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ABSTRACT

Special finite sums of the even powers of the cosecant and of the secant are studied,∑
k csc2m(kπ/N) and

∑
k sec2m(kπ/N), with positive integers N ≥ 3,m and 1 ≤ k < N/2 .

The main result of this article is that these power sums are even polynomials in N , of order
2m, whose coefficients are rational. The approach is based on new differential identities for the
functions csc2z and sec2z. The Mittag-Leffler expansions for these functions are invoked and
the corresponding infinite series are summed to give closed form expressions for the desired
sums. Specific polynomial coefficients are obtained, for 1 ≤ m ≤ 6 and for all N ≥ 3, to
illustrate the method. Similar sums involving the cotangent and the tangent are also examined.

1. INTRODUCTION

Finding formulas for various types of finite sums constitutes an important aspect of num-
ber theory and much attention has been devoted to this subject in this journal. Applications
cover combinatorial analysis, Bernoulli and Euler numbers and polynomials, number theo-
retic convolutions, sums of powers of integers and trigonometric sum formulas, to name just
a few examples: see [2]-[13], and [16]-[18]. In this article we prove that the following sums,
which involve even powers of the cosecant and secant functions, namely

∑
k csc2m(kπ/N) and∑

k sec2m(kπ/N), with positive integers N ≥ 3 and 1 ≤ k < N/2, are even polynomials of
order 2m in N , with rational coefficients. The method used will also be shown to give the
values of the polynomial coefficients for specific cases. We restrict the powers to be even, since
corresponding sums for odd powers lead, in general, to irrational closed forms and involve
more complicated analysis. As will be seen in Section IV, the even-power sums of interest
here lead to rational closed forms. The main results are displayed, proofs are given and the
polynomial coefficients are obtained for twelve specific cases. Our literature search indicates
that the coefficients of two of the twelve given cases are known and it may well be that the
other 10 are new. Closely related sums for the even powers of the cotangent and of the tangent
are also presented in Section V, and shown to be polynomials also.

For N a positive integer ≥ 3, let

Q =
{

(N − 1)/2; N odd
(N − 2)/2; N even.

(1)
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Then, for m a positive integer, define the sums of the even integral powers of the cosecant and
of the secant, as follows:

C2m(N) =
Q∑

k=1

csc2m(kπ/N); (2)

S2m(N) =
Q∑

k=1

sec2m(kπ/N). (3)

The purpose of the present article is to show that the sums (2) and (3), along with similar
expressions for the cotangent and the tangent, can generally be expressed as even polynomials
of degree 2m in N , with rational coefficients. In Section IV, specific expressions will be given for
the polynomial coefficients of C2m(N) and S2m(N), valid for all integral N ≥ 3 and 1 ≤ m ≤ 6.

2. DIFFERENTIAL EQUATIONS AND SPECIAL
SERIES FOR csc2mz AND sec2mz

We begin our discussion with a differential relation that is satisfied by the squares of the
cosecant and secant functions, in terms of the differential operator D ≡ d/dz. Namely, for
m = 1, 2, 3, . . . :

m∏
n=1

[D2 + 4n2]
csc2z

(2m + 1)!
= csc2m+2z; (4)

m∏
n=1

[D2 + 4n2]
sec2z

(2m + 1)!
= sec2m+2z. (5)

Proof of (4) by induction: Let f = csc z, g = cot z and note that g2 = f2 − 1, Df =
−fg, Dg = −f2. Then one has that D2f2 = −4f2 + 6f4, i.e.[D2 + 4]f2/6 = f4, which proves
(4) for m = 1.

Now assume that (4) is true for some m > 1 and consider

D2f2m+2 = (2m+2)f2m+4 +(2m+2)2f2m+2g2 = (2m+3)(2m+2)f2m+4− (2m+2)2f2m+2.

Then, a slight rearrangement gives, with the help of (4), that

[D2 + 4(m + 1)2]
f2m+4

(2m + 3)(2m + 2)
=

m+1∏
n=1

[D2 + 4n2]
f2

(2m + 3)!
= f2m+4. (6)

This is proposition (4) for m + 1 so that proposition is true for all m ≥ 1.
To prove proposition (5), take f = sec z, g = tan z, note that g2 = f2 − 1, and proceed

in the above manner.

264



SUMS OF THE EVEN INTEGRAL POWERS ...

Now (4) and (5) may be expressed in the following form:

Pm(D2)csc2z = csc2m+2z; Pm(D2)sec2z = sec2m+2z. (7)

In these expressions, the Pm’s are polynomials of degree m and we write that, for w an
indeterminate:

Pm(w) = (w + 22)(w + 42) . . . (w + (2m)2)/(2m + 1)!

≡
m∑

r=0

ϕr,mwr. (8)

In the second line of (8), the coefficients {ϕr,m; 0 ≤ r ≤ m; 1 ≤ m} are readily determined.
Indeed, let sr,m be the sum of all the possible distinct products of the following numbers,

{4 · 12, 4 · 22, 4 · 32, . . . , 4 ·m2},

taken (m− r) at a time, with the convention that sm,m = 1. Then we have that:
ϕr,m =

sr,m

(2m + 1)!
; 0 ≤ r ≤ m; 1 ≤ m. (9)

Relations to Bernoulli numbers and a determination of quantities directly related to the ϕr,m

coefficients are given in Dilcher [3, section 3]; the interested reader is referred to that work for
further details and references.

Next, recall the Mittag-Leffler series expansions of csc2z and sec2z (e.g. see formula 4.3.92
in [1]):

csc2z =
+∞∑

n=−∞
(z − nπ)−2; z 6= 0,±π,±2π, . . . (10)

sec2z =
+∞∑

n=−∞
(z − (n− 1/2)π)−2; z 6= ±π/2,±3π/2,±5π/2, . . . (11)

These series are absolutely convergent everywhere, except at the points shown, and they can
be differentiated under the sum sign. In the sequel, for typographical brevity, we write

∑
n to

denote a series over all integers n.
Insertion of the series (10) and (11) in the differential identities (4) and (5) then gives,

with the help of (7) to (9):

csc2m+2z =
m∑

r=0

ϕr,mD2r

[
+∞∑

n=−∞
(z − nπ)−2

]

=
m∑

r=0

(2r + 1)!ϕr,m

∑
n

(z − nπ)−(2r+2);m ≥ 1;

(12)
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sec2m+2z =
m∑

r=0

ϕr,mD2r

[
+∞∑

n=−∞
(z − (n− 1/2)π)−2

]

=
m∑

r=0

(2r + 1)!ϕr,m

∑
n

(z − (n− 1/2)π)−(2r+2);m ≥ 1.

(13)

Infinite series for the integral powers of the cosecant and secant are known. In particular,
Nörlund [14, chapter 6; in German] expresses these series in terms of higher order Euler and
Bernoulli polynomials and numbers. Additional references and a more recent and accessible
English account on the use of these polynomials and numbers can be found in [3, sections 3
and 4].

The series given in (12) and (13) represent special rearrangements of the series for csc2m+2z
and sec2m+2z and it will be shown below that these rearrangements result in series that can be
summed exactly and yield explicit closed form expressions for the desired sums, (2) and (3).
Note that the differential identities (4) and (5) are defined for m ≥ 1 but not for m = 0, which
is why the series (12) and (13) are limited in the same manner. It is however possible and
convenient, for our purpose, to extend these series so that they apply to the case m = 0 as well.
This can be done simply, through series (10) and (11), by introducing an extra ϕ-coefficient:
ϕr=0,m=0 = 1. This will allow us to evaluate C2(N) and S2(N) also and the new convention
regarding the ϕ-coefficients will thus be adopted throughout the remainder of this article.

Now let 1 ≤ k ≤ Q be a positive integer, with Q as given in (1), and set z = kπ/N in (12)
and (13). Then take into account the extra coefficient ϕr=0,m=0 = 1, as mentioned above, and
sum over the index k to get (2) and (3), thus:

C2m(N) =
m−1∑
r=0

(2r + 1)!ϕr,m−1

Q∑
k=1

∑
n

(kπ/N − nπ)−(2r+2)

≡
m∑

r=1

(2r − 1)!ϕr−1,m−1J2r(N); m ≥ 1;

(14)

S2m(N) =
m−1∑
r=0

(2r + 1)!ϕr,m−1

Q∑
k=1

∑
n

(kπ/N − (n− 1/2)π)−(2r+2)

≡
m∑

r=1

(2r − 1)!ϕr−1,m−1K2r(N); m ≥ 1.

(15)

Note that we have shifted the index r in the last lines of (14) and (15) and these relations can
also be used to find C2(N) and S2(N). The following infinite series were defined, for integral
r ≥ 1:

J2r(N) =
(

N

π

)2r Q∑
k=1

∑
n

(k − nN)−2r; (16)
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K2r(N) =
(

N

π

)2r Q∑
k=1

∑
n

(
k − (2n− 1)

N

2

)−2r

. (17)

These infinite series, which will be evaluated next, are absolutely convergent for all the values
of k in the summation interval, 1 ≤ k ≤ Q, and they can thus be rearranged as needed.

3. EVALUATING THE SERIES J2r(N) AND K2r(N) FOR r ≥ 1

In this section, we evaluate the series (16) and (17), which are valid for all integers r ≥ 1,
by rearranging them as follows:

J2r(N) =
(

N

π

)2r Q∑
k=1

[k−2r +(N−k)−2r +(N +k)−2r +(2N−k)−2r +(2N +k)−2r + . . . ]; (18)

K2r(N) =
(

N

π

)2r Q∑
k=1

[(
N

2
− k

)−2r

+
(

N

2
+ k

)−2r

+
(

3N

2
− k

)−2r

+
(

3N

2
+ k

)−2r

+ . . .

]
. (19)

As will be seen, the sums C2m(N) assume the same values as S2m(N) if N is even. For
the case where N is odd, however, the two sums differ. Two cases are thus to be considered:

Case 1: N = 2Q + 2 is even; Case 2: N = 2Q + 1 is odd.

We now consider these cases, in turn.
Case 1: N = 2Q + 2 is even.

Upon summing over k, the terms within square brackets in (18) are the terms k−2r, for
all the positive integers, except for gaps at the positive integral multiples of Q + 1 = N/2,
that is: N/2, 2N/2, 3N/2, etc. It then follows from the known properties of the Riemann Zeta
function, ζ(z), evaluated at z = 2r, 1 ≤ r, that:

J2r(N) =
(

N

π

)2r
[ ∞∑

k=1

k−2r −
∞∑

k=1

(
kN

2

)−2r
]

= (N2r − 22r)
ζ(2r)
π2r

=
22r−1|B2r|

(2r)!
(N2r − 22r); r ≥ 1, N even.

(20)

In this expression, ζ(2r) = (2π)2r|B2r|/2(2r)! (see [1], formula 23.2.16) and |B2r| is the absolute
value of a Bernoulli number (see [1]).
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One can sum (19) in similar fashion. All the positive values of k in k−2r are again covered,
except for gaps at all the positive integral multiples of N/2. This is precisely what was found
in the previous case and it then follows that K2r(N) = J2r(N) for all even N > 3. Thus:

K2r(N) =
22r−1|B2r|

(2r)!
(N2r − 22r); r ≥ 1, N even (21)

Case 2: N = 2Q + 1 is odd.
For J2r(N), the steps are the same as for Case 1 above and the terms within the square

brackets in (18) are again the terms k−2r, except that the gaps are now found at all the positive
integral multiples of 2Q + 1 = N ; that is at: N, 2N, 3N , etc . . . . It thus follows that

J2r(N) =
(

N

π

)2r
[ ∞∑

k=1

k−2r −
∞∑

k=1

(kN)−2r

]

= (N2r − 1)
ζ(2r)
π2r

=
22r−1|B2r|

(2r)!
(N2r − 1); r ≥ 1, N odd.

(22)

In this same case of N odd, we get that the terms within the square brackets of (19) are
the terms 22r(2k−1)−2r, for all positive integral values of k, except for gaps at the odd integral
multiples of 2Q + 1 = N . As a result, since 1 + 3−2r + 5−2r + 7−2r + · · · = ζ(2r)(1− 2−2r), it
follows that:

K2r(N) =
(

N

π

)2r

22r

[ ∞∑
k=1

(2k − 1)−2r −
∞∑

k=1

((2k − 1)N)−2r

]

=
(22r − 1)(N2r − 1)ζ(2r)

π2r

=
22r−1(22r − 1)|B2r|

(2r)!
(N2r − 1); r ≥ 1, N odd.

(23)

We are now in a position to examine the desired sums for any integers m ≥ 1 and N ≥ 3,
and to exhibit the general polynomial structure of the results. We will also demonstrate the
applicability of the present methods by calculating the rational coefficients of the polynomials
for C2m(N) and S2m(N), with 1 ≤ m ≤ 6, for all N ≥ 3.

4. POLYNOMIAL FORMS FOR C2m(N) AND S2m(N),
WITH APPLICATIONS

With the help of (14), (15), and (20) to (23), we obtain general expressions for the desired
sums, C2m(N) and S2m(N):

C2m(N) =
m∑

r=1

ar,m(N2r − 22r); 1 ≤ m; N even. (24)
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C2m(N) =
m∑

r=1

ar,m(N2r − 1); 1 ≤ m; N odd. (25)

S2m(N) =
m∑

r=1

ar,m(N2r − 22r); 1 ≤ m; N even. (26)

S2m(N) =
m∑

r=1

br,m(N2r − 1); 1 ≤ m; N odd. (27)

ar,m =
22r−2|B2r|ϕr−1,m−1

r
; br,m = (22r − 1)ar,m; 1 ≤ r ≤ m; 1 ≤ m. (28)

The above expressions are even polynomials of degree 2m in N , with rational coefficients,
{ar,m : 1 ≤ r ≤ m; 1 ≤ m}, {br,m : 1 ≤ r ≤ m; 1 ≤ m}. The coefficients can be determined from
the Bernoulli numbers and the ϕ-coefficients, as defined through (8), (9), with the extra term:
ϕr=0,m=0 = 1. This constitutes the proof of our earlier claim about the rational polynomial
character of the sums defined in (2) and (3), which is one of the main results of this article.

The following general observations are noteworthy:
1) S2m(N) = C2m(N) when N is even; see (24) and (26);
2) the polynomial expansions for C2m(N), with N even, and those for C2m(N), with N

odd, differ only by their constant term; see (24) and (25).
We now determine the following set of polynomial coefficients to illustrate how the method

works in practice: {ar,m, br,m : 1 ≤ r ≤ m; 1 ≤ m ≤ 6}.
From (28) and (9), plus the definition of the extra coefficient ϕr=0,m=0 = 1, the ar,m and

br,m coefficients may be written as:

ar,m =
22r−2|B2r|sr−1,m−1

r(2m− 1)!
; br,m = (22r − 1)ar,m; sr−1=0,m−1=0 = 1; 1 ≤ r ≤ m; 1 ≤ m. (29)

To determine the desired coefficients for 1 ≤ m ≤ 6 and for arbitrary N ≥ 3, we need the
appropriate Bernoulli numbers, as well as the numbers sr−1,m−1. These are given in the
following two lists.
Absolute values of even-indexed Bernoulli numbers, from B2 to B12:

|B2| =
1
6
; |B4| =

1
30

; |B6| =
1
42

; |B8| =
1
30

; |B10| =
5
66

; |B12| =
691
2730

.
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Sums of products, sr−1,m−1, from s0,0 to s6,6 (columns, r−1; rows, m−1; 1 ≤ m ≤ 6):

r−1
m−1 0 1 2 3 4 5
0 1
1 4 1
2 64 20 1
3 2, 304 784 56 1
4 147, 456 52, 480 4, 368 120 1
5 14, 745, 600 5, 395, 456 489, 280 16, 368 220 1

Finally, with the above lists of values and with (29), we now get the polynomial coefficients
for C2m(N) and S2m(N), with 1 ≤ m ≤ 6, for all N ≥ 3.
Table of ar,m coefficients, from a1,1 to a6,6 (columns, r; rows, m):

r
m 1 2 3 4 5 6
1 1

6

2 1
9

1
90

3 4
45

1
90

1
945

4 8
105

7
675

4
2,835

1
9,450

5 64
945

82
8,505

13
8,505

1
5,670

1
93,555

6 128
2,079

1,916
212,625

278
178,605

31
141,750

2
93,555

691
638,512,875

The br,m coefficients are found from (29) with the help of the corresponding element
in the list of ar,m coefficients, through br,m = (22r − 1)ar,m:

b1,m = 3a1,m; b2,m = 15a2,m; b3,m = 63a3,m; b4,m = 255a4,m; b5,m = 1023a5,m; b6,m = 4095a6,m.

Additional specific results may readily be obtained in the same manner.
The expressions for C2(N) and for S2(N) are known, albeit in a different form, for N odd

or even; they can be found as formulas 4.4.6.4 and 4.4.6.8 in [15], for example. We have been
unable to locate references to formulas for C2m(N) and for S2m(N) where m > 1, however. It
may thus well be that most of the above results are new.

4. POLYNOMIAL FORMS FOR THE EVEN POWERS
OF COTANGENT AND TANGENT

As mentioned in Section 1, there are closely related formulas for the corresponding sums
of even powers of the tangent and cotangent functions. These sums stem from the known
trigonometric identities: tan2z =sec2z− 1 and cot2z =csc2z− 1. We give these relations here,
for completeness.
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Setting z = kπ/N in the identities above, then raising each expression to the mth power,
the binomial expansion theorem gives:

cot2m

(
kπ

N

)
=

[
csc2

(
kπ

N

)
− 1

]m

=
m∑

r=0

(−1)m−r

(
m

r

)
csc2r

(
kπ

N

)
;

tan2m

(
kπ

N

)
=

[
sec2

(
kπ

N

)
− 1

]m

=
m∑

r=0

(−1)m−r

(
m

r

)
sec2r

(
kπ

N

)
.

Then summing each of these identities over k, with 1 ≤ k ≤ Q, we obtain the following
relations, using the definitions in (2) and (3):

Q∑
k=1

cot2m

(
kπ

N

)
=

m∑
r=0

(−1)m−r

(
m

r

)
C2r(N); (30)

Q∑
k=1

tan2m

(
kπ

N

)
=

m∑
r=0

(−1)m−r

(
m

r

)
S2r(N). (31)

Formulas (30) and (31) demonstrate that these sums are indeed polynomials of degree 2m in
N , with rational coefficients also, as claimed in the Introduction. Specific formulas are readily
handled and we skip further details.
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