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ABSTRACT

In the paper we obtain some new expansions and combinatorial identities concerning Lucas
sequences.

1. INTRODUCTION

For complex numbers P and @) the Lucas sequences {U,, (P, Q)} and {V,,(P, Q)} are defined
by

Uo(P,Q) =0, U1(P,Q) =1, Upt1(P,Q) = PU,(P,Q) — QUp_1(P,Q) (n>1) (1.1)
and

VO(P> Q) = 27 Vl(P> Q) = P’ Vn-l—l(PJ Q) = Pvn(P7 Q) - Qvn—l(Pa Q) (n 2 1) (12)
Set D = P? — 4Q. It is well known that
{(22) - ()} wo

n (2" itD=0

Un(P,Q) = (1.3)

and

(F30) (P57

5 (1.4)

In Section 2 we state various expansions for U, (P, @) and illustrate the connections among
them. In Section 3 we investigate the properties of {S, (x)} and {G,(x)}, where

n

Sn(x>22ﬂ%(2n+kl_k)$”_k i Gn(m):i(—l)[%]([%gmk.

For example, we have S, (z) = G, (x + 2). Let U,, = U,,(P,Q) and V,, = V,,(P,Q). In Section
3 we also establish the following identity:

n+m

m

m=0
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where [z] denotes the greatest integer not exceeding z.

In Section 4, using the results in Sections 2 and 3 we establish several combinatorial

identities. For example, if m and n are nonnegative integers with m < n, then

() - B ()0 B (3

k=m
I &K /2n+1\/n—k
_4_mz(2k+1)(n—m>'

2. EXPANSIONS FOR U, (P,Q)

) 4k—m

Let U, = U,(P,Q) and V,, = V,,(P, Q) be the Lucas sequences given by (1.1) and (1.2).

From (1.3) and (1.4) one can easily check the following known facts (cf. [1, 4, 5,

Vi, = PU, — 2Q(]n—l = 2(]n—i-l - PU, = n+1 — QUn—la

Usp = Up Vi, Vo, = V2 —2Q",
Vi — (P2 —4Q)U; = 4Q",
Unik = VilUp — QU _i (n > k).
By (2.4), if Uy, # 0, then Uy(y41)/Us = ViUpn /U, — Q*U(y—1)/Uy. Thus
Ukn /Ui = U (Vie, Q).
Since Us = P and V, = P? — 2Q, by (2.5) we have

U2n(P7Q) = PUn(PZ - 2Q7Q2)

~~ ~~ —~~
=W N =
— — ~— ~—

(2.5)

(2.6)

Next we look at certain expansions for U, (P, Q). By induction one can prove the following
well known result (cf. [5, (2.5)], [2, (1.60), (1.61), (1.64)], [7, Lemma 1.4] and [8, (4.2.36)])

[n/2] n— k
RITED S G [0
k=0
and
[n/2] n n—k
k=0

Combining (2.6) and (2.7) we get

n/2]

[
U2n+2 (Pa Q) =P
k=0

("} ) -2,
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(2.8)
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From (1.3) and the binomial theorem one can easily deduce another expansion:

2
Un1(P,Q) = 5 Z (% +1>P” (P2 —4Q)" (2.10)
This together with (2.6) gives
PRE
Ui P.Q) = 37 (g ) PP — 100422 — 202, (2.11)

Using (1.3) and (1.4) one can easily prove the following transformation formulas:

Uan(P,Q) = \/PQ%ZLQUQH(V P? —4Q,-Q), (2.12)
Van(P, Q) = Van(v/ P ,—Q), (2.13)
U2n+1(P7 Q) = \/ﬁ‘/én‘l»l( V P2 —4 7_Q)7 (214)
‘/2n+1(P7 Q) = PU2n+1( \Y% Pz —4 7_Q) (215)

Here (2.12)-(2.15) are due to my twin brother Zhi-Wei Sun (he never published these formulas).
From (2.12) and (2.7) we see that

Usnia(P,Q) = PZ (2" T )Q’W 4@, (2.16)

Combining (2.14) with (2.8) yields

= —k
Uania(PQ) =3 5 2 () ke - s (2.17)
k=0

Thus, if Uy, = Uy, (P, Q) and Uy, # 0, applying (2.5), (2.3) and (2.17) we have

U(2n+1)k -~ 2n+1 2n+1—m k 2 2\n—m
Z\enT )R E - - m((P* —4Q)\U, . 2.18
Uy = 2n+1—m m @ (( @) k) ( )

3. THE POLYNOMIALS S,(z) AND G,,(z)

For any positive integer n and k € {0,1,... ,[n/2]} define

n n—k
C"’k_n—k< k )
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It is clear that

oo n—=k L+ n—1-—%k _n n—1—%k
kg k-1 ) E\ k-1

_on n—1-k\ n-(n—1-k)
n—2k k  Ekl(n—2k)

By (2.8) we have

[n/2]

E:an kn2kz

Cy 1 also concerns with the first Chebyshev polynomial T;,(x) (in fact, V,,(z,1) = 2T, (z/2))
and Dickson polynomial D, (z,a) (in fact, D, (z,a) = V,(z,a)). See also [6].

Definition 3.1: For any nonnegative integer n and complex number x define

3 2n+1 (2n+1-k\ , . Z" e
S = —_— n = Cn n
n(®) prs 2n+1—k ( k )x =0 SR

The first few S,,(z) are shown below:

So(x) =1, Si(z) =z +3, So(z) = 2* + 52 +5,
Ss(x) = a® + 2% + 142 + 7, Sy(x) = * + 9% + 272% + 30z + 9,
Ss(x) = 2° + 112t 4 4423 + 772 4 552 + 11.

Theorem 3.1: {S,,(z)} is given by So(z) =1, Si(z) =z + 3 and Sp41(z) = (x +2)S,(z) —
Sp—1(x) (n>1).

Proof: By (2.17) we have Usp,+1(vVz +4,1) = S, (x). Taking k = 2 in (2.4) we find
Uznts(P,Q) = (P* = 2Q)Uzn11(P,Q) — Q*Uzn—1(P, Q).

Thus, for n > 1,

Sn+1(x) = U2n+3(\/ T+ 4, 1) (.CL' + 2)U2n+1(\/£17 +4 1) Ugn_l(\/ T+ 4, 1)
= (z+2)Sn(x) — Sp—1(2).

This together with the fact that So(z) = 1 and S;(z) = = + 3 proves the theorem.
In [7] the author introduced

- 2r —1
||<:c+2(:os 7'(')
n+1

r=1
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and showed that

Go(x) =1, Gi(x) =41, Gupii(x) =2Gp(z) — Gpo1(z) (n > 1) (3.1)
and
n L n__'_kn
Gn(z) =) (-1 1<[ z ])xk = Up(2,1) + Upp1(z, 1). (3.2)
k=0

Theorem 3.2: For nonnegative integers n and nonzero complex numbers x we have

() = Gz +2) = %VQTLH(@, 1) = Uppa (VT T4, 1)

=Un(x+2,1)+ Ups1(z+2,1).

Proof: The result follows from (2.8), (2.17), (3.1), (3.2) and Theorem 3.1.

Theorem 3.3: For complex numbers P,Q(Q # 0) and a nonnegative integer n we have

2 _ n nen [[PEE
Uzn41(P,Q) = Q"Gn(Peﬁm) =) (-ni= ([ ; ]>Q”"“(P2 -2Q)".
k=0

Proof: From (2.17) and Theorem 3.2 we see that

Upni1(P,Q) = Q“Sn(PZfT‘lQ) = Q”Gn(PZfT‘lQ + 2) = Q“Gn(PQ;ﬁQQ).

Thus applying (3.2) we obtain the result.
Let Z be the set of integers. From Theorem 3.3 we have

Theorem 3.4: Ifn,k € Z, n >0, k> 1, Uy, = Un(P,Q), Vin = Vi (P, Q) and QUy # 0,

then
U(2n+1)k: - n_m [n+m] -
R _\= 2 k(n—m)ym.
ok i (U2 g

m=0

Proof: From (2.5) we know that U(n41)x/Ur = Uzpny1 (P, Q'), where P’ = Vj and
Q' = QF. Since P'* —2Q’ = Vy;, by (2.2), applying Theorem 3.3 we obtain the result.
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4. SOME RELATED COMBINATORIAL IDENTITIES

Putting P =1 and Q = —z in (2.7), (2.9), (2.10), (2.11), (2.16) and then comparing the
expansions for Uy, 42(1, —x) we obtain the following result.

Theorem 4.1: Let n be a nonnegative integer, and let x be a complex number. Then

i <2n +;<;1 - k:) i [”f] <n - k) (152 (1 4 202

k=0 k=0

2n + 2 k
- 22n+1 Z(2k+ > 1+ 4z)

[/
- > (” ! ) (1 +4z)*(1 4 22)" %

2n P 2k +1

" on+1-—
e 3l i [ R
k=0

By comparing the coefficients of ™ in Theorem 4.1 we have

Theorem 4.2: Let n and m be two integers with 0 < m < n. Then

") [:i_/‘? (e ()
=y () ()
-5 e (e

Theorem 4.3: For any nonnegative integer n and complex number x,
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Proof: Clearly

z":znﬂ ntk\ _ . 2m+1 [2n—k i = 8, ()
=2k +1\ 2k _k:02n+1—2k5 k ST

Since S, () = G (x + 2), by (3.2) we have

On the other hand, by Theorem 3.2, S,,(z) = Uap41(vVx +4,1). Applying (2.7) and (2.10) we
get

" (2n—k nek 1 = (2n+1 e
Sn(a:):kZ:O< i )(—1)k(a:+4) k_22_"l;)<2k+1)xk(w+4) k

Combining the above proves the theorem.

Theorem 4.4: If m and n are two nonnegative integers with m < n, then

et (o) = Ga) () = o= () ()

k=

~S e () ()= S () (108,

k=m k=0

Proof: It’s easy to verify that

2n+1 (n+m\ [(n+m . n+m-+1
om+1\ 2m /  \2m+1 2m+1 )’

Since
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and

=0 k=0 m=0
I = /2n+1\ < [(n—k
—_— — 4n—m m
2n <2k+1> Z (n—m) .
k=0 m=k
B 1 i n+1\(n—-Fk\ ,,
_m:04mk: 2k+1)\n—m ’

by comparing the coefficients of ™ in Theorem 4.3 we obtain the result.

Theorem 4.5: For any nonnegative integer n,

~ nok [ZEE]N (=) ifn#Z1 (mod 3),
21 ]< k > B { 2(—=1)"*  ifn=1 (mod 3)

and

Zn:(—l)[nT_k ([n?k]>3k = Lon+1,

where L, = V,,,(1,—1) is the Lucas sequence.
Proof: From Theorem 3.2 we see that G,,(3) = Lo, 41 and

ST ()T

Gn(1) = Usns1(vV3,1) = N 5 2

_ \/__2n1 — _\/__ 2n+1
e (e R

-1)" if n# 1 (mod 3)
- (—1 n+1/ 2n+1 2(2n+1) — ( ’
D™ T ) 2(—=1)"*! ifpn=1 (mod 3),
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where w = (—1 4+ +/—3)/2. Thus applying (3.2) yields the result.
Remark 4.1: By (2.8) and (1.4), for any positive integer n we have

[n/2] n 1 —+/—3\n
Z(_l)n—kL(n o k) =Vo(-1,1) = (_1+T\/__3> + (1—\/_3)

n—k\ k 2
k=0
g 2 if3]n,
I (S BT
See [3, Exercise 44, p. 445] and [2, (1.68)].
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