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ABSTRACT

For a graph G, Fibonacci Number of G is defined as the number of subsets of V (G) in
which no two vertices are adjacent in G. In this paper, we first investigate the orderings of two
classes of trees by their Fibonacci numbers. Using these orderings, we determine the unique
tree with the second, and respectively the third smallest Fibonacci number among all trees
with n vertices.

1. INTRODUCTION

Let G = (V (G), E(G)) denote a graph with V (G) as the set of vertices and E(G) as
the set of edges. We denote, respectively, by n(G) and q(G) the number of vertices and the
number of edges of G. All graphs considered here are finite and simple. Undefined notations
and terminology will conform to those in [2].

For a graph G and u ∈ V (G), we denote by NG(u) the set of all neighbors of u in G and
by du the degree of the vertex u. Let G and H be two graphs. We denote by G∪H the disjoint
union of G and H and by mH the disjoint union of m copies of H. Let Cn and Pn denote,
respectively, the cycle and path with n vertices. By Sn we denote the star with n vertices and
by Pn,m the graph obtained from Sn+1 and Pm by identifying the center of Sn+1 with a vertex
of degree 1 of Pm. By Sn,m we denote the graph obtained from Sn+2 and Sm+1 by identifying
a vertex of degree 1 of Sn+2 with the center of Sm+1.

For a graph G, its Fibonacci Number, simply denoted by f(G), is defined as the number
of subsets of V (G) in which no two vertices are adjacent in G, i.e., in graph-theoretical termi-
nology, the number of independent sets of G, including the empty set. For example, for the
graph C4 = v1v2v3v4, all this kind of subsets of V (C4) are as follows: φ, {v1}, {v2}, {v3}, {v4},
{v1, v3}, {v2, v4}, and so, f(C4) = 7. The concept of the Fibonacci number for a graph was
introduced in [5], and discussed later in [1]. This number for a molecular graph was extensively
studied in a monograph [4]. There, the chemical use was demonstrated, and the number was
called σ-index, or Merrifield and Simmons index. The authors of [3] gave its other properties
and applications. There have been some literature studying the Fibonacci number, or σ-index
of a graph, see [4,6] and the references therein for details.

Let Fn and Ln denote the n-th Fibonacci number and Lucas Number, respectively. It is
not difficult to see that for n ≥ 1 and m ≥ 3, we have that f(Pn) = Fn+2 and f(Cm) = Lm. Let
α = (1+

√
5)/2 and β = (1−

√
5)/2. Then the Binet form of Fn and Ln are Fn = (αn−βn)/

√
5

and Ln = αn + βn for all n ≥ 0.
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Let T be a tree, that is, T is a connected graph without any cycles. From [1,3,5], we can
find that
Lemma 1: Let T be a tree. Then Fn+2 ≤ f(T ) ≤ 2n−1 + 1 and f(T ) = Fn+2 if and only if
T ∼= Pn and f(T ) = 2n−1 + 1 if and only if T ∼= Sn.

Let v1v2v3 · · · vn be a path, and let Pn,vk,G and Tn1,n2,n3 denote two graphs shown in
Figures 1.

Figure 1. Graphs Pn,vk,G and Tn1,n2,n3

The authors of [1] investigated the upper and lower bounds for the Fibonacci number of a
maximal outer-planar graph. In this paper, we first investigate the orderings of two classes of
trees Pn,vk,G and Tn1,n2,n3 by their Fibonacci numbers. Using these orderings, we determine
the unique tree with the second, and respectively the third smallest Fibonacci number among
all trees with n vertices. From [3] we know that these results may have potential use in
combinatorial chemistry.

The following lemmas can be found from [3,5].
Lemma 2 ([3,5]): Let G be a graph with k components G1, G2, · · · , Gk. Then f(G) =∏k

i=1 f(Gi).
Lemma 3 ([3,5]): For a graph G with v ∈ V (G), we have

f(G) = f(G− v) + f(G− [v]),

where [v] = NG(v) ∪ {v}.
Lemma 4 ([3,5]): Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs. If
V (G1) = V (G2) and E(G1) ⊂ E(G2), then f(G1) > f(G2).

2. ORDERINGS OF TWO CLASSES OF TREES BY FIBONACCI NUMBERS

Let H and H ′ be two graphs. Then H � H ′ means f(H) ≥ f(H ′) and H � H ′ means
f(H) > f(H ′).
Theorem 1: Let n = 4m + i, i ∈ {1, 2, 3, 4} and m ≥ 2. Then

Pn,v2,G � Pn,v4,G � · · · � Pn,v2m+2ρ,G � Pn,v2m+1,G � · · · � Pn,v3,G � Pn,v1,G,

where ρ = 0 if i = 1 or 2 and ρ = 1 if i = 3 or 4.
Proof: Suppose that f(G− vk) = A and f(G− [vk]) = B. Then by Lemmas 1, 2 and 3,

f(Pn,vk,G) = AFk+1Fn−k+2 + BFkFn−k+1. (1)

33



ON THE FIBONACCI NUMBERS OF TREES

¿From the Binet form of Fn and Ln, by calculating we have

FaFb =
1
5

(La+b − (−1)aLb−a) . (2)

So, by (1) and (2) we get that

f(Pn,vk,G) = ALn+3 + BLn+1 + (−1)kLn−2k+1(A−B). (3)

Note that each independent set of G− [vk] is an independent set of G− vk; however the
other way around is nor true. So, A > B. Since Pn,vk,G

∼= Pn,vn−k+1,G, by (3) we have that
k ≤ (n + 1)/2 and

Pn,v2,G � Pn,v4,G � · · · � Pn,v2m,G � Pn,v2m+1,G � · · · � Pn,v3,G � Pn,v1,G

for i ∈ {1, 2} and

Pn,v2,G � Pn,v4,G � · · · � Pn,v2m+2,G � Pn,v2m+1,G � · · · � Pn,v3,G � Pn,v1,G

for i ∈ {3, 4}. This completes the proof.
Let G ∼= P2 or G ∼= P3. Then from Theorem 1, we have

T1,1,n−3 � T1,3,n−5 � · · · � T1,4,n−6 � T1,2,n−4

and
T2,1,n−4 � T2,3,n−6 � · · · � T2,4,n−7 � T2,2,n−5.

Note that T2,1,n−4
∼= T1,2,n−4. So, it follows that T1,1,n−3 � T1,3,n−5 � · · · � T1,4,n−6 �

T1,2,n−4 � T2,3,n−6 � · · · � T2,4,n−7 � T2,2,n−5.
For 3 ≤ n1 ≤ n2 ≤ n3 and Tn1,n2,n3 , we can obtain the followings:
(i) T3,1,n−5 � T3,a,n−a−4 � T3,2,n−6 for a ≥ 3,
(ii) T4,1,n−6 � T4,a,n−a−5 � T4,2,n−7 for a ≥ 3,
(iii) Tb,1,n−b−2 � Tb,a,n−a−b−1 � Tb,2,n−b−3 for a ≥ 3 and b ≥ 5.
¿From (i) to (iii), one can see that for (n1, n2) 6∈ {(1, 1), (1, 3), (2, 2), (2, 4)}.

T1,1,n−3 � T1,3,n−5 � Tn1,n2,n3 � T2,4,n−7 � T2,2,n−5.

Furthermore, we have
Theorem 2: Let n1 + n2 + n3 = n− 1 and n1 ≥ n2 ≥ n3. Then

(i) T1,1,n−3 � T1,3,n−5 � · · · � T1,2m−1,n−2m−1 � T1,2m−2,n−2m � · · · � T1,4,n−6 �
T1,2,n−4 � T2,3,n−6 � · · · � T2,2m−1,n−2m−2 � T2,2m−2,n−2m−1 � · · · � T2,4,n−7 � T2,2,n−5 for
n = 4m + 1,

(ii) T1,1,n−3 � T1,3,n−5 � · · · � T1,2m−1,n−2m−1 � T1,2m,n−2m−2 � · · · � T1,4,n−6 �
T1,2,n−4 � T2,3,n−6 � · · · � T2,2m−1,n−2m−2 � T2,2m−2,n−2m−1 � · · · � T2,4,n−7 � T2,2,n−5 for
n = 4m + 2,

(iii) T1,1,n−3 � T1,3,n−5 � · · · � T1,2m−1,n−2m−1 � T1,2m,n−2m−2 � · · · � T1,4,n−6 �
T1,2,n−4 � T2,3,n−6 � · · · � T2,2m−1,n−2m−2 � T2,2m,n−2m−3 � · · · � T2,4,n−7 � T2,2,n−5 for
n = 4m + 3,
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(iv) T1,1,n−3 � T1,3,n−5 � · · · � T1,2m+1,n−2m−3 � T1,2m,n−2m−2 � · · · � T1,4,n−6 �
T1,2,n−4 � T2,3,n−6 � · · · � T2,2m−1,n−2m−2 � T2,2m,n−2m−3 � · · · � T2,4,n−7 � T2,2,n−5 for
n = 4m + 4,

(v) T1,1,n−3 � T1,3,n−5 � Tn1,n2,n3 � T2,4,n−7 � T2,2,n−5 for (n1, n2) 6∈ {(1, 1), (1, 3),
(2, 2), (2, 4)}.

3. SMALLER FIBONACCI NUMBERS OF TREES

Suppose that Qr,G is the graph shown in Figure 2.

Figure 2. Graph Qr,G

Lemma 5: Let r ≥ 1 and G be a tree with m vertices. For graph Qr,G, we have

Qr,G � Pr,m

and the equality holds if and only if Qr,G
∼= Pr,m.

Proof: We prove the lemma by induction on r. Clearly, the lemma is true if r = 1.
Suppose that the lemma holds for r = k − 1 ≥ 1. When r = k, by Lemmas 2 and 3 we

have
f(Qk,G) = f(Qk−1,G) + 2k−1f(G− v) (4)

and
f(Pk,m) = f(Pk−1,m) + 2k−1f(Pm−1). (5)

By the induction hypothesis, f(Qk−1,G) ≥ f(Pk−1,m) and the equality holds if and only
if Qk−1,G

∼= Pk−1,m. On the other hand, we may assume that G− v =
⋃l

i Hi such that each
Hi is a tree and

∑l
i=1 n(Hi) = n(G− v) = m− 1. By Lemmas 1, 2 and 4, f(G− v) ≥∏l

i=1 fn(Hi) ≥ f(Pm−1) and the equality holds if and only if G− v ∼= Pm−1. So, from (4) and
(5), the lemma is true.

Let T be a tree with n vertices. Then, T ∼= Sn if n = 1, 2, 3. By calculating, we have
(i) for n = 4, S3 � P3,
(ii) for n = 5, S4 � T1,1,2 � P5,
(iii) for n = 6, S6 � S3,1 � S2,2 � T1,1,3 � T1,2,2, � P6,
(iv) for n = 7 and T 6∈ {P7, T1,2,3, T2,2,2}, T � T1,2,3 � T2,2,2.
(v) for n = 8, 9, 10 and T 6∈ {Pn, T2,2,n−5, T2,4,n−7}, T � T2,4,n−7 � T2,2,n−5 and the

equality holds if and only if n = 9.
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Theorem 3: Let T be a tree with n vertices.
(i) If T 6∼= Pn and n ≥ 7, then

f(T ) ≥ 4Fn−1 + Fn−3,

the equality holds if and only if T ∼= T2,2,n−5.
(ii) If T 6∈ {Pn, T2,2,n−5} and n ≥ 10, then

f(T ) ≥ 2Fn + 8Fn−5,

the equality holds if and only if T ∼= T2,4,n−7.
Proof: By induction on n. By the above argument, it is easy to check that (i) and (ii) of

the theorem hold for trees T with n(T ) = 10.
Suppose that n(T ) ≥ 11 and (i) and (ii) of the theorem are true for all T ′ with n(T ′) < n.

For a tree T with n(T ) = n, we distinguish the following cases:
Case 1: There exist an r ≥ 2 and a tree G such that T ∼= Qr,G. By Lemma 5, Qr,G � Pr,n−r.
By Lemmas 1, 2 and 3,

f(Pr,n−r) = 2rFn−r+1 + Fn−r.

So, one can see that Pr,n−r � Pr−1,n−r+1 for r ≥ 2. Thus we have Qr,G � Pr,n−r � T1,1,n−3.
By (ii) of Theorem 2, we know that (i) and (ii) of the theorem are true.
Case 2: For each path uvw in T with du = 1, we have that dv = 2 and dw ≥ 2. If T has only
one vertex of degree 3, by Theorem 2 we have that (i) and (ii) of the theorem hold; otherwise,
T contains at least one vertex of degree larger than 3 or two vertices of degree 3. From Lemma
3,

f(T ) = f(T − u) + f(T − u− v), (6)

f(T2,2,n−5) = f(T2,2,n−6) + f(T2,2,n−7) (7)

and
f(T2,4,n−7) = f(T2,4,n−8) + f(T2,4,n−9). (8)

It is not difficult to see that T − u is a tree with n − 1 vertices and it contains at least
one vertex of degree larger than 3 or two vertices of degree 3; whereas T − u − v is a tree of
n − 2 vertices and T − u − v 6∼= Pn−2. By the induction hypothesis, T − u � T2,2,n−6 and
T − u− v � T2,2,n−7. So, from (6) and (7) (i) of the theorem follows.

On the other hand, if dw = 2, then T − u− v contains at least one vertex of degree larger
than 3 or two vertices of degree 3. By the induction hypothesis as well as (6) and (8), (ii) of
the theorem also holds. If dw ≥ 3 and T − u − v 6∼= T2,2,n−7, by the induction hypothesis we
have T − u � T2,4,n−8 and T − u − v � T2,4,n−9. Thus, from (6) and (8), (ii) of the theorem
holds. If dw ≥ 3 and T − u − v ∼= T2,2,n−7, by n ≥ 11 we know that T is one of the graphs
T1 and T2 shown in Figure 3 (Otherwise there exists a path uvw in T such that dv = 1 and
du = dw = 2).
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Figure 3. Graphs T1 and T2

¿From Lemmas 1, 2 and 3, we have

f(T1) = 2Fn−1 + 9Fn−4 + 9Fn−7

and
f(T2) = 2Fn−1 + 2Fn−3 + 10Fn−5 + 9Fn−8.

By Fn = Fn−1 + Fn−2, it is not hard to obtain that

f(T1)− f(T2) = 4Fn−9 + Fn−11

and
f(T2)− f(T2,4,n−7) = 3Fn−8 + 2Fn−10.

Thus (ii) of the theorem holds. This completes the proof.
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