ON SUMS OF THREE SQUARES

Neville Robbins
Mathematics Department, San Francisco State University, San Francisco, CA 94132
e-mail: robbins@math.sfsu.edu

(Submitted September 2003-Final Revision January 2004)

Abstract

It is known that (1) if the prime $p \equiv 3(\bmod 4)$, then a multiple of p is a sum of three squares. (This fact is needed in a proof of Lagrange's four square theorem.) In this note, we present a constructive proof of (1).

Let S_{4} denote the set of all natural numbers that can be represented as a sum of four squares of non-negative integers. A well-known theorem of Lagrange states that $S_{4}=N$, that is, every natural number can be so represented. (See [1], p. 302.) It is easily seen that $1 \in S_{4}, 2 \in S_{4}$. Furthermore, if $m \in S_{4}$ and $n \in S_{4}$, then $m n \in S_{4}$. Therefore, in order to prove Lagrange's four-square theorem, it suffices to show that every odd prime is a sum of four squares. If the prime $p \equiv 1(\bmod 4)$, then p is a sum of two squares (and thus also a sum of four squares). Therefore, we can confine our attention to primes $p \equiv 3(\bmod 4)$. If we can show that a multiple of p is a sum of three squares (and therefore also a sum of four squares), then using well-known techniques, we can find a smaller multiple of p that is a sum of four squares.

In view of the above, a key ingredient in the proof of Lagrange's four square theorem is Theorem 1 below: Theorem 1: If the prime $p \equiv 3(\bmod 4)$, then there exist integers a, b, k such that $a^{2}+b^{2}+$

 $1=k p$, with $0<k<p$.Remarks: A more general version of Theorem 1 appears as Theorem 87 on p. 70 of [1]. Since the constants a, b satisfy: $0 \leq a \leq \frac{p-1}{2}, 0 \leq b \leq \frac{p-1}{2}$, one can demonstrate a stronger result, namely $0<k \leq \frac{p-1}{2}$. Specifically,

$$
k p=a^{2}+b^{2}+1 \leq\left(\frac{p-1}{2}\right)^{2}+\left(\frac{p-1}{2}\right)^{2}+1=\frac{(p-1)^{2}}{2}+1<\frac{p^{2}}{2}+1 .
$$

Therefore

$$
k p<\frac{p^{2}}{2}+1 \rightarrow k<\frac{p}{2}+\frac{1}{p} \rightarrow k \leq\left[\frac{p}{2}+\frac{1}{p}\right] .
$$

Since $p \geq 3$, it follows that $\frac{1}{p}<\frac{1}{2}$, so that $\left[\frac{p}{2}+\frac{1}{p}\right]=\left[\frac{p}{2}\right]=\frac{p-1}{2}$. The conclusion now follows.

If the prime p is large, then the process of actually finding the integers a, b becomes cumbersome. We therefore propose Theorem 2 below as an alternative to Theorem 1, with a constructive proof.
Theorem 2: If the prime $p \equiv 3(\bmod 4)$, then there exist integers x_{1}, x_{2}, x_{3}, k such that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=k p$, with $0<k<\frac{3 p}{4}$.

Proof: Let q be a prime such that $q \not \equiv 3(\bmod 4)$ and Legendre symbol $\left(\frac{q}{p}\right)=-1$. These conditions are satisfied by all primes, q, such that $q \equiv 2 p-1(\bmod 4 p)$. Therefore Dirichlet's theorem on primes in arithmetic progression assures the existence of infinitely many such primes. Since $\left(\frac{q}{p}\right)=-1$, Euler's Criterion implies $q^{\frac{p-1}{2}} \equiv-1(\bmod p)$, hence $q^{\frac{p+1}{2}}+q \equiv 0$ $(\bmod p)$. Since $q \equiv 1(\bmod 4)$, it follows that $q=a^{2}+b^{2}$ for integers a, b. Therefore we have

$$
\left(q^{\frac{p+1}{4}}\right)^{2}+a^{2}+b^{2} \equiv 0 \quad(\bmod p)
$$

Next, we find integers x_{1}, x_{2}, x_{3} such that $x_{1} \equiv \pm q^{\frac{p+1}{4}}(\bmod p), x_{2} \equiv \pm a(\bmod p), x_{3} \equiv$ $\pm b(\bmod p)$ and $\left|x_{i}\right|<\frac{p}{2}$ for all i. This yields $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \equiv 0(\bmod p)$, hence $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=k p$, with $k p<\frac{3 p^{2}}{4}$, hence $k<\frac{3 p}{4}$. If $k=0$, then $x_{i}=0$ for all i, hence $q \equiv 0(\bmod p)$, an impossibility. Therefore $0<k<\frac{3 p}{4}$.

For example, if $p=19$, we can take $q=2=1^{2}+1^{2}$. Then $q^{\frac{p+1}{4}} \equiv 2^{5} \equiv 32 \equiv-6$ $(\bmod 19)$. This yields $6^{2}+1^{2}+1^{2}=38=2 * 19$.

In general if $p \equiv 3(\bmod 8)$, we can take $q=2$; if $p \equiv 7,23(\bmod 40)$, we can take $q=5$. For each of the 13 primes, p, such that $p \equiv 3(\bmod 4)$ and $p<100$, the table below lists the minimum value of q, as well as the corresponding values of x_{1}, x_{2}, x_{3}, k.

p	q	x_{1}	x_{2}	x_{3}	k
3	2	2	1	1	2
7	5	3	2	1	2
11	2	3	1	1	1
19	2	6	1	1	2
23	5	8	2	1	3
31	13	7	3	2	2
43	2	16	1	1	6
47	5	18	2	1	7
59	2	23	1	1	9
67	2	20	1	1	6
71	13	22	3	2	7
79	17	33	4	1	14
83	2	9	1	1	1

REFERENCES

[1] G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers, (4 ${ }^{\text {th }}$ ed.) Oxford (1960).

AMS Classification Numbers: 11E25

必必

