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ABSTRACT

Linear recurring sequences of order k are investigated using matrix techniques and some
finite group theory. An identity, well-known when k = 2, is extended to general k and is used
to study the restricted period of a linear recurring sequence over a finite field.

1. INTRODUCTION

Matrix techniques have been used by a number of authors to investigate linear recurring
sequences; see for example [1], [3], [4], [5] and [10]. Here we use matrices and some finite
group theory to study linear recurring sequences of order k£ > 2. An identity, well-known in
the case k = 2, is proved for general k over an arbitrary field (Proposition 2.2) and is used to
study the restricted period of a linear recurring sequence over a finite field.

In what follows, K denotes a field, K* = K\{0} its multiplicative group, k an integer with
k > 2, K* the space of row vectors of length k over K, K[t] the ring of polynomials over K and

Kolt] = {f(t) € K[t] : £(0) # 0}

Suppose that j,k € N. If a;,---,a;41-1 € K, write
ajk = (aj,a41, -, aj45-1) € K-
Let f(t) =t8 —ap_1tF"' — - — a1t —ap € Kg[t]. Then S = (sj)jez, with s; € K for all

7, is an f-sequence in K if it satisfies the linear recurrence relation

k—1
T
Sivk = ) Si4j0j = Sika (1)
7=0

for all i € Z; f(t) is the characteristic polynomial of (1). The minimal polynomial of S is the
characteristic polynomial of the linear recurrence relation of least possible order satisfied by S:
see [3, 8.42]. We fix the notation U = (u;);ez for the unit f-sequence, which is the f-sequence
determined by the vector

wor = (0,---,0,1) € K~
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Write Ay = (oyj;) for the k x k matrix over K in which a;; = 0if i + 5 < k and
Qi = Qjtj—k—1 ifi+j>k+1. Thus

0 o --- 0 ap

0 0 cee ao ay
Ay =

0 ap -+ ap_3 agp—2

ap ap -+ OGp—2 Ag—1

Write Cy for the k£ x k companion matrix over K

o0 o0 --- 0 ao |
1 o --- 0 ay
Cr =
0 0 = 0 ap-2
L0 0 - 1 ap-yl

Because f(t) € Ko[t] then ag # 0 and Ay, Cy € GL(k,K), the group of invertible k x k matrices

over K.
If (s;)iez is an f-sequence and if n € Z and m € N then [3, 8.12] implies that

Sntm,k = Snk(Cr)™ (2)
and because ag # 0 an induction argument shows this to be valid for any m € Z.
2. AN IDENTITY
If f(t) =12 — ot — p € Ko[t] and if (s;);ez is an f-sequence, then identities like

Sntm = PSplUm—1 T Snr1Um (m, n e N) (3)

are well-known: see, for example, [2, Lemma 2] or [9, Formula 8]. Proposition 2.2 extends
this to the case where f(t) has degree k > 2. Firstly a lemma.

Lemma 2.1: Let f(t) =tk —ap_1t* 1 — .. —ayt —ag € Ko[t]. Then
CrAy=As(Cyp)"

Proof: Write Cy = K + L where

0 0 0 0 0 ag

1 -~ 0 0 0 0 ay
K=1|. . . . and L= |.

0 1 0 0 0 ap—1
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Then
0 0 .- 0
0o --- ao
KAy =
0 ao o« o o ak72

and LAy = (a;—1aj_1);; are both symmetric. Thus CyAy = KAy + LAy is symmetric, and
so CAy = (CpAp)T = Ap(Cy)T because Ay is symmetric. [
Proposition 2.2: Let f(t) = t* —ap_1t* ' — - —ayt —ap € Ko[t]. Let (s;)icz be an
f-sequence and let m,n € Z. Then

Sn4+m = Sn’kAf u,rTn_k7k.

Proof: We have

Sp4m = Sndtm—k,k ag,k
= Sntm—kk Afug
= 8, (Cp)" " Apug
= Sn,k Af (C}j)mik‘ 'u’(r{k
= Snk Af Upy_po 1

The third and fifth equalities follow from Equation (2), the fourth from repeated application
of Lemma 2.1. 0O

Examples 2.3: (a) Proposition 2.2 gives Formula (3) when f(¢) has degree 2.
(b) Let f(t) =3 — 112 — ot — p € Ko[t]. Take s; = u; in Proposition 2.2; then
Unpm = Unt2Um + (OUn41 + PUn ) Up—1 + PUn41Um—2.

(c) Let f(t) = t* —ap_1t* "t — - — a1t —ag € Ko[t]. Let (s;)iez be an f-sequence in K;
Proposition 2.2 gives

k—1 i
5n+m:§ g Qi—jSn+k—i—j | Umti—k-
i=0 j=0

3. THE RESTRICTED PERIOD

(From now on, let F be a fixed but arbitrary finite field. If f(¢) € Fy[t] has degree k > 2
then ord(f) is the least e € N such that f(¢) divides t¢ — 1 (see [3, 3.2]), while if S = (s;)iez
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is an f-sequence in IF then z € Z is a zero index of S if there exists A € F such that s, =
(0,---,0,)).

Write G = GL(k,F); then G acts (on the right) on F¥. For 1 < i < k let e; be the
k-vector whose it? entry is 1 and the others 0. Let Ej, =< ej >, the subspace generated by
er. Write

GkZ{BGGiEkB:Ek},

the stabilizer in G of Fy; then Gy < G (G is a subgroup of G).

The following result is classical, see for example Somer, [6]; Proposition 2.2 is used to give
what we believe to be a new proof.
Proposition 3.1: Let f(t) € Fo[t] be of degree k > 2 and let S = (s;)icz be an f-sequence in
F.
(a) There exists a(f) € N such that d € Z is a zero index of the unit f-sequence U if and only
if a(f) | d.
(b) We have Snta(f) = MUSn for alln € Z, where j1 = Ug(f)4k—1-
(¢c) We have ord(f) = a(f)ord(u).
(d) Let d be the least positive integer such that C’? is a scalar matriz. Then d = a(f) and
C’? =ul.
(e) Suppose f(t) is the minimum polynomial of S. Let § be the least positive integer such
that there exists v € F with s,1s = vsy, for alln € Z. Then 6 = a(f).

The integer a(f) above is known as the restricted period of U.

Proof: Write H =< (Cy >< G and Hp = HNGj. Write «o(f) for the index |H: Hyl;
then Hj =< C’?(f) >. If k=(0,---,0,x) € F¥\{0} then &C; has the form (0,---,0,\) if
and only if C} € Hy, which holds if and only if a(f) | j.

(a) If d,n € Z then Equation (2) gives

U = un i (Cp)

Because n = 0 is a zero index of U then d is a zero index if and only if (C)? € Hj, which
holds if and only if a(f) | d.
(b) By Proposition 2.2,

Snta(f) = Sn—k+a(f)+k

T
= Sn—kkAfta(s)

= Sn*k’,kAf(Oa o 707 M)T
= Sp_k(ao, - ap_1)T
= USp.

(c) By (b), Untord(pya(s) = p Wy, = wu,,, and so ord(f) |ord(p)a(f) because U has least
period ord(f) by [3, 8.27]. By (a), ord(f) = ra(f) for some r € N.  But up_14ra(r) =
uug—1 = p", and p” # 1 unless ord(p) | r. The assertion follows.

(d) If B = (b;;) € GL(k,F) then (0,---,0,\)B = A(bg1,- -+ ,bgx) and so B € G, if and only if
bri = =bgr—1 =0, by #0. Thus C’}l € Hj, whence a(f) | d. By Equation (2) and (b),

snyk(Cf)O‘(f) = Spta(f),k = MSn,k for all choices of f-sequence (s;)iez. Take s, ) successively

as e, - ,e;. Thenfori=1,---, k the i*" row of C?(f) must be pe;. Thus C?(f) = pl and
so d < a(f).
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(e) By (b), d <a(f). If n € Zthen s,45% = smk(C’f)‘S by Equation (2), while s,,45% = VSn.k
by hypothesis, and so

(Cfc — 'YIk)Sn,k =0.

By [3, 8.51], S0k, - , Sk—1,x are linearly independent because f(¢) is the minimum polynomial
of §. Thus the k x k matrix (C’J‘Z — 1) has nullity k£ and so C’J‘Z = ~I;. Now § = a(f) by
(d). O

The next result is related to results in Somer [7, 8]. We thank Professor Lawrence Somer
for greatly improving our proof, and for permission to include his proof here.
Proposition 3.2: Let f(t) € Fo[t] be of degree k > 2. Let S = (s;)icz be an f-sequence in
F*, and suppose that f is the minimum polynomial of S. Let S’ be the sequence (S;1+1/8:)icz-
Then 8" has least period a(f).

Proof: (Somer) By Proposition 3.1(b),

Sn+1/5n = Snta(f)+1/Snta(r) for alln € Z,

and so &’ is periodic with least period at most a(f).
On the other hand, let b € N be such that

Sn+1/Sn = Sntbt1/Snt+p  for all n € Z. (4)

Because s; € F* for all i then s, = vsp for some v € F*. Then $,11 = vs1 by (4) and by
induction sy, = s, for all n € Z. But now a(f) < b by Proposition 3.1(e). The result
follows. O
Proposition 3.3: Let f(t) € Fy[t] be irreducible over F of degree k > 2. Let I be a splitting
field of f over F and let w € L be a root of f. Then a(f) coincides with the order of wF*
considered as an element of the quotient group L* /F*.

Proof: Write w = wIF* € L*/F*. By [3, 3.3], ord(f) =ord(w) while ord(f) = a(f)ord(u)
by Proposition 3.1(c). Thus ord(y) Jord(w). Now w € L* while 4 € F* < L*. The finite
cyclic group L* has a unique subgroup of each possible order, so < y ><< w > N F*. But

<W>=<w>F/F" ~<w>/<w>NF",

and so ord(w) | (ord(f)/ord(u)). Thus ord(@) | a(f).
Suppose that F has order . Now w®4®) = ¢ € F* while a? = a by [3, 2.3]. By [3, 2.14],

the roots of f are w,w?,- - ,quil, while by [3, 8.21] there exist Ao, -, Ag—1 € L such that
k—1 _
u; = Z)\j(wqj)z, i € Z.
j=0
But then
k—1

Uitord(w) = Z >\j (wqj)(iqLord(E)) = au;, 1 € 7Z,

1=

and S0 Ugrd(m) = Uo = 0, , Uord(@)+k—2 = Uk—2 = 0. Thus ord(@) is a zero index of U and
so a(f) |ord(@) by Proposition 3.1(a). O
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