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ABSTRACT

In the paper we obtain some new expansions and combinatorial identities concerning Lucas
sequences.

1. INTRODUCTION

For complex numbers P and Q the Lucas sequences {Un(P,Q)} and {Vn(P,Q)} are defined
by

U0(P,Q) = 0, U1(P,Q) = 1, Un+1(P,Q) = PUn(P,Q)−QUn−1(P,Q) (n ≥ 1) (1.1)

and

V0(P,Q) = 2, V1(P,Q) = P, Vn+1(P,Q) = PVn(P,Q)−QVn−1(P,Q) (n ≥ 1). (1.2)

Set D = P 2 − 4Q. It is well known that

Un(P,Q) =


1√
D

{(
P+

√
D

2

)n

−
(

P−
√

D
2

)n}
if D 6= 0,

n
(

P
2

)n−1
if D = 0

(1.3)

and

Vn(P,Q) =
(P +

√
D

2

)n

+
(P −

√
D

2

)n

. (1.4)

In Section 2 we state various expansions for Un(P,Q) and illustrate the connections among
them. In Section 3 we investigate the properties of {Sn(x)} and {Gn(x)}, where

Sn(x) =
n∑

k=0

2n + 1
2n + 1− k

(
2n + 1− k

k

)
xn−k and Gn(x) =

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
xk.

For example, we have Sn(x) = Gn(x + 2). Let Un = Un(P,Q) and Vn = Vn(P,Q). In Section
3 we also establish the following identity:

U(2n+1)k = Uk

n∑
m=0

(−1)[
n−m

2 ]

(
[n+m

2 ]
m

)
Qk(n−m)V m

2k ,
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where [x] denotes the greatest integer not exceeding x.
In Section 4, using the results in Sections 2 and 3 we establish several combinatorial

identities. For example, if m and n are nonnegative integers with m ≤ n, then

2n + 1
2m + 1

(
n + m

2m

)
=

n∑
k=m

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)(
k

m

)
2k−m =

n∑
k=m

(−1)n−k

(
n + k

2k

)(
k

m

)
4k−m

=
1

4m

m∑
k=0

(
2n + 1
2k + 1

)(
n− k

n−m

)
.

2. EXPANSIONS FOR Un(P,Q)

Let Un = Un(P,Q) and Vn = Vn(P,Q) be the Lucas sequences given by (1.1) and (1.2).
From (1.3) and (1.4) one can easily check the following known facts (cf. [1, 4, 5, 8]):

Vn = PUn − 2QUn−1 = 2Un+1 − PUn = Un+1 −QUn−1, (2.1)
U2n = UnVn, V2n = V 2

n − 2Qn, (2.2)
V 2

n − (P 2 − 4Q)U2
n = 4Qn, (2.3)

Un+k = VkUn −QkUn−k (n ≥ k). (2.4)

By (2.4), if Uk 6= 0, then Uk(n+1)/Uk = VkUkn/Uk −QkUk(n−1)/Uk. Thus
Ukn/Uk = Un(Vk, Qk). (2.5)

Since U2 = P and V2 = P 2 − 2Q, by (2.5) we have

U2n(P,Q) = PUn(P 2 − 2Q,Q2). (2.6)

Next we look at certain expansions for Un(P,Q). By induction one can prove the following
well known result (cf. [5, (2.5)], [2, (1.60), (1.61), (1.64)], [7, Lemma 1.4] and [8, (4.2.36)])

Un+1(P,Q) =
[n/2]∑
k=0

(
n− k

k

)
(−Q)kPn−2k (2.7)

and

Vn(P,Q) =
[n/2]∑
k=0

n

n− k

(
n− k

k

)
Pn−2k(−Q)k. (2.8)

Combining (2.6) and (2.7) we get

U2n+2(P,Q) = P

[n/2]∑
k=0

(
n− k

k

)
(−Q2)k(P 2 − 2Q)n−2k. (2.9)
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From (1.3) and the binomial theorem one can easily deduce another expansion:

Un+1(P,Q) =
1
2n

[n/2]∑
k=0

(
n + 1
2k + 1

)
Pn−2k(P 2 − 4Q)k. (2.10)

This together with (2.6) gives

U2n+2(P,Q) =
P

2n

[n/2]∑
k=0

(
n + 1
2k + 1

)
(P 2(P 2 − 4Q))k(P 2 − 2Q)n−2k. (2.11)

Using (1.3) and (1.4) one can easily prove the following transformation formulas:

U2n(P,Q) =
P√

P 2 − 4Q
U2n(

√
P 2 − 4Q,−Q), (2.12)

V2n(P,Q) = V2n(
√

P 2 − 4Q,−Q), (2.13)

U2n+1(P,Q) =
1√

P 2 − 4Q
V2n+1(

√
P 2 − 4Q,−Q), (2.14)

V2n+1(P,Q) = PU2n+1(
√

P 2 − 4Q,−Q). (2.15)

Here (2.12)-(2.15) are due to my twin brother Zhi-Wei Sun (he never published these formulas).
From (2.12) and (2.7) we see that

U2n+2(P,Q) = P
n∑

k=0

(
2n + 1− k

k

)
Qk(P 2 − 4Q)n−k. (2.16)

Combining (2.14) with (2.8) yields

U2n+1(P,Q) =
n∑

k=0

2n + 1
2n + 1− k

(
2n + 1− k

k

)
Qk(P 2 − 4Q)n−k. (2.17)

Thus, if Um = Um(P,Q) and Uk 6= 0, applying (2.5), (2.3) and (2.17) we have

U(2n+1)k

Uk
=

n∑
m=0

2n + 1
2n + 1−m

(
2n + 1−m

m

)
Qkm

(
(P 2 − 4Q)U2

k

)n−m
. (2.18)

3. THE POLYNOMIALS Sn(x) AND Gn(x)

For any positive integer n and k ∈ {0, 1, . . . , [n/2]} define

Cn,k =
n

n− k

(
n− k

k

)
.
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It is clear that

Cn,k =
(

n− k

k

)
+

(
n− 1− k

k − 1

)
=

n

k

(
n− 1− k

k − 1

)

=
n

n− 2k

(
n− 1− k

k

)
=

n · (n− 1− k)!
k!(n− 2k)!

.

By (2.8) we have

Vn(x, a) =
[n/2]∑
k=0

Cn,k(−a)kxn−2k.

Cn,k also concerns with the first Chebyshev polynomial Tn(x) (in fact, Vn(x, 1) = 2Tn(x/2))
and Dickson polynomial Dn(x, a) (in fact, Dn(x, a) = Vn(x, a)). See also [6].
Definition 3.1: For any nonnegative integer n and complex number x define

Sn(x) =
n∑

k=0

2n + 1
2n + 1− k

(
2n + 1− k

k

)
xn−k =

n∑
k=0

C2n+1,kxn−k.

The first few Sn(x) are shown below:

S0(x) = 1, S1(x) = x + 3, S2(x) = x2 + 5x + 5,

S3(x) = x3 + 7x2 + 14x + 7, S4(x) = x4 + 9x3 + 27x2 + 30x + 9,

S5(x) = x5 + 11x4 + 44x3 + 77x2 + 55x + 11.

Theorem 3.1: {Sn(x)} is given by S0(x) = 1, S1(x) = x + 3 and Sn+1(x) = (x + 2)Sn(x)−
Sn−1(x) (n ≥ 1).

Proof: By (2.17) we have U2n+1(
√

x + 4, 1) = Sn(x). Taking k = 2 in (2.4) we find

U2n+3(P,Q) = (P 2 − 2Q)U2n+1(P,Q)−Q2U2n−1(P,Q).

Thus, for n ≥ 1,

Sn+1(x) = U2n+3(
√

x + 4, 1) = (x + 2)U2n+1(
√

x + 4, 1)− U2n−1(
√

x + 4, 1)
= (x + 2)Sn(x)− Sn−1(x).

This together with the fact that S0(x) = 1 and S1(x) = x + 3 proves the theorem.
In [7] the author introduced

Gn(x) =
n∏

r=1

(
x + 2 cos

2r − 1
2n + 1

π
)
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and showed that

G0(x) = 1, G1(x) = x + 1, Gn+1(x) = xGn(x)−Gn−1(x) (n ≥ 1) (3.1)

and

Gn(x) =
n∑

k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
xk = Un(x, 1) + Un+1(x, 1). (3.2)

Theorem 3.2: For nonnegative integers n and nonzero complex numbers x we have

Sn(x) = Gn(x + 2) =
1√
x

V2n+1(
√

x,−1) = U2n+1(
√

x + 4, 1)

= Un(x + 2, 1) + Un+1(x + 2, 1).

Proof: The result follows from (2.8), (2.17), (3.1), (3.2) and Theorem 3.1.
Theorem 3.3: For complex numbers P,Q(Q 6= 0) and a nonnegative integer n we have

U2n+1(P,Q) = QnGn

(P 2 − 2Q

Q

)
=

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
Qn−k(P 2 − 2Q)k.

Proof: From (2.17) and Theorem 3.2 we see that

U2n+1(P,Q) = QnSn

(P 2 − 4Q

Q

)
= QnGn

(P 2 − 4Q

Q
+ 2

)
= QnGn

(P 2 − 2Q

Q

)
.

Thus applying (3.2) we obtain the result.
Let Z be the set of integers. From Theorem 3.3 we have

Theorem 3.4: If n, k ∈ Z, n ≥ 0, k ≥ 1, Um = Um(P,Q), Vm = Vm(P,Q) and QUk 6= 0,
then

U(2n+1)k

Uk
=

n∑
m=0

(−1)[
n−m

2 ]

(
[n+m

2 ]
m

)
Qk(n−m)V m

2k .

Proof: From (2.5) we know that U(2n+1)k/Uk = U2n+1(P ′, Q′), where P ′ = Vk and
Q′ = Qk. Since P ′2 − 2Q′ = V2k by (2.2), applying Theorem 3.3 we obtain the result.
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4. SOME RELATED COMBINATORIAL IDENTITIES

Putting P = 1 and Q = −x in (2.7), (2.9), (2.10), (2.11), (2.16) and then comparing the
expansions for U2n+2(1,−x) we obtain the following result.
Theorem 4.1: Let n be a nonnegative integer, and let x be a complex number. Then

n∑
k=0

(
2n + 1− k

k

)
xk =

[n/2]∑
k=0

(
n− k

k

)
(−1)kx2k(1 + 2x)n−2k

=
1

22n+1

n∑
k=0

(
2n + 2
2k + 1

)
(1 + 4x)k

=
1
2n

[n/2]∑
k=0

(
n + 1
2k + 1

)
(1 + 4x)k(1 + 2x)n−2k

=
n∑

k=0

(
2n + 1− k

k

)
(−x)k(1 + 4x)n−k.

By comparing the coefficients of xm in Theorem 4.1 we have
Theorem 4.2: Let n and m be two integers with 0 ≤ m ≤ n. Then

(
2n + 1−m

m

)
=

[m/2]∑
k=0

(
n− k

k

)
(−1)k

(
n− 2k

n−m

)
2m−2k

= 22m−2n−1
n∑

k=m

(
2n + 2
2k + 1

)(
k

m

)

=
m∑

k=0

(
2n + 1− k

k

)
(−1)k

(
n− k

n−m

)
4m−k.

Theorem 4.3: For any nonnegative integer n and complex number x,

n∑
k=0

2n + 1
2k + 1

(
n + k

2k

)
xk =

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
(x + 2)k

=
n∑

k=0

(
2n− k

k

)
(−1)k(x + 4)n−k

=
1

22n

n∑
k=0

(
2n + 1
2k + 1

)
xk(x + 4)n−k.
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Proof: Clearly

n∑
k=0

2n + 1
2k + 1

(
n + k

2k

)
xk =

n∑
k=0

2n + 1
2n + 1− 2k

(
2n− k

k

)
xn−k = Sn(x).

Since Sn(x) = Gn(x + 2), by (3.2) we have

Sn(x) =
n∑

k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
(x + 2)k.

On the other hand, by Theorem 3.2, Sn(x) = U2n+1(
√

x + 4, 1). Applying (2.7) and (2.10) we
get

Sn(x) =
n∑

k=0

(
2n− k

k

)
(−1)k(x + 4)n−k =

1
22n

n∑
k=0

(
2n + 1
2k + 1

)
xk(x + 4)n−k.

Combining the above proves the theorem.
Theorem 4.4: If m and n are two nonnegative integers with m ≤ n, then

2n + 1
2m + 1

(
n + m

2m

)
=

(
n + m

2m + 1

)
+

(
n + m + 1
2m + 1

)
=

n∑
k=m

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)(
k

m

)
2k−m

=
n∑

k=m

(−1)n−k

(
n + k

2k

)(
k

m

)
4k−m =

1
4m

m∑
k=0

(
2n + 1
2k + 1

)(
n− k

n−m

)
.

Proof: It’s easy to verify that

2n + 1
2m + 1

(
n + m

2m

)
=

(
n + m

2m + 1

)
+

(
n + m + 1
2m + 1

)
.

Since

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
(x + 2)k =

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

) k∑
m=0

(
k

m

)
2k−mxm

=
n∑

m=0

n∑
k=m

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)(
k

m

)
2k−mxm,
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n∑
k=0

(
2n− k

k

)
(−1)k(x + 4)n−k =

n∑
k=0

(
2n− k

k

)
(−1)k

n−k∑
m=0

(
n− k

m

)
4n−k−mxm

=
n∑

m=0

n−m∑
k=0

(
2n− k

k

)(
n− k

m

)
(−1)k4n−k−mxm

=
n∑

m=0

n∑
k=m

(
n + k

2k

)(
k

m

)
(−1)n−k4k−mxm

and

1
22n

n∑
k=0

(
2n + 1
2k + 1

)
xk(x + 4)n−k =

1
22n

n∑
k=0

(
2n + 1
2k + 1

) n−k∑
m=0

(
n− k

m

)
4mxn−m

=
1

22n

n∑
k=0

(
2n + 1
2k + 1

) n∑
m=k

(
n− k

n−m

)
4n−mxm

=
n∑

m=0

1
4m

m∑
k=0

(
2n + 1
2k + 1

)(
n− k

n−m

)
xm,

by comparing the coefficients of xm in Theorem 4.3 we obtain the result.
Theorem 4.5: For any nonnegative integer n,

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
=

{
(−1)n if n 6≡ 1 (mod 3),
2(−1)n+1 if n ≡ 1 (mod 3)

and

n∑
k=0

(−1)[
n−k

2 ]

(
[n+k

2 ]
k

)
3k = L2n+1,

where Lm = Vm(1,−1) is the Lucas sequence.
Proof: From Theorem 3.2 we see that Gn(3) = L2n+1 and

Gn(1) = U2n+1(
√

3, 1) =
1√
−1

{(√3 +
√
−1

2

)2n+1

−
(√3−

√
−1

2

)2n+1}

=
1

(
√
−1)2n+2

{(−1 +
√
−3

2

)2n+1

+
(−1−

√
−3

2

)2n+1}

= (−1)n+1(ω2n+1 + ω2(2n+1)) =
{

(−1)n if n 6≡ 1 (mod 3),
2(−1)n+1 if n ≡ 1 (mod 3),
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where ω = (−1 +
√
−3)/2. Thus applying (3.2) yields the result.

Remark 4.1: By (2.8) and (1.4), for any positive integer n we have

[n/2]∑
k=0

(−1)n−k n

n− k

(
n− k

k

)
= Vn(−1, 1) =

(−1 +
√
−3

2

)n

+
(−1−

√
−3

2

)n

= ωn + ω2n =
{

2 if 3 | n,
−1 if 3 6| n.

See [3, Exercise 44, p. 445] and [2, (1.68)].
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[8] H.C. Williams. Édouard Lucas and Primality Testing, Canadian Mathematical Society

Series of Monographs and Advanced Texts (Vol. 22), Wiley, New York, 1998, 74-92.

AMS Classification Numbers: 11B39, 05A19

z z z

152


