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ABSTRACT

In this paper, we look at those pairs of integers (a, b) for which the Lucas sequence of
general term un = un(a, b) has the property that 4 | φ(|un|) for almost all positive integers n.

1. INTRODUCTION

In a brilliant short solution (certainly one included in Erdős’s Book of ideal proofs) to
a problem proposed by Clark Kimberling [9] in 1976, Peter Montgomery [15] showed that
4 | φ(Fn) for all n > 4, where φ(n) denotes Euler’s totient function. This problem was
originally proposed by Douglas Lind [12] in this Quarterly in 1965 and given an incomplete
solution by John L. Brown, Jr. [2]. For another solution of this problem, see [8].

In [14], Wayne McDaniel proved the following two theorems:
Theorem 1.1: If n 6= 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, or 48, then Fn has at least one prime factor
of the form 4r + 1.
Theorem 1.2: Let Pn denote the nth Pell number (Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1). If
n 6= 1, 2, or 4, then Pn has at least one prime factor of the form 4r + 1.
Remark 1.3: In Theorem 1.1, McDaniel left out the case F12 = 144 = 2432, while in Theorem
1.2, McDaniel inadvertently included the case P14 = 80782 = 2 · 132 · 239.

The problems considered by Montgomery and McDaniel are related in that if a positive
integer n has a prime factor p ≡ 1 (mod 4), then 4 | φ(n). In this paper, we will generalize
both Montgomery’s and McDaniel’s results to infinite classes of Lucas sequences, classes which
cover most Lucas sequences.

2. PRELIMINARIES

Before presenting our main theorems, we will need to introduce some definitions and
notation and give some known results. We also prove Lemma 2.21, which will be needed for
the proofs of our main theorems.

Let u(a, b) and v(a, b) be Lucas sequences satisfying the second-order recursion relation

wn+2(a, b) = awn+1(a, b) + bwn(a, b), (2.1)

where a and b are integers, and the initial terms are u0 = 0, u1 = 1 and v0 = 2, v1 = a,
respectively. Associated with u(a, b) and v(a, b) is the characteristic polynomial
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f(x) = x2 − ax− b (2.2)

with characteristic roots α and β. Let D = D(a, b) = (α− β)2 = a2 + 4b be the discriminant
of both u(a, b) and v(a, b). By the Binet formulas,

un =
αn − βn

α− β
, vn = αn + βn (2.3)

if D 6= 0 and
un = nαn−1 = n(a/2)n−1, vn = 2αn = 2(a/2)n (2.4)

if D = 0. Note that by (2.3) and (2.4), um|un if m|n.
The rank of appearance of the positive integer m in u(a, b) (respectively, in v(a, b)),

denoted by ρ(m) (respectively, ρ(m)), is the least positive integer t such that m|ut (respectively,
m|vt). Since u0 = 0, it is easily seen that ρ(m) exists if gcd(m, b) = 1. The prime p is called
a primitive prime divisor of un if p|un, but p 6| uk for 1 ≤ k < n. A primitive prime divisor
of vn is defined similarly. It is known that if p is primitive for either un or vn, then p ≡ ±1
(mod n), except when p | D, case in which p | up. In particular, p ≥ n− 1.

The Lucas sequences u(a, b) and v(a, b) are called degenerate if either ab = 0 or α/β
is a root of unity. Since the characteristic polynomial f of u(a, b) and v(a, b) is a quadratic
polynomial with integer coefficients, one sees that α/β can be a primitive root of unity only if
n = 1, 2, 3, 4, or 6. The following theorem gives all degenerate Lucas sequences u(a, b) and
v(a, b).
Theorem 2.1: Let N denote an arbitrary nonzero integer. Then the Lucas sequences u(a, b)
and v(a, b) with characteristic roots α and β are degenerate only in the following cases:
(i) b = 0, a is any integer. Then D = a2, un = an−1, and vn = an for n ≥ 1.
(ii) α/β = 1. Then a = 2N, b = −N2, and D = 0.
(iii) α/β = −1. Then a = 0, b = −N, and D = 4N .
(iv) α/β is a primitive cube root of unity. Then a = N, b = −N2, and D = −3N2.
(v) α/β is a primitive fourth root of unity. Then a = 2N, b = −2N2, and D = −4N2.
(vi) α/β is a primitive sixth root of unity. Then a = 3N, b = −3N2, and D = −3N2.

Proof: This is proved in [24, p. 613].
The proposition below gives well-known properties of the Euler phi-function, which will

be needed for our further work (see [3, pp. 129-132]). The phi-function φ is only defined for
positive integers n. We recall that for a positive integer n the number φ(n) counts the number
of positive integers m ≤ n which are coprime to n.
Proposition 2.2: Let m and n be positive integers.
(i) If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).
(ii) If

n =
r∏

i=1

pki
i

is the prime power factorization of n, then

φ(n) =
r∏

i=1

pki−1
i (pi − 1).
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(iii) If m|n, then φ(m)|φ(n).
The following two lemmas will be key tools in proving that 4 | φ(|un|) in various cases.

Lemma 2.3: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1.
(i) If m|n and 4 | φ(|um|), then 4 | φ(|un|).
(ii) Suppose that n > 3, un has a primitive prime divisor p, and there exists a positive integer
m > 1 such that m|n, m 6= n, and |um| ≥ 3. Then 4 | φ(|un|).

Proof:
(i) This follows from Proposition 2.2 (iii) since m|n implies that um|un.
(ii) Since n > 3, and p is primitive for un, it follows that p ≥ n − 1 ≥ 3. Note that pum|un

and gcd(p, um) = 1. It now follows from Proposition 2.2 that 4 | φ(|pum|) and hence,
4 | φ(|un|).

Lemma 2.4: Let n be a positive integer. Then 4 6| φ(n) if and only if n = 1, 2, 4, pk, or 2pk,
where p is a prime congruent to 3 (mod 4) and k ≥ 1.

Proof: This follows from Proposition 2.2 (ii).
Lemma 2.5:

un(−a, b) = (−1)n+1un(a, b). (2.5)

vn(−a, b) = (−1)nvn(a, b). (2.6)

Proof: Equations (2.5) and (2.6) follow from the Binet formulas (2.3) and (2.4) and can
be proved by induction.
Remark 2.6: In all the proofs from here on, we will only be concerned with the absolute values
of un(a, b) and vn(a, b). Accordingly, by virtue of equations (2.5) and (2.6), we will assume
that a > 0 in all our subsequent proofs involving un(a, b) and vn(a, b).
Proposition 2.7: Let u(a, b) and v(a, b) be Lucas sequences for which gcd(a, b) = 1. Then
the following hold:
(i) gcd(un, b) = gcd(vn, b) = 1 for n ≥ 1.
(ii) gcd(un, vn) = 1 or 2 for n ≥ 1.
(iii) gcd(um, un) = |ud|, where d = gcd(m,n).

Proof: Part (i) is proved in Theorem I of [4], part of (ii) is proved in Theorem II of [4],
and part (iii) is proved in Theorem VI of [4].
Lemma 2.8: Let u(a, b) and v(a, b) be Lucas sequences such that ab 6= 0 and D = a2 +4b > 0.
Then |un| is strictly increasing for n ≥ 2 and |vn| is strictly increasing for n ≥ 1. Further, if
a > 0, then un > 0 for n ≥ 1. Moreover, if b ≤ −1, then |a| ≥ 3, |un+1| > |(a/2)un|, and
|vn+1| > |(a/2)vn| for n ≥ 1. Furthermore, if it is not the case that |a| = b = 1, then |u3| ≥ 3.

Proof: In light of Remark 2.6, we may assume that a ≥ 1. Each assertion except the last
one is proved in the proof of Lemma 3 in [7]. To prove the last assertion, we first observe that
if b ≥ 1 and it is not the case that a = b = 1, then clearly u3 = a2 + b ≥ 3. If b ≤ −1, then
a ≥ 3 and u3 > (3/2)u2 = 3a/2 ≥ 9/2.

Remark 2.9: By Remark 2.6 and Lemma 2.8, we can assume in our proofs from here on that
if D > 0, then un > 0 for n ≥ 1.

Lemma 2.10: Let u(a, b) and v(a, b) be Lucas sequences for which 2 6| gcd(a, b).
(i) Suppose a is odd and b is even. Then 2 6| un and 2 6| vn for n ≥ 1.
(ii) Suppose a is even and b is odd. Then 2|un if and only if 2|n, and 2|vn for all n ≥ 0.
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(iii) Suppose a and b are both odd. Then 2|un if and only if 3|n, and 2|vn if and only if 3|n.
Moreover, 8|u6.

(iv) If ρ(2) exists, then ρ(2) ≤ 3.
(v) If ρ(2) exists, then ρ(2) ≤ 3.

Proof: Parts (iv) and (v) follow from parts (i) - (iii). All the rest of the assertions except
the last assertion of parts (i) - (iii) are proved in [16, p. 60]. We now prove that if a ≡ b ≡ 1
(mod 2), then 8|u6. Note that u6 = u3v3 = (a2 + b)(a(a2 + 3b)). Then 2|a2 + b and 2|a2 + 3b.
Moreover, 4|a2 + b or 4|a2 + 3b, depending on whether b ≡ 3 (mod 4) or b ≡ 1 (mod 4)),
respectively. Thus, 8|u6.

Proposition 2.11: Let u(a, b) be a Lucas sequence.
(i) u2

n − un−1un+1 = (−b)n−1.
(ii) u2n+1 = bu2

n + u2
n+1.

Proof: Parts (i) and (ii) follow from the Binet formulas (2.3) and (2.4).
Lemma 2.12: Let u(a, b) be a Lucas sequence for which gcd(a, b) = d > 1. Then dk|un for
n ≥ 2k, where k ≥ 1.

Proof: This follows easily by induction using the recursion relation defining u(a, b).
Theorems 2.13, 2.14, 2.16, 2.17, and 2.18 below, dealing with primitive prime divisors of

un and with determining when |un| can be a square, will play primary roles in showing that
4 | φ(|un|).
Theorem 2.13: Let u(a, b) be a Lucas sequence for which gcd(a, b) = 1, ab 6= 0, and D > 0.
Then un has a primitive prime divisor unless n=1, 2, 6, or 12. Moreover, u12(a, b) has no
primitive prime divisor if and only if |a| = b = 1.

Proof: This is proved in Theorem XXIII of [4].
Theorem 2.14: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1. Then
un has a primitive prime divisor if n > 30. Moreover, un also has a primitive prime divisor
unless n=1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, or 30.

Proof: This is proved in Theorems C, 1.3, and 1.4 of [1].
Remark 2.15: Consider all nondegenerate Lucas sequences u(a, b) for which gcd(a, b) = 1.
Tables 1 and 3 of [1] list all terms un(a, b), n ≥ 1, which have no primitive prime divisors.
We note that in [1], the authors define a prime p to be a primitive prime divisor of un if p|un

but p 6| Du1u2 . . . un−1. In contrast to this definition, we include p as a primitive prime divisor
of un if p|D but p 6| uk for 1 ≤ k < n.

Theorem 2.16: Let the Lucas sequence u(a, b) be nondegenerate. Then there exists a constant
N1(a, b) dependent on a and b such that un(a, b) has an odd primitive prime divisor for all
n > N1(a, b).

Proof: This was proved by Lekkerkerker [11] for the case in which D > 0 and by Schinzel
[20] for the case in which D < 0. In fact, the argument from page 74 in [23] together with
the main result of [1] shows that one may choose N1(a, b) = max{P (b) + 1, 30}, where P (b)
denotes the largest prime factor of b with the convention that P (±1) = 1.
Theorem 2.17: Let u(a, b) be a nondegenerate Lucas sequence for which −b is a square and
gcd(a, b) = 1.
(i) If D > 0, then un(a, b) has two odd primitive prime divisors for n > 3 an odd integer.
(ii) If D < 0, then there exists a constant N2(a, b) dependent on a and b such that if n is odd
and n > N2(a, b), then un(a, b) has two odd primitive prime divisors.
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Proof: Part (i) is proved in [19] and [21] and part (ii) is proved in [21].
Remark 2.18: In part (i) of Theorem 2.17, both the papers [19] and [21] exclude the case in
which a = 3 and b = −1. However u5(3,−1) = 55 = 5 · 11, and according to our definition it
has two odd primitive prime divisors.
Theorem 2.19:
(i) u3(1, 1) = 2 and u6(1, 1) = 8 are the only Fibonacci numbers Fn which are twice a square

for n > 1.
(ii) |u4(±8,−7)| = 202 and |u5(±4,−3)| = 112 are the only instances in which |un(a, b)| is a

square when n > 2, b < −1, and |a| = −b + 1.
(iii) Let n ≥ 1 and let u(a, b) be a Lucas sequence for which a ≡ b ≡ 1 (mod 2), gcd(a, b) = 1,

and D > 0. Then |un(a, b)| can be a square only if n=1, 2, 3, 6, or 12.
(iv) Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1. Then there exists
an effectively computable constant N3(a, b), dependent on a and b, such that |un(a, b)| is not a
square if n > N3(a, b).

Proof: Part (i) is proved in [5] and [6], (ii) is proved in [13], (iii) is proved in [18], and
(iv) is proved in [16] and [22]. A generalization of (iv) is proved in Chapter 9 of [23].
Lemma 2.20: Let v(a1, b1) be a nondegenerate Lucas sequence for which gcd(a1, b1) = 1.
Let k ≥ 2 and let a = vk(a1, b1) and b = (−1)k+1bk

1 . Then u(a, b) is a nondegenerate Lucas
sequence for which

un(a, b) =
ukn(a1, b1)
uk(a1, b1)

, (2.7)

gcd(a, b) = 1, and both D = D(a, b) and D1 = D(a1, b1) have the same sign.
Proof: Suppose that u(a1, b1) has the characteristic roots α and β. It was shown in [10, p.

437] that (2.7) holds, the characteristic roots of u(a, b) are αk and βk, and D = D1u
1
k(a1, b1).

Hence, D and D1 have the same sign and u(a, b) is nondegenerate. Since gcd(vk(a1, b1), b1) = 1
by Proposition 2.7 (i), it follows that gcd(a, b) = 1.

Lemma 2.21: Let u(a, b) and v(a, b) be nondegenerate Lucas sequences for which gcd(a, b) = 1.
Then |un| =1 or 2 for n > 1 or |vn| = 1 or 2 for n ≥ 1 only in the following instances:
(i) n = 1, a = ±1 or ±2, v1 = a;
(ii) n = 2, a = ±1 or ±2, u2 = a;
(iii) n = 2, a is odd, b = (±1− a2)/2, v2 = ±1;
(iv) n = 2, a is even, b = (±2− a2)/2, v2 = ±2;
(v) n = 3, b = ±1− a2, u3 = ±1;
(vi) n = 3, a is odd, b = ±2− a2, u3 = ±2;
(vii) n = 4, a = ±1, b = −2, v4 = 1;
(viii) n = 4, a = ±2, b = −7, v4 = 2;
(ix) n = 5, a = ±1, b = −2, u5 = −1;
(x) n = 5, a = ±1, b = −3, u5 = 1;
(xi) n = 5, a = ±12, b = −55, u5 = 1;
(xii) n = 5, a = ±12, b = −377, u5 = 1;
(xiii) n = 5, a = ±2, b = −3, v5 = ±2;
(xiv) n = 7, a = ±1, b = −5, u7 = 1;
(xv) n = 13, a = ±1, b = −2, u13 = −1.

253



LUCAS SEQUENCES FOR WHICH 4 | φ(|un|) FOR ALMOST ALL n

Proof: If n ≤ 3, then (i) to (vi) are the only possibilities since v1 = u2 = a, v2 = a2 +2b,
and u3 = a2 + b. We note that ρ(2) and ρ(2) ≤ 3 if the respective ranks of appearance
exist. Thus, if n ≥ 4 and |un| ≤ 2, then un has no primitive prime divisor. Moreover, since
u2n = unvn, we see that if n ≥ 2 and |vn| ≤ 2, then u2n has no primitive prime divisor. By
Table 1 of [1], there are only finitely many possibilities for a and b such that un(a, b) has no
primitive prime divisor if n ≥ 5 and n 6= 6. Checking all these terms un(a, b) and examining
vn(a, b) when u2n(a, b) has no primitive prime divisor, parts (vii) - (xv) are established. Since
there are infinitely many sequences u(a, b) for which un(a, b) has no primitive prime divisor
when n = 4 or 6, we need to examine the cases involving v3, u4, and u6 separately.

Suppose that v3 = ±1 or ±2. Since v3 = a(a2 + 3b), we must have a = 1 or 2 and

a2 + 3b = ±1 or ± 2.

By straightforward calculation and use of Theorem 2.1, we obtain the contradiction that if
|a| ≤ 2, then either b is not an integer or v(a, b) is degenerate. Thus, |v3(a, b)| ≥ 3 in all cases.
It now follows that |u6(a, b)| ≥ 3, since u6 = u3v3.

Finally, suppose that

u4 = u2v2 = a(a2 + 2b) = ±1 or ± 2. (2.8)

Then a = 1 or a = 2. However, if a = 2, then 4|u4 by (2.8). Thus, a = 1 and a2 + 2b =
2b + 1 = ±1. Therefore, b = 0, which is impossible, or b = −1, which is a contradiction since
u(1,−1) is degenerate by Theorem 2.1. The lemma is now proved.

3. THE MAIN THEOREMS

Theorem 3.1: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1. Suppose
that n 6= 4, n 6= 9, and n is composite. Then 4 | φ(|un|) except in the following instances:
(i) n = 6, a = ±2, b = −5, un = ±22;
(ii) n = 8, a = ±1, b = −2, un = ±3;
(iii) n = 10, a = ±1, b = −2, un = ±11;
(iv) n = 10, a = ±1, b = −3, un = ±31;
(v) n = 10, a = ±2, b = −3, un = ±22;
(vi) n = 15, a = ±1, b = −3, un = ±718 = ±2 · 359.

Proof: We suppose that n is composite, n 6= 4, n 6= 9, and un(a, b) is none of the terms
given in cases (i) - (vi) of Theorem 3.1. We first consider the case n = 6 and suppose that
4 6| φ(|u6(a, b)|). We note that

u6(a, b) = u3v3 = (a2 + b)[a(a2 + 3b)]. (3.1)

By Proposition 2.7 (ii)
gcd(a2 + b, a(a2 + 3b)) = 1 or 2. (3.2)

Hence, if |a2 + b| ≥ 3 and |a(a2 +3b)| ≥ 3, then 4 | φ(|u6|) by (3.1), (3.2), and Proposition 2.2.
However, |v3| = |a(a2 + 3b)| ≥ 3 by Lemma 2.21. Thus, |a2 + b| = 1 or 2.

Suppose that a = 1 or 2. Then, by the hypotheses, (a, b) = (1,−2), (2,−3),
(1, 1), or (1,−3). However, u6(1,−2) = 5, u6(2,−3) = −10, u6(1, 1) = 8, and u6(1,−3) = 16.
Thus, 4 | φ(|u6(a, b)|) in all these cases, which is a contradiction.
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Now suppose that a ≥ 3. Since |a2 + b| = 1 or 2, we have b ≤ −7. Since

|(a2 + 3b)− (a2 + b)| = |2b| ≥ 14,

we see that |a2 + 3b| ≥ 12. However,

gcd(a, a2 + 3b) | 3,

since gcd(a, b) = 1. Noting that 3||a2+3b and |a2+3b| > 6 if 3|a, we see from (3.1), Proposition
2.2, Lemma 2.3(i), and Lemma 2.4 that 4 | φ(|u6|), a contradiction. Our treatment of the case
n = 6 is now complete.

Next we assume that n = 2k, where k ≥ 4, un has a primitive prime divisor, and
|uk| ≥ 3. We note by Theorem 2.14 and Lemma 2.21 that these conditions hold if k ≥ 8 and
k 6= 9, 13 or 15. Then, by Lemma 2.3(ii), 4 | φ(|un|).

Suppose that n = 8. Then |u4| ≥ 3 by Lemma 2.21. Thus, 4 6| φ(|u8|) only if u8 has
no primitive prime divisor. By Table 1 of [1], u8(a, b) has no primitive prime divisor only
if (a, b) = (1,−2) or (2,−7). The case a = 1, b = −2 is excluded by hypothesis. Since
|u4(2,−7)| = 20, 4 | φ(|u8(2,−7)|) by Lemma 2.3.

Next, assume that n = 10. By Table 1 of [1], u10(a, b) has no primitive prime divisor only
if (a, b) = (2,−3), (5,−7), or (5,−18). The case a = 2, b = −3 is excluded by hypothesis.
We note that if a = 5, then u2(a, b) = a = 5 and 4 | φ(|u10(a, b)|). Now suppose that
4 6| φ(|u10(a, b)|) and u10(a, b) has a primitive prime divisor. Then |u5(a, b)| ≤ 2 by Lemma
2.3 (ii). By Lemma 2.21, we must have (a, b) = (1,−2), (1,−3), (12,−55), or (12,−377). The
cases (a, b) = (1,−2) or (1,−3) are excluded by hypothesis. If a = 12, then u2(a, b) = a = 12,
and 4 | φ(|u12(a, b)|) by Lemma 2.3 (i).

Now assume that n = 12, 18, or 30. Then, by our earlier consideration of the case n = 6 in
this proof, we saw that 4 | φ(|u6(a, b)|) if (a, b) 6= (2,−5), and consequently 4 | φ(|un(a, b)|) in
these cases if (a, b) 6= (2,−5). Since |u4(2,−5)| = 12, 4 | φ(|u12(2,−5)|). Moreover, u2k(2,−5)
has a primitive prime divisor and |uk(2,−5)| ≥ 3 when k = 9 or 15. Then, by our earlier
discussion, 4 | φ(|un(2,−5)|) when n = 18 or 30.

Now suppose that n = 2k, where k = 7 or 13. By Theorem 2.14, u2k(a, b) has a primitive
prime divisor. Thus, by Lemma 2.3 (ii), 4 6| φ(|u2k(a, b)|) only if |uk(a, b)| ≤ 2. By Lemma 2.21,
either k = 7 and (a, b) = (1,−5) or k = 13 and (a, b) = (1,−2). By inspection, we see that
|u14(1,−5)| = 559 = 13 · 43 and |u26(1,−2)| = 181, which is a prime congruent to 1 modulo 4.
Hence, 4 | φ(|u2k(a, b)|) in these two instances.

We finally assume that n is odd and n 6= 9. By Theorem 2.14, un(a, b) has a primitive
prime divisor. By Lemma 2.3 (ii), 4 6| φ(|un(a, b)|) only if |um(a, b)| ≤ 2 for every proper divisor
m of n. By Lemma 2.21, |um(a, b)| ≤ 2 for m odd only if m =1, 3, 5, 7, or 13. By inspection
of parts (v) - (vi), (ix) - (xii), and (xiv) - (xv) of Lemma 2.21, we see that it is possible that
4 6| φ(|un(a, b)|) only in the following cases:
(a) n = 15, (a, b) = (1,−2) or (1,−3);
(b) n = 25, (a, b) = (1,−2), (1,−3), (12,−55), or (12,−377);
(c) n = 39, (a, b) = (1,−2);
(d) n = 49, (a, b) = (1,−5);
(e) n = 65, (a, b) = (1,−2);
(f) n = 169, (a, b) = (1,−2).

By inspection and computer calculations using Mathematica, we see that |u15(1,−2)| =
89, |u25(1,−2)| = 4049, u25(1,−3)| = 282001, and |u65(1,−2)| = 335257649 are all primes
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congruent to 1 modulo 4. Moreover, |u15(1,−3)| = 718 = 2·359, |u25(12,−377)| is the product
of three odd primes, and |un(a, b)| is the product of two odd primes in all other instances in
cases (a) - (f). The proof is now complete.
Remark 3.2: From the above proof, Lemma 2.21, and Theorem 2.14, it is interesting to note
that apart from u25(±1,−3), which is prime, u(±1,−2) is the only Lucas sequence u(a, b) that
has the largest composite indices n for which |un(a, b)| is a prime, namely, n =15, 25, 26, and
65. Moreover, |u4(±1,−2)| = 3, |u6(±1,−2)| = 5, |u8(±1,−2)| = 3, |u9(±1,−2)| = 17, and
|u10(±1,−2)| = 11 are all primes. Thus, u(±1,−2) possesses all the composite indices n for
which |un(a, b)| may be a prime for some integers a and b.
Corollary 3.3: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1 and
D > 0. If n is composite, then 4 | φ(|un|), except when n = 4, a = ±1, and b = (pk − 1)/2 for
some prime p ≡ 3 (mod 4) and k ≥ 1.

Proof: By Theorem 3.1, it suffices to prove that 4 | φ(|un|) if n = 9 or n = 4 with the
stated exceptions. We first suppose that n = 4 and a ≥ 2. Note that u4 = a(a2 +2b). If b ≥ 1,
then

a2 + 2b ≥ 6. (3.3)

Since D > 0, we see that if b ≤ −1, then

a2 + 2b = a2 + 4b− 2b = D − 2b ≥ −2b + 1 ≥ 3. (3.4)

If a is even, then by (3.3) and (3.4), a2 + 2b is also even and a2 + 2b ≥ 3. Hence, 4|u4 and
u4 > 4, implying that 4 | φ(|u4|).

If a ≥ 3 is odd, then a2 + 2b is also odd. Since gcd(a, b) = 1, we have gcd(a, a2 + 2b) = 1.
Noting that a2 + 2b ≥ 3, it follows by Proposition 2.2 that φ(|u4|) = φ(a(a2 + 2b)) is divisible
by 4.

We now assume that a = 1. Then

u4 = a(a2 + 2b) = 2b + 1. (3.5)

Since a = 1 and D = a2 + 4b > 0, we must have b > 0. Thus, u4 = 2b + 1 > 0. However, by
Lemma 2.4, 4 6| φ(m) if and only if m = 1, 2, 4, pk, or 2pk, where p is a prime congruent to
3 (mod 4) and k ≥ 1. Note that 2b + 1 cannot be 1 or even. Thus, by (3.5), 4 | φ(u4) unless
a = 1 and b = (pk − 1)/2 for some prime p ≡ 3 (mod 4) and k ≥ 1.

We finally suppose that n = 9. By Theorem 2.14, u9 has an odd primitive prime divisor. If
|u3| ≥ 3, it follows by Lemma 2.3(ii) that 4 | φ(|u9|). By Lemma 2.8, |u3| < 3 only if a = b = 1.
However, u9(1, 1) = 34 and 4 | φ(|u9(1, 1)|).
Theorem 3.4: Let u(a, b) be a nondegenerate Lucas sequence for which D > 0 and gcd(a, b) =
1. Then 4 | φ(|un|) for n ≥ 3 if at least one of the following conditions holds:
(i) −b is a square.
(ii) b is a square, n 6= 3 if |a| = b = 1, and n 6= 4 if a = ±1.
(iii) b ≡ 1 (mod 4), a ≡ 1 (mod 2), n 6= 3, and n 6= 4 if a = ±1.
(iv) b ≤ −2, |a| = −b + 1, b ≡ 0 or 1 (mod 4), and n 6= 5 if b = −3.

Proof: We first adapt Montgomery’s proof in [15] and prove (i) and (ii) in the special
case that b = ±1. We note that if b = −1, then a ≥ 3, since D = a2 + 4b > 0. Assume that
n ≥ 3 if a 6= 1 and n ≥ 5 if a = 1. By Proposition 2.11 (i),
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u2
n−1 − un−2un = (−b)n−2 ≡ u2

n−1 ≡ ±1 (mod un). (3.6)

We claim that the four integers ±1,±un−1 are incongruent modulo un. This is easy to see if
a = b = 1 and n ≥ 5. In all other cases, one sees that un > 2un−1 for n ≥ 3, and the result
follows.

We now see from (3.6) that the four integers ±1, ±un−1 form a subgroup of the mul-
tiplicative group G of units of the ring of integers modulo un. This subgroup is the Klein
4-group if b = −1 or both b = 1 and n is even, and is the cyclic group of order 4 if b = 1 and
n is odd. Since |G| = φ(un), 4 | φ(un) by Lagrange’s Theorem.

We now prove the remainder of parts (i) and (ii) and also parts (iii) and (iv). By Corollary
3.3, 4 | φ(|un|) if n is composite and it is not the case that n = 4 and a = 1. Thus, it suffices
to consider only the cases in which n = 4 and a = 1 or n ≥ 3 is a prime.
(i) Since D > 0, a ≥ 3. By Theorem 2.17 (i) and Proposition 2.2, if n ≥ 5 is odd, then un

has two distinct odd primitive prime divisors, and hence 4 | φ(|un|). Thus, 4 | φ(|un|) for
n ≥ 4.

We now show that 4 | φ(|u3|). Let b = −b2
0, where b0 > 0. Then

u3 = a2 + b = a2 − b2
0 = (a + b0)(a− b0),

where gcd(a, b0) = 1. If a ≡ b0 ≡ 1 (mod 2), then a2 ≡ b2
0 ≡ 1 (mod 8), and 8|u3. Hence,

4 | φ(|u3|) in this case. Now assume that a 6≡ b0(mod 2). Since D = a2 − 4b2
0 > 0, a > 2b0.

Thus, a− b0 ≥ 3, since a− b0 ≡ 1 (mod 2). Therefore, there exist distinct odd primes p and q
such that p|a + b0 and q|a− b0, and 4 | φ(|u3|) in this case also.
(ii) Let b = b2

1, where b1 > 0. Then D > 0 and gcd(un, b1) = 1 for b ≥ 1 by Proposition 2.7
(i). By Proposition 2.11 (ii),

u2n−1 = (b1un−1)2 + u2
n. (3.7)

Then gcd(b1un−1, un) = 1 since gcd(un−1, un) = 1. Thus, if u2n+1 > 2, then u2n+1 has a
prime factor congruent to 1 modulo 4, and hence 4 | φ(u2n+1). By Lemma 2.8, u2n+1 > 2
if 2n + 1 ≥ 3 and it is not the case that both a = b = 1 and 2n + 1 = 3. The result now
follows.

(iii) By inspection, one sees that u(a, b) has a period modulo 4 of length equal to 6 and that
un ≡ 1 (mod 4) if n ≡ ±1 (mod 6). By Lemma 2.8, un ≥ 5 if n ≥ 5. Thus, by Lemma
2.4, 4 6| φ(un) for n > 3 an odd prime only if un is a square. However, by Theorem 2.19
(iii), un is not a square if n > 3 is odd.

(iv) We note that if b ≤ −2 and a = −b + 1, then D = (b + 1)2 > 0. Since a > 1, it suffices
to show that 4 | φ(un) if n ≥ 3 is odd and n 6= 5 if b = −3. We observe that either
a ≡ 0, b ≡ 1 (mod 4) or a ≡ 1, b ≡ 0 (mod 4). By inspection and Lemma 2.8, we
see that un > 1 if n ≥ 3 and un ≡ 1 (mod 4) if n ≡ 1 (mod 2). Thus, by Lemma 2.4,
4 6| φ(un) for n ≥ 3 and n odd only if un is a square. However, by Theorem 2.19 (ii), un

cannot be a square if n is odd, n ≥ 3, and it is not the case that n = 5 and b = −3.

Theorem 3.5: Let v(a1, b1) be a nondegenerate Lucas sequence for which gcd(a1, b1) = 1.
Let k ≥ 2 and let a = ±vk(a1, b1) and b = (−1)k+1bk

1 . Then u(a, b) is a nondegenerate Lucas
sequence for which un(a, b) and both D = D(a, b) and D1 = D(a1, b1) have the same sign. Let
p denote an arbitrary prime.
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(i) Suppose D > 0. Then 4 | φ(|un(a, b)|) if n ≥ 3 and it is not the case that both k = pt and
n = p, where t ≥ 1.

(ii) Suppose D < 0 and k has at least two distinct prime divisors. Then 4 | φ(|un(a, b)|) for
n ≥ 6.

(iii) Suppose D < 0 and k = pi, where i ≥ 2. Then 4 | φ(|un(a, b)|) for n ≥ 6 and n 6= p.
(iv) Suppose D < 0 and k = p. Then 4 | φ(|un(a, b)|) if n ≥ 6, n 6= p, and it is not the case
that either n = 7, a1 = ±1, b1 = −5, or n = 13, a1 = ±1, b1 = −2.

Proof: We first note that by Lemma 2.20, u(a, b) is a nondegenerate Lucas sequence,
gcd(a, b) = 1, both D and D1 have the same sign, and

un(a, b) =
ukn(a1, b1)
uk(a1, b1)

. (3.8)

We prove parts (i) - (iv) together. We assume throughout the proof that a > 0. First
assume that D > 0. Since a = vk(a1, b1) and D1 > 0, it follows from Lemma 2.8 that a ≥ 3.
We now see from Corollary 3.3 that 4 6| φ(|un(a, b)|) for n ≥ 3 only if n is a prime. Now assume
that |b1| is a square. Then |b| = |(−1)k+1bk

1 | is also a square. It now follows from parts (i)
and (ii) of Theorem 3.4 that 4 | φ(|un(a, b)|) for n ≥ 3. Thus, if D > 0, we need only treat the
cases in which |b1| is not a square and n ≥ 3 is a prime.

We note by Theorem 3.1 that if 4 6| φ(|un(a, b)|) where gcd(a, b) = 1, n ≥ 6 is composite,
and n 6= 9, then b is not of the form (−1)k+1bk

1 , where b1 6= 0 and k ≥ 2. It follows that if
D < 0, n is composite, n ≥ 6, and 4 6| φ(|un|), then n = 9. Now suppose that D < 0 and
n = 9. By Table 1 of [1] and inspection, at least two of the terms u9k(a1, b1), u3k(a1, b1),
and u9(a1, b1) have odd primitive prime divisors. Since u9k(a1, b1) and u3k(a1, b1) have odd
primitive prime divisors if 9|k by Theorem 2.14, it follows from (3.8) that 4 | φ(|u9(a, b)|).
Therefore, if D < 0, we only need to consider the cases in which n ≥ 6 is a prime.

From here on until the end of the proof, we assume that n is a prime greater than or equal
to 3 if D > 0 and n is a prime greater than 6 if D < 0. Suppose that k has a prime factor p
different from n. First suppose that D > 0, n = 3, k = 2 or 4, and u6(a1, b1) has no primitive
prime divisor. By Table 3 of [1] and Lemma 2.10 (iii), if (a1, b1) 6= (3,−2), then a1 ≡ b1 ≡ 1
(mod 2), which implies that 8|u6(a1, b1) and 8|u12(a1, b1), while 2 6| u2(a1, b1)u4(a1, b1). Hence,
4 | φ(u3(a, b)) in these cases. If (a1, b1) = (3,−2), then u6(a1, b1) has no primitive prime
divisor,

u6(a1, b1)/u2(a1, b1) = 63/3 = 3 · 7

and
u12(a1, b1)/u4(a1, b1) = 4095/15 = 3 · 7 · 13.

Thus, 4 | φ(u3(a, b)) in these cases also.
Now assume that it is not the case that D > 0, n = 3, k = 2 or 4, and u6(a1, b1) has no

primitive prime divisor. Then, by Theorems 2.13 and 2.14, both ukn(a1, b1) and ukn/p(a1, b1)
have odd primitive prime divisors. Since neither kn nor kn/p divides k, it follows that 4 |
φ(|un(a, b)|).

Finally, assume that k = pj , where j ≥ 1, n 6= p, and it is not the case that either
n = 7, j = 1, a1 = 1, b1 = −5 or n = 13, j = 1, a1 = 1, b1 = −2. Then, by Table
1 of [1], both ukn(a1, b1) and un(a1, b1) have odd primitive prime divisors. Thus, by (3.8),
4 | φ(|un(a, b)|). The result now follows.
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Remark 3.6: We keep the notation of Theorem 3.5. Let p 6= 5 be an arbitrary prime. Using
similar arguments as those in the proof of Theorem 3.5, it can be shown that if D < 0, then
4 | φ(|u5(a, b)|) if it not the case that

(i) k = 2 and (a1, b1) = (±2,−3),
or

(ii) k = p and (a1, b1) = (±1,−2), or (±1,−3), or (±12,−55), or (±12,−377),
or

(iii) k = 5i, where i ≥ 1.
Theorem 3.7: Let u(a, b) be a Lucas sequence for which a 6= 0 and d = gcd(a, b) > 1. Suppose
further that D = 0 or b = 0 or u(a, b) is nondegenerate. Suppose that d 6= pk, where p ≡ 3
(mod 4) is a prime and k ≥ 1. Then 4 | φ(|un|) for n ≥ 6. Moreover, the following also hold:
(i) If d 6= 2, d 6= 4, and d 6= 2pk, where p ≡ 3 (mod 4) is a prime and k ≥ 1, then 4 | φ(|un|)

for n ≥ 2.
(ii) If d = 4 or d = 2pk, where p ≡ 3 (mod 4) is a prime and k ≥ 1, then 4 | φ(|un|) for

n ≥ 4.
(iii) If d = 2 and it is not the case that n = 5 and (a, b) = (±2,−10), (±4,−6), or (±4,−42),

then 4 | φ(|un|) for n ≥ 4.
(iv) If (a, b) = (±4,−6) or (±4,−42), then 4 | φ(|un|) for n ≥ 3 and n 6= 5.
(v) If (a, b) = ±(2,−10), then 4 | φ(|un|) for n ≥ 4 and n 6= 5.

Proof: It suffices to prove parts (i) - (iii). Parts (iv) and (v) then follow by inspection.
We note that if b = 0 and a 6= 0, then un = an−1 6= 0 for n ≥ 1. If D = 0 and a 6= 0, then by
(2.4), un = n(a/2)n−1 6= 0 for n ≥ 1. It now follows from the discussion before Theorem 2.1
that un 6= 0 for n ≥ 1 whenever the hypotheses are satisfied.
(i) By Lemma 2.12, d|un for n ≥ 2, implying by Proposition 2.2(iii) and Lemma 2.4 that

4 | φ(|un|) for n ≥ 2.
(ii) By Lemma 2.12, d2|un > 4. The result now follows.
(iii) By Lemma 2.12, 4|un for n ≥ 4 and 8|un for n ≥ 6. Thus, 4 | φ(|un|) for n ≥ 6. We

further note that u4 = a(a2 + 2b). Since 2|a and 2|b, it follows that 4|a2 + 2b, and hence,
8|u4. Thus, 4 | φ(|u4|) also. Moreover, φ(|u5|) will be divisible by 4 if it can be shown
that |u5| > 4.
Suppose that |u5| = 4. Let a = 2c and b = 2g where c is a positive integer and either c or

g is odd. Then, by Proposition 2.11(ii),

u5 = bu2
2 + u2

3 = a2b + (a2 + b)2 = 4(g2 + 6c2g + 4c4) = ±4. (3.9)

Therefore,
g2 + 6c2g + 4c4 ± 1 = 0,

which implies that

g =
−6c2 ±

√
20c4 ± 4

2
. (3.10)

Hence, 20c4 ± 4 = ρ2 for some non-negative integer ρ. Thus,

ρ2 − 5(2c2)2 = ±4. (3.11)
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It is well known that (ρ, c) is a solution to (3.11) if and only if ρ = Ln and 2c2 = Fn for
some positive integer n. By Theorem 2.19(i), Fn is twice a positive square if and only if
n = 3, Fn = 2, and c = 1, or n = 6, Fn = 8, and c = 2. Thus the only possibilities for a are
a = 2(1) = 2 or a = 2(2) = 4. Noting that b = 2g, it follows from (3.10) that if a = 2 and
c = 1, then b = −2 or b = −10, while if a = 4 and c = 2, then b = −6 or b = −42. We note
that we cannot have a = 2, b = −2, since then D 6= 0 and u(a, b) is degenerate by Theorem
2.1. We observe that u5 = −4 if a = 2, b = −10, while u5 = 4 if either a = 4, b = −6 or
a = 4, b = −42. The result now follows.
Theorem 3.8: Let u(a, b) be a nondegenerate Lucas sequence. Then there exists an effectively
computable constant C(a, b), dependent on a and b, such that 4 | φ(|un|) for n > C(a, b) if at
least one of the following conditions holds:
(i) gcd(a, b) > 1,
(ii) −b is a square,
(iii) b ≡ 0 or 1 (mod 4) and D > 0.

Proof:
(i) Let p be a prime dividing gcd(a, b). By Lemma 2.12, p2|un(a, b) for n ≥ 4. By Theorem

2.16, there exists a constant C1(a, b) ≥ 4 such that if n > C1(a, b), then un(a, b) has an odd
primitive prime divisor q. Then p2q|un(a, b). Hence, by Proposition 2.2, 4 | φ(|un(a, b)|)
for all n > C1(a, b).

(ii) By Theorem 3.4 (i) and part (i) of this theorem, we can assume that gcd(a, b) = 1 and
D < 0. By Theorem 2.17 (ii), there exists a constant C2(a, b) such that if n > C2(a, b),
then un(a, b) has at least two odd primitive prime divisors. Hence, 4 | φ(|un(a, b)|) if
n > C2(a, b) and n is odd. The result now follows by Theorem 3.1.

(iii) Since D > 0, we have un > 0 for n ≥ 1 by Remark 2.9. By part (i), we can assume that
gcd(a, b) = 1. By Theorem 3.1, it suffices to show that 4 | φ(un(a, b)) for n > 3 a prime.
One sees by inspection that u(a, b) has a period modulo 4 less than or equal to 6 and that
if n ≡ 1 or 5 (mod 6), then un(a, b) ≡ 1 (mod 4). It now follows that if n > 3 is a prime,
then un ≡ 1 (mod 4). By Lemma 2.4, if un ≡ 1 (mod 4) and 4 6| φ(un), then un is a
square. However, by Theorem 2.19 (iv), there exists a constant C3(a, b) > 3 such that if
n > C3(a, b), then un(a, b) is not a square. The result now follows.

Theorem 3.9: Let u(a, b) be a Lucas sequence for which a 6= 0. Let S be the set of those
positive integers n for which 4 | φ(|un|). Then the natural density of S in the set of positive
integers is equal to 1 in the following cases:
(i) u(a, b) is nondegenerate.
(ii) D = 0.
(iii) b = 0 and a 6= pk, where p ≡ 3 (mod 4) is a prime and k ≥ 0.

Proof:
(i) If gcd(a, b) > 1, then S has density 1 by Theorem 3.8. If gcd(a, b) = 1, then, by Theorem

3.1, 4 | φ(|un|) for n > 15 unless n is a prime. Since the set of primes has density 0 in the
set of positive integers, the result follows.

(ii) We observe that
un = n(a/2)n−1 (3.12)

by the Binet formula (2.4). Noting that a is even and (a/2)|gcd(a, b) if D = 0, it follows
from Lemma 2.4 that 4 | φ(|un|) for n ≥ 3 if a/2 6= pk, where p ≡ 3 (mod 4) is a prime
and k ≥ 0. If a/2 = pi, where p ≡ 3 (mod 4) is a prime and i ≥ 1, then by (3.12) and
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Lemma 2.4, 4 6| φ(|un|) if and only if n = pj or n = 2pj for some nonnegative integer j. If
a/2 = 1, we see by (3.12) and Lemma 2.4 that 4 6| φ(|un|) if and only if n = 1, 2, 4, qk, or
2qk, where q is any prime congruent to 3 modulo 4 and k ≥ 1. Since the density of the set
of primes and prime powers in the set of positive integers is equal to 0, the result follows.

(iii) The result follows from Theorem 3.7.
Remark 3.10: More can be said here about the order of the prime 2 in the factorization of
φ(|un|). Indeed, assume that u(a, b) is nondegenerate. For a positive integer n we write ω(n)
for the number of distinct prime factors of n. By a classical result of Túran and Kubilius,
ω(n) = (1+o(1)) log log n holds for almost all positive integers n. That is, if ε > 0 is arbitrarily
small, then the set of positive integers n such that |ω(n)−log log n| < ε log log n is of asymptotic
density 1. Let τ(n) be the number of divisors of n. Clearly, τ(n) ≥ 2ω(n) = (log n)(1+o(1)) log 2.
By the Primitive Divisor Theorem 2.14, un has at least τ(n)− 13 distinct prime factors (i.e.,
if d|n is any divisor of n not in the set {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, 30}, then there exists
a primitive prime factor of ud|un). Of those primes, at most one is even, and for each one
of the remaining odd prime factors p of un we get a factor 2 in φ(|un|) via the fact that
2|(p− 1)|φ(|un|). It now follows easily that the order of 2 in the factorization of φ(|un|) is at
least τ(n)− 14 = (log n)(1+o(1)) log 2 for most positive integers n.
Theorem 3.11: Let the fixed positive integer b be a square.
(i) If a 6= 0, gcd(a, b) = 1, and a has a prime factor p ≡ 1 (mod 4), then un(a, b) has a prime

divisor of the form 4r + 1 for n ≥ 2.
(ii) There exist infinitely many nonzero integers a such that gcd(a, b) = 1, a does not have a
prime factor p ≡ 1 (mod 4), and un(a, b) has a prime divisor of the form 4r + 1 for n ≥ 3.

Proof:
(i) By the proof of Theorem 3.4 (ii), u2k+1 has a prime factor q ≡ 1 (mod 4) for k ≥ 1.

Let p ≡ 1 (mod 4) be a prime factor of u2 = a. Then p|u2k for k ≥ 1 since u2|u2k. The
assertion now follows.

(ii) Let b = b2
1, where b1 > 0. Assume that a is any positive integer such that it is not the case

that a = b = 1. Again, by the proof of Theorem 3.4 (ii), u2k+1 has a prime factor q ≡ 1
(mod 4), where k ≥ 1. Therefore, if n has an odd divisor m ≥ 3, then un has a prime
factor of the form 4r + 1, since um|un. It thus suffices to show that there exist infinitely
many positive integers a such that u2 = a does not have a prime factor p ≡ 1 (mod 4),
but u4 does have a prime factor of the form 4r + 1. Since u4|u2m for m ≥ 2, it would
then follow that u2m has a prime factor of the form 4r + 1 for m ≥ 2. Let s be any prime
of the form 8t + 1 such that s 6| b. By Dirichlet’s theorem on the infinitude of primes in
arithmetic progressions, there exist infinitely many such primes s. Since (−2/s) = 1 by
the law of quadratic reciprocity, where (−2/s) denotes the Legendre symbol, there exists
an integer c such that 0 < c < s and c2 ≡ −2 (mod s). By Dirichlet’s theorem and the
Chinese remainder theorem, there exist infinitely many primes a such that a > b, a ≡ cb1

(mod s), and a ≡ 3 (mod 4). Then gcd(a, b) = 1, a has no prime factor p ≡ 1 (mod 4),
and

u4(a, b) = a(a2 + 2b2
1) ≡ a(c2b2

1 + 2b2
1) ≡ a(−2b2

1 + 2b2
1) ≡ 0 (mod s).

The result now follows since s ≡ 1 (mod 4).
Theorem 3.12: Let u(a, b) be a nondegenerate Lucas sequence such that b is a square,
gcd(a, b) = 1, and it is not the case that |a| = b = 1. Suppose there exists an integer k ≥ 0
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such that v2k(a, b) has a prime factor of the form 4r + 1 and that k is the least such integer.
Then un has a prime divisor of the form 4r + 1 for n 6= 2i, where 0 ≤ i ≤ k.

Proof: As in the proof of Theorem 3.4 (ii), if n has an odd divisor j ≥ 3, then un has a
prime factor of the form 4r + 1. By repeatedly applying the formula u2n = unvn and noting
that u1 = 1, we see that

u2m = v1v2v4 · · · v2m−1 . (3.13)

Therefore, by (3.13), if m ≥ k + 1, then u2m has the divisor v2k and thus a prime factor
of the form 4r + 1. The result now follows.
Remark 3.13: We conjecture that for any nondegenerate Lucas sequence v(a, b) for which b
is a square and gcd(a, b) = 1, there exists an integer k such that v2k has a prime factor p ≡ 1
(mod 4). It would then follow from Theorems 1.1 and 3.11 that there exists an integer C(a, b),
dependent on a and b, such that un(a, b) has a prime factor of the form 4r +1 for n > C(a, b).
We note that if |a| = b = 1, then 5 is the smallest value of k such that v2k has a prime factor
of the form 4r + 1 and that the prime 4481 divides v32(±1, 1).
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