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ABSTRACT

It is known that (1) if the prime p ≡ 3 (mod 4), then a multiple of p is a sum of three
squares. (This fact is needed in a proof of Lagrange’s four square theorem.) In this note, we
present a constructive proof of (1).

Let S4 denote the set of all natural numbers that can be represented as a sum of four
squares of non-negative integers. A well-known theorem of Lagrange states that S4 = N ,
that is, every natural number can be so represented. (See [1], p. 302.) It is easily seen that
1 ∈ S4 , 2 ∈ S4. Furthermore, if m ∈ S4 and n ∈ S4, then mn ∈ S4. Therefore, in order to
prove Lagrange’s four-square theorem, it suffices to show that every odd prime is a sum of
four squares. If the prime p ≡ 1 (mod 4), then p is a sum of two squares (and thus also a sum
of four squares). Therefore, we can confine our attention to primes p ≡ 3 (mod 4). If we can
show that a multiple of p is a sum of three squares (and therefore also a sum of four squares),
then using well-known techniques, we can find a smaller multiple of p that is a sum of four
squares.

In view of the above, a key ingredient in the proof of Lagrange’s four square theorem is
Theorem 1 below:
Theorem 1: If the prime p ≡ 3 (mod 4), then there exist integers a, b, k such that a2 + b2 +
1 = kp, with 0 < k < p.
Remarks: A more general version of Theorem 1 appears as Theorem 87 on p. 70 of [1]. Since
the constants a, b satisfy: 0 ≤ a ≤ p−1

2 , 0 ≤ b ≤ p−1
2 , one can demonstrate a stronger result,

namely 0 < k ≤ p−1
2 . Specifically,
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Since p ≥ 3, it follows that 1
p < 1

2 , so that
[

p
2 + 1

p

]
= [p

2 ] = p−1
2 . The conclusion now

follows.
If the prime p is large, then the process of actually finding the integers a, b becomes

cumbersome. We therefore propose Theorem 2 below as an alternative to Theorem 1, with a
constructive proof.
Theorem 2: If the prime p ≡ 3 (mod 4), then there exist integers x1, x2, x3, k such that
x2

1 + x2
2 + x2

3 = kp, with 0 < k < 3p
4 .
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Proof: Let q be a prime such that q 6≡ 3 (mod 4) and Legendre symbol ( q
p ) = −1.

These conditions are satisfied by all primes, q, such that q ≡ 2p − 1 (mod 4p). Therefore
Dirichlet’s theorem on primes in arithmetic progression assures the existence of infinitely many
such primes. Since ( q

p ) = −1, Euler’s Criterion implies q
p−1
2 ≡ −1 (mod p), hence q

p+1
2 +q ≡ 0

(mod p). Since q ≡ 1 (mod 4), it follows that q = a2 + b2 for integers a, b. Therefore we have

(q
p+1
4 )2 + a2 + b2 ≡ 0 (mod p) .

Next, we find integers x1, x2, x3 such that x1 ≡ ±q
p+1
4 (mod p), x2 ≡ ±a (mod p), x3 ≡

±b (mod p) and |xi| < p
2 for all i. This yields x2

1+x2
2+x2

3 ≡ 0 (mod p), hence x2
1+x2

2+x2
3 = kp,

with kp < 3p2

4 , hence k < 3p
4 . If k = 0, then xi = 0 for all i, hence q ≡ 0 (mod p), an

impossibility. Therefore 0 < k < 3p
4 .

For example, if p = 19, we can take q = 2 = 12 + 12. Then q
p+1
4 ≡ 25 ≡ 32 ≡ −6

(mod 19). This yields 62 + 12 + 12 = 38 = 2 ∗ 19.
In general if p ≡ 3 (mod 8), we can take q = 2; if p ≡ 7, 23 (mod 40), we can take q = 5.

For each of the 13 primes, p, such that p ≡ 3 (mod 4) and p < 100, the table below lists the
minimum value of q, as well as the corresponding values of x1, x2, x3, k.

p q x1 x2 x3 k
3 2 2 1 1 2
7 5 3 2 1 2
11 2 3 1 1 1
19 2 6 1 1 2
23 5 8 2 1 3
31 13 7 3 2 2
43 2 16 1 1 6
47 5 18 2 1 7
59 2 23 1 1 9
67 2 20 1 1 6
71 13 22 3 2 7
79 17 33 4 1 14
83 2 9 1 1 1
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