{aligned}
\operatorname{dim}_{B}(G) & =\lim _{k \rightarrow \infty} \frac{\log N_{\delta_{k}}(G)}{-\log \delta_{k}} \\
& =\lim _{k \rightarrow \infty} \frac{\log \left(\frac{r(r+1)}{2}\left[\frac{p(p+1)}{2}\right]^{k}\right)}{-\log \left[1 /\left(r p^{k}\right)\right]} \\
& =\lim _{k \rightarrow \infty} \frac{\log \frac{r(r+1)}{2}+k \log \frac{p(p+1)}{2}}{\log r+k \log p} \\
& =\frac{\log \binom{p+1}{2}}{\log p}
\end{aligned}
$$

Now let μ be the "natural measure" defined by repeated subdivision [3, pp. 13-14] that assigns weight $\binom{p+1}{2}^{-k}$ to each set in \mathcal{G}_{k} and weight 0 to the complement of G_{k} : At stage $k+1$, the weight of each $G_{m, n}^{(k)}$ is evenly divided among the $\binom{p+1}{2}$ sets in \mathcal{G}_{k+1} contained therein. We shall see that there exist $c>0$ and $\delta>0$ such that

$$
\mu(U) \leq c|U|^{d} \quad \text { where } \quad d:=\frac{\log \binom{p+1}{2}}{\log p}
$$

for all sets U with diameter $|U| \leq \delta$. Let $\delta \in(0,1)$. Suppose $|U| \leq \delta$. Let k be the integer such that $1 / p^{k+1} \leq|U|<1 / p^{k}$. Note that then $1 / p^{k} \leq p|U|$ and U meets at most four of the sets in \mathcal{G}_{k} (because U is contained in a square of side $|U|$ with sides parallel the coordinate axes, and this containing square can intersect no more than four $G_{m, n}^{(k)}$'s). Therefore,

$$
\begin{aligned}
\mu(U) & \leq 4 \frac{1}{\binom{p+1}{2}^{k}} \\
& =\frac{4}{\left(p^{d}\right)^{k}}\left[\text { because } d=\frac{\log \binom{p+1}{2}}{\log p}\right] \\
& =4\left(\frac{1}{p^{k}}\right)^{d} \\
& \leq 4(p|U|)^{d}
\end{aligned}
$$

so $\mu(U) \leq c|U|^{d}$ for all sets U with $|U| \leq \delta$ where $c=4 p^{d}$. By the mass distribution principle, $d \leq \operatorname{dim}_{H} G$. But from before, $\operatorname{dim}_{B} G=d$, and we know $\operatorname{dim}_{H} G \leq \operatorname{dim}_{B} G$, so we must have $\operatorname{dim}_{H} G=d=\log \binom{p+1}{2} / \log p$.

REFERENCES

[1] Boris A. Bondarenko. Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Applications. Translated by Richard C. Bollinger, Fibonacci Association, Santa Clara, CA, 1993.
[2] W. Antony Broomhead. "Pascal $(\bmod p) . "$ Mathematical Gazette 56 (1972): 268-271.
[3] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Chichester, J. Wiley: 1993.
[4] K. Falconer. Techniques in Fractal Geometry. Chichester, J. Wiley: 1997.
[5] D. Flath and R. Peele. "Hausdorff Dimension in Pascal's Triangle." Applications of Fibonacci Numbers, Volume 5. Edited by G. E. Bergum et al. Netherlands, Kluwer: 1993, 229-244.
[6] Robert D. Fray. "Congruence Properties of Ordinary and q-binomial Coefficients." Duke Math. J. 34 (1967): 467-480.
[7] Heiko von Harborth. "Über die Teilbarkeit im Pascal-Dreieck." Mathematischphysikalische Semesterberichte 22 (1975): 13-21.
[8] Erhard Hexel and Horst Sachs. "Counting Residues Modulo a Prime in Pascal's Triangle." Indian J. of Math. 20 (1978): 91-105.
[9] John M. Holte. "Asymptotic Prime-power Divisibility of Binomial, Generalized Binomial, and Multinomial Coefficients." Trans. Amer. Math. Soc. 349 (1997): 3837-3873.
[10] John M. Holte. "Residues of Generalized Binomial Coefficients Modulo a Prime." The Fibonacci Quarterly 38 (2000): 227-238.
[11] John M. Holte. "Fractal Dimension of Generalized Binomial Coefficients Modulo a Prime: preliminary report." Abstracts of the AMS 21.1 (Jan. 2000): \#950-11-950.
[12] Dean L. Isaacson and Richard W. Madsen. Markov Chains: Theory and Applications. New York, Wiley: 1976.
[13] E. E. Kummer. "Über die Ergänzungssätze zu den Allgemeinen Reciprocitätsgesetzen." J. Reine Angew. Math. 44 (1852): 93-146.
[14] C. T. Long. "Pascal's Triangle Modulo p." The Fibonacci Quarterly 19 (1981): 458-463.
[15] E. Lucas. "Théorie des Fonctions Numériques Simplement Périodiques." Amer. J. Math. 1 (1878): 184-240.
[16] Benoit B. Mandelbrot. Fractals: Form, Chance, and Dimension. San Francisco, W. H. Freeman: 1977.
[17] Benoit B. Mandelbrot. The Fractal Geometry of Nature. New York, W. H. Freeman: 1983.
[18] Marko Razpet. "On Divisibility of Binomial Coefficients." Discrete Math. 135 (1994): 377-379.
[19] J. B. Roberts. "On Binomial Coefficient Residues." Canadian J. of Math. 9 (1957): 363-370.
[20] Diana L. Wells. "Lucas' Theorem for Generalized Binomial Coefficients." AMS Abstracts 14 (1993): 32.
[21] Diana L. Wells. "Lucas' Theorem for Generalized Binomial Coefficients." Preprint.
[22] S. Wolfram. "Geometry of Binomial Coefficients." Amer. Math. Monthly 92 (1984): 566-571.

AMS Classification Numbers: 11B65, 11B39, 28A78

必田

