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ABSTRACT

In 1984, H.C. Williams introduced a public key cryptosystem whose security is as in-
tractable as factorization. That is, the system is provably as difficult to break as it is to
find the factors of the modulus n = pq. By utilizing properties of the Lucas functions, this
proposal is the only factorization equivalent scheme that is known which does not impose any
restrictions on the primes used in the modulus.

However, Williams anticipates several restrictions on the messages without further ana-
lyzing if these are always fulfilled. By investigating simple numerical examples we found that
any message not meeting these criteria cannot be encrypted and most likely directly exposes
a factor of the modulus during the encryption process.

We analyze this problem encountered in the original scheme and establish the exact num-
ber of such ‘dangerous’ messages. Moreover, we provide a simple modification of the Williams’
system which minimizes these difficulties. The modification does not complicate the system in
any way. Evaluation of the proposed system can be obtained in exactly the same number of
steps as in the original system. The results obtained will demonstrate that the possible lack
of security due to the ‘dangerous’ messages is negligibly small for large moduli.

1. INTRODUCTION

1.1 Background
The security of many cryptographic techniques depends upon the intractability of the

integer factorization problem. In spite of spectacular progress of recent years in developing
fast factorization algorithms (cf. [5, 6, 10, 11]), an appropriately chosen, sufficiently large
modulus still cannot be factorized by current techniques.

It is well-known that the RSA public-key cryptosystem can be broken if its modulus
n = pq can be factored into its secret keys p and q. However, it is not known if the opposite
is true. This problem has led to the development of a variety of PKCSs [3, 4, 8, 16-20] whose
security is equivalent in difficulty to factoring the modulus n, i.e., for which knowledge of
the factorization of the modulus is necessary in order to retrieve plaintext from ciphertext
without the use of the decryption key. As with Rabin’s signature scheme [13], the proof of
the equivalence to factoring of all these schemes is of a constructive nature and consequently
can be converted into a chosen ciphertext attack (CCA). During the last few years, a great
number of mechanisms have been developed for securing cryptoschemes against such types of
attacks (see e.g. [1, 2, 9]).

All the above factorization equivalent techniques (except for [19]) require special forms of
the underlying primes in the modulus. Although it is not known whether or not factorization
of these special moduli is more easily tractable, schemes based on the general factorization

224



SOME REMARKS ON WILLIAMS’ PUBLIC-KEY CRYPTO FUNCTIONS

primitive certainly are to be preferred. The Williams scheme [19] utilizes certain properties of
Lucas functions, thus making it the only cryptosystem equivalent to factoring that does not
impose any restrictions on the primes.
1.2 Motivation

In spite of being the only system not requiring any special primes, it seems that it has
never obtained a great deal of interest. Indeed, when a colleague of mine started implementing
it, he boldly announced that it did not even work at all! His calculations showed that very
often the required multiplicative inverses don’t exist. As a consequence, not all messages can
be encrypted, resp. decrypted, and moreover, this fact allows to totally break the system.
Encryption of such ‘dangerous’ messages leads to an immediate factorization of the modulus
into its secret keys. What had gone wrong? I implemented it myself and encountered the
same ‘problems’. After consulting the original paper [19], I learned that for the correctness of
the scheme several restrictions on the message are necessary. Unfortunately Williams does not
further analyze these restrictions, and moreover, from his paper it is not clear, if, or to what
extend these impose a lack of security in the scheme. These problems encountered during the
implementation were the motivation for writing this paper.

Outline of the paper: The goal of this paper is to firstly analyze Williams’ encryption
scheme [19]. We will determine the exact number of messages that cannot be encrypted
and thereby directly expose a factor during encryption. Secondly, we will provide a simple
modification of the scheme that minimizes this difficulty. In particular, when p ≡ q ≡ 3 mod 4,
all factor-revealing messages are eliminated. The modified version will not only be shown to
be as secure as the original, but also has the exact same complexity and performance as the
original.

2. ‘DANGEROUS’ MESSAGES FOR THE WILLIAMS’ SCHEME?

2.1 Some Preliminaries of the Williams’ Scheme
Let n = pq be the product of two distinct primes and let c ∈ Z∗n be defined such that the

Legendre symbols εp =
(

c
p

)
and εq =

(
c
q

)
satisfy

εp ≡ −p mod 4, εq ≡ −q mod 4.

Additionally, a value s with gcd(s, n) = 1 and
(

s2−c
n

)
= −1 is determined. Further, let the

public enciphering key e and the secret deciphering key d be chosen according to ed ≡ m+1
2

mod m, where m = (p−εp)(q−εq)
4 .

In the following, let w ∈ Z be the message to be encrypted. Let n, e, c, s constitute the
public key, and p, q,m, d denote the secret key.

Let b1 = 1, if
(

w2−c
n

)
= 1, and b1 = −1, if

(
w2−c

n

)
= −1.

Define α(w) as w+
√

c
w−

√
c
, respectively as (w+

√
c)(s+

√
c)

(w−
√

c)(s−
√

c)
mod n, according as b1 = 1 or −1.

Suppose gcd(w2 − c, n) = 1. Then, if α(w) ≡ a + b
√

c mod n, it follows that

a = a(w) ≡

{ w2+c
w2−c mod n, if b1 = 1,
(w2+c)(s2+c)+4csw

(w2−c)(s2−c) mod n, if b1 = −1,
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b = b(w) ≡

{ 2w
w2−c mod n, if b1 = 1,

2s(w2+c)+2w(s2+c)
(w2−c)(s2−c) mod n, if b1 = −1.

The en- and decryption functions are described by means of the sequences (cf. [14, 21]),
Xi(a) ≡ Vi(2a,1)

2 mod n, and Yi(a, b) ≡ bUi(2a, 1) mod n, where Ui and Vi, denote the Lucas
sequences of the first and second kind, respectively.

In essence, the encryption routine of [19] consists of calculating

E(w) ≡ Xe(a(w))
Ye(a(w), b(w))

mod n (2.2)

(cf. also [15]). Further, decryption essentially consists of retrieving the parameters a(w) and
b(w) from the cryptogram [E(w), b1, b2], where b2 ∈ {0, 1} is defined by a(w) mod 2. Finally,
w can be retrieved from a(w) and b(w) by

w =

{ a(w)+1
b(w) mod n, if b1 = 1,

cb(w)−s(a(w)+1)
a(w)+1−sb(w) mod n, if b1 = −1.

(2.3)

At this stage we leave out further details of the scheme as these are not necessary for our
investigations. For a more specific background we refer to [19, 15] and section 4 below.
2.2 Insecure Encryption?:

Williams [19] showed that (for suitable messages) breaking the scheme is equivalent in
difficulty to factoring. Nonetheless, this does not exclude the possibility that the scheme could
be broken by some other means (e.g., the underlying routines frequently require the calculation
of multiplicative inverses modulo n. In many cases, these won’t exist). We investigated
encryption and decryption for some sample moduli. The following table shows the distribution
of examples of messages that cannot be encrypted, resp. decrypted, and that (for the former)
very likely automatically expose the factorization of n.

messages that messages that
cannot be encrypted cannot be decrypted

p q n number percentage number percentage
13 17 221 43 19 29 13
41 43 1763 210 11 165 9
83 107 8881 663 7 569 6
151 191 28841 1195 4 1025 3

The above messages relating to the encryption process will in most cases automatically
expose the secret key to any legitimate user. In that case the system will be broken without
an attempted attack, but rather by simply running it during encryption.

In spite of the data provided so far, we show that these ‘difficulties’ actually represent no
threat whatsoever under realistic settings of the scheme.
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3. PARAMETER ANALYSIS OF THE WILLIAMS SCHEME

Without going into detail, we summarize the conditions of Theorem 3.1 of [19] that are
essential for correct encryption and decryption. These are given by the following constrains:
gcd(w2− c, n) = 1, and gcd(w, n) = 1 for b1 = 1, and gcd(w + s, n) = 1 and gcd(sw + c, n) = 1
for b1 = −1.

Clearly, by inspecting the encryption and decryption routines, these conditions can be
specified as follows.
Lemma 1: Let w ∈ Z∗n be the message. Then the encryption procedure [19] can be carried out
whenever both gcd(w2 − c, n) = 1 and gcd(b(w), n) = 1. Further, necessary conditions for the
decryption function in [19] are gcd(b(w), n) = 1 for b1 = 1, and gcd(a(w) + 1− sb(w), n) = 1
for b1 = −1.

We now establish the exact number of the messages for which encryption or decryption is

not possible. Consider first the case that
(

w2−c
n

)
6= 0.

Lemma 2: Suppose that gcd(w2− c, n) = 1 for all messages w. Then the following conditions
hold.
1. #be

:= #{w ∈ Z, : gcd(b(w), n) > 1} = 3p+q
2 − 2.

2. #bd
:= #{w ∈ Z, : gcd(b(w), n) > 1 and b1 = 1} = p+q

2 .

3. #den := #{w ∈ Z, : gcd(a(w) + 1− sb(w), n) > 1 and b1 = −1} = p+q
2 − 1.

Proof: We will only consider the first case. The other two can be treated in a similar
way. Since (a(w) + 1)(a(w)− 1) ≡ cb(w)2 mod n, it follows that b(w) ≡ 0 mod p or q, exactly
when a(w) ± 1 ≡ 0 mod p or q. For b1 = 1 this is the case for gcd(w, n) > 1. Similarly, for
b1 = −1 we obtain gcd(ws + c, n) > 1 or gcd(w + s, n) > 1. The number of w ∈ Zn with
gcd(w, n) > 1 is p + q − 1. This number can also be obtained in the other two cases. Now we
have to distinguish the messages w with corresponding b1 = 1 from those with b1 = −1.

For a fixed ε with |ε| = 1, it is known (cf. [7]) that the number of w ∈ Zp with
(

w2−c
p

)
= ε

is ±1 plus the number of w ∈ Zp with
(

w2−c
p

)
= −ε. Therefore, with an exception of one w,

the case b1 = 1 occurs as often as b1 = −1. Hence, by regarding the above three quantities
for b1 = 1 respectively b1 = −1, we obtain the desired number as (p+q−1)−1

2 + 2(p+q−1)
2 or

p+q−1
2 + 2(p+q−1)−1

2 , which yields the above assertion.
Corollary 1: The number of messages w, 0 ≤ w < n with gcd(w2 − c, n) = 1 that cannot be
encrypted by Williams’ system equals #be

= 3p+q
2 − 2 and the number of those that cannot be

decrypted, equals p + q − 1.
Those messages w will automatically factorize n unless one of the above gcd′ s in Lemma

2 is actually equal to n. In extending the above results also for the case that gcd(w2−c, n) > 1,
and considering only messages that expose a proper factor, one gets then the following general
formula.
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Theorem 1: The number of messages w, 0 ≤ w < n that expose a proper factor when being
encrypted by Williams’ system equals

3p+q
2 − 5, if p ≡ q ≡ 1 mod 4,

3p+7q
2 − 5, if p ≡ 1 mod 4, q ≡ 3 mod 4,

7p+q
2 − 9, if p ≡ q ≡ 3 mod 4.

Proof: Observe that p ≡ −
(

c
p

)
mod 4, and similarly for q. Then the first assertion

immediately follows from the number #be
of Lemma 2 by subtracting the messages w ≡

0 mod n, w ≡ −c mod n, and w ≡ − c
s mod n, for which gcd(b(w), n) is equal to n. The

other two cases can be seen by additionally counting the number of messages in Zn with
gcd(w2 − c, n) = p respectively q. Finally, for the third case the four messages w with w2 ≡
c mod n need to be excluded as gcd(w2 − c, n) = n but not a proper factor.
Consequence: It is now obvious that the number of messages that will factorize n will become
negligibly small for sufficiently large moduli. Consequently, for realistic settings, the Williams’
scheme is resistant against the ‘attacks’ described in section 2.2.

4. THE MODIFIED SCHEME

Although the number of messages that either cannot be encrypted or decrypted in
Williams scheme is very small whenever the primes p and q are sufficiently large, the scheme
could be designed in a more advantageous way. We establish a very simple modification of
the scheme which will minimize the number of the ‘dangerous’ messages. In detail, we show
that the number #be then does not need to be considered. Particularly, this very simple
modification does make sense since it runs in the exact same number of steps as does the
original.
4.1 The Modified Encryption and Decryption Routines

We present a simple modification of Williams’ scheme that does not require the condition
gcd(b(w), n) = 1 in Lemma 1. Bearing in mind that this restriction for b(w) was particularly
caused by the calculation of the inverse of Ye(a(w), b(w) = b(w)Ue(2a(w), 1) modulo n in
equation (2), this leads to the question about the zeros of Xe(a(w)) = Ve(2a(w), 1) modulo p
or q.

We note that the choice of the parameters a = a(w) and b = b(w) implies that a2− cb2 ≡
1 mod n.
Proposition 1: Suppose that n = pq is the product of two primes p, q and that a, b, and c

are integers which satisfy a2 − cb2 ≡ 1 mod n and p ≡ −
(

c
p

)
mod 4. Under these conditions

Xe(2a) = Ve(2a, 1) is always coprime to n.
Proof: Let α, α = a± b

√
c be the distinct roots of x2−Px+Q = x2−2ax+1 ≡ 0 mod n

with discriminant D = 4a2 − 4 = 4cb2.

It is well know (cf. [14]) that U p−(D/p)
2

(P,Q) ≡ U p−(c/p)
2

(2a, 1) ≡ 0 mod p iff
(

Q
p

)
= 1,

which obviously is the case since Q = 1. Moreover, the smallest k with Uk(P,Q) ≡ 0 mod p

then must be a divisor of
p−(D

p )
2 . Therefore, k|p−(c/p)

2 mod p. Hence, by the hypothesis on c,
k must be odd.
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On the other hand, it is well known that [21] that there exists an integer e with Ve(P,Q) ≡
0 mod p if and only if k is even, which is a contradiction.
Remark 1: A similar statement has been shown in [19]. The result of Proposition 1 is
extending Williams’ in allowing general values b = b(w) ∈ Zn instead of b = b(w) ∈ Z∗n.

By the choice of the parameters a = a(w), b = b(w), and c, the expression Ye(a, b) will
therefore always be relatively prime to n. It thus makes sense to modify William’s encryption
process as follows.
Encryption: If w is the message then let

E(w) =
Ye(a(w), b(w))

Xe(a(w))
mod n.

The cryptotext to be transmitted is the triple C = [E(w), b1, b2], where b2 equals 0 or 1,
depending on whether a(w) is even or odd.

Decryption: Upon receiving C, the receiver first calculates the values a0 ≡ 1+E(w)2c
1−E(w)2c mod n,

and b0 ≡ 2E(w)
1−E(w)2c mod n.

The second step consists of determining σ = σ(w) = (−1)b2−Xd(a0) and a(w), b(w) by
a(w) ≡ σXd(a0) and b(w) ≡ σYd(a0, b0) mod n.

The message w can be retrieved from a(w) and b(w) by means of

w =

{ a(w)+1
b(w) mod n, if b1 = 1,

cb(w)−s(a(w)+1)
a(w)+1−sb(w) mod n, if b1 = −1.

(4.1)

provided gcd(b(w), n) = 1 for b1 = 1, and gcd(a(w) + 1− sb(w), n) = 1 for b1 = −1.

Lemma 3: The encryption scheme of this section is successful for all messages w ∈ Zn when
p ≡ q ≡ 1 mod 4, and to all w that satisfy gcd(w2 − c, n) = 1 when p ≡ 3 mod 4 for some p|n.
4.2 Proof of Correctness

The proof runs along the same lines as the one in [19]. We summarize Williams’ underlying
ideas and then extend them for our modification. As with the original scheme, the basic
property is based on the congruence

α(w)2ed ≡ ±α(w) mod n, (4.2)

where α(w) = a + b
√

c, and a = a(w), b = b(w) ∈ Z.
For general a and b this congruence does not always hold modulo n. However, if a = a(w)

and b = b(w) are chosen according to the above formulas, then Williams has shown that, if

b1 = 1, then α(w)
p−ε(p)

2 ≡
(

w2−c
p

)
mod p, α(w)

q−ε(q)
2 ≡

(
w2−c

q

)
mod q. Similarly, if b1 = −1,

then it follows that α(w)
p−ε(p)

2 ≡
(

w2−c
p

) (
s2−c

p

)
mod p, α(w)

q−ε(q)
2 ≡

(
w2−c

q

) (
s2−c

q

)
mod q.

If additionally
(

w2−c
n

)
= 1, respectively −1 according to the value of b1, then the choice of e

and d implies the desired result α(w)2ed ≡ ±α(w) mod n.
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By means of this α(w) one then has the well-known representation of the Lucas sequences,
and consequently, of the underlying functions,

Xi(a(w)) = Xi(α(w)) =
Vi(2a(w), 1)

2
=

α(w)i + α(w)i

2
, (4.3)

Yi(a(w), b(w)) = Yi(α(w)) = b(w)Ui(2a(w), 1) = b(w)
α(w)i − α(w)i

α(w)− α(w)
. (4.4)

As is well-known, the powers of α = α(w) and α = α(w) correspond to the terms of the
Xi- and Yi- functions by the characterization

αi = Xi(α) + Yi(α)
√

c and αi = Xi(α)− Yi(α)
√

c.

Moreover, by basic properties of the Lucas sequences we have X2ed(a(w)) ≡ Xd(a0, b0),
and Y2ed(a(w), b(w)) ≡ Yd(a0, b0) mod n, where a0, b0 are defined by X2e(a(w)) mod n and
Y2e(a(w), b(w)) mod n, respectively.

Hence, by (5), Xd(a0) ≡ σa(w) mod n, Yd(a0, b0) ≡ σb(w) mod n.
Consequently, the decrypter needs to find σ, a(w), and b(w), or, alternatively, σ, a0, and

b0, since he knows d.
As in the original scheme [19], σ = (−1)b2−Xd(a0). Moreover, since X2

e − Y 2
e c ≡ 1 mod n

by a fundamental property of the Lucas sequences, we have

α(w)2e ≡ Xe(a(w)) + Ye(a(w), b(w)
√

c

Xe(a(w))− Ye(a(w), b(w)
√

c
≡ 1 + E(w)

√
c

1− E(w)
√

c
≡

≡ 1 + E(w)2c
1− E(w)2c

+
2E(w)

1− E(w)2c
√

c ≡ a0 + b0

√
c mod n. (4.5)

Now, as α(w)2e ≡ X2e(α(w)) + Y2e(α(w))
√

c mod n, the receiver thus can calculate a0, b0

from the cryptogram,

a0 ≡
1 + E(w)2c
1− E(w)2c

mod n and b0 ≡
2E(w)

1− E(w)2c
mod n,

as desired.
Then obviously, a(w) ≡ σXd(a0) and b(w) ≡ σYd(a0, b0) mod n and the message w can

be retrieved from a(w) and b(w) by means of (3), provided gcd(b(w), n) = 1 for b1 = 1, and
gcd(a(w) + 1− sb(w), n) = 1 for b1 = −1.

4.3 Special Decryption
Actually, it is not necessary to impose Williams’ constrains on a(w) and b(w) in the

decryption process. Indeed, if the above conditions are violated, we can find an alternative
way to retrieve w.
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Lemma 4: Let w be the message, [E(w), b1, b2] be the cryptogram that is transmitted and
a(w), b(w) be the values obtained in the decryption algorithm.
(a) If gcd(b(w), n) = p for some prime factor p of n and b1 = 1, then w ≡ cpt

a(w)−1 mod n,

where t ∈ Z is defined via pt = b(w).
(b) If gcd(a(w) + 1− sb(w), n) = p for b1 = −1, then w ≡ c −a(w)+1+sb(w)

s(a(w)−1)−cb(w) mod n.

Proof: The first case follows from the definition of b(w), which implies w2 − c = 2w
pt and

a(w)− 1 ≡ 2c
w2−c mod n. By combining those two equations we obtain the desired solution for

w. Similarly the second assertion follows from the characterization of the quantities a(w) and
b(w).
Corollary 2: The decryption scheme of this section is successful for all messages w ∈ Zn.

Proof: It only remains to consider the cases b(w) ≡ 0 mod n for b1 = 1 respectively
gcd(a(w) + 1 − sb(w), n) = n for b1 = −1. The former case is equivalent to w ≡ 0 mod n,
whereas the latter is equivalent to w ≡ − c

w mod n.

4.4 Equivalence of Decryption and Factoring
This equivalence can be proven analogously as in [19]. For completeness we give the proof

for our scheme, since it is a modification of the original one.
By the underlying properties of the encryption and decryption routines the decryption of

a message cannot uniquely be obtained. Similarly as in the Rabin scheme this unambiguous
decryption is the basis for establishing the equivalence to factoring. Under ‘correct’ decryption
the original message will be obtained, while under a simple modification of this procedure the
decryption routine evaluates a proper factor of n.

Assume that a cryptanalyst may be able to decrypt a certain fraction of all ciphertexts.
Then the knowledge of a decryption algorithm immediately leads to the factorization of n. The
procedure is the same as in the original scheme since it only relies on the values α2ed mod p
and α2ed mod q.

Suppose that p, q, n and c are chosen as above. The equivalence to factoring can be shown

as follows. First, a number w with
(

w2−c
n

)
= −1 is chosen. According to Lemma 4.3 of [19]

there exist two and only two values of z modulo n, such that

w2 + c

w
≡ z2 + c

w
mod n and

(
z2 − c

n

)
= 1.

Additionally, any of these values of z imply gcd(w − z, n) = p or q.

Notice that w2+c
w ≡ z2+c

w mod n is equivalent to

a(w)
b(w)

≡ a(z)
b(z)

mod n for b1 = 1. (4.6)

It can immediately be verified that any z 6≡ w mod n that fulfills the latter condition satisfies(
z2−c

n

)
= 1 and therefore gcd(w − z, n) = p or q.

This idea now can be applied to obtain the factorization algorithm in the following way.
By making use of property (2.12) of [19], which is

Xi(a1)Yi(a1, b1) ≡ Xi(a2)Yi(a2, b2) mod n,
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whenever a1
b1
≡ a2

b2
mod n, equation (9) yields for i = e,

X−1
e (

w2 + c

w2 − w
)Ye(

w2 + c

w2 − w
,

2w

w2 − c
) ≡

≡ X−1
e (

z2 + c

z2 − z
)Ye(

z2 + z

z2 − z
,

2z

z2 − c
) ≡ E(z) mod n. (4.7)

Observe that the left hand side of the equation can be calculated by following the above
encryption algorithm for b1=1 (rather the correct b1 = −1) on purpose. Let [E(w), 1, b2] be
the resulting cryptogram. By assumption, the cryptanalyst can apply the decryption algorithm
to find the corresponding plaintext. However, the decoded cryptotext cannot be the same as
w, because w was in the encryption process assigned the wrong values for a(w) and b(w) by
the choice of b1 = 1 instead of −1. Indeed, it follows from (10) that the decryption oracle

returns the decryption of E(z) mod n. Since
(

z2−c
n

)
= 1, which is the correct b1 w.r.t. z, this

decryption equals z. So the original cryptotext w will be decoded to the different value z and
gcd(w − z, n) is a proper factor of n, as claimed.

5. SUMMARY

Motivated by some numerical examples of messages that either cannot be encrypted or
decrypted we gave a short cryptanalysis of Williams’ provable secure cryptoscheme [19] and
developed the exact number of these messages. It is shown that this number becomes negligibly
small for suitably large moduli. Moreover, we presented a modified version for which the
number of such messages is minimized. Indeed, if p ≡ q ≡ 1 mod 4 then the modified version
will never expose any factor during encryption and therefore the cryptogram of any message
can only be obtained without the secret key by factoring the modulus. For general primes p
and q of the modulus n, only the messages w with gcd(w2 − c, n) > 1 need to be excluded.
Consequently, with overwhelming probability, no message will expose a factor of n during
encryption. E.g., if n = pq where p and q each have about 50 digits, the probability would
only be less than approximately 10−49.

Recently, factorization equivalent RSA modifications have become of great interest as
basis for provably secure encryption schemes against chosen ciphertext attacks. While the
development of the Williams scheme was originally mainly of theoretical interest, it actually
presents an important basis for such security enhanced methods. The algorithms could be
efficiently realized by means of rapid evaluation methods of combined Lucas sequences U(P,Q),
V (P,Q). This can be achieved in roughly twice the time required for exponentiation, since
Q = 1, which allows the most optimal evaluation [12, 21]. Although the algorithms are
more involved than plain RSA, the Williams’ scheme is therefore still quite practical. As of
today, Williams system (and the proposed simple modification) represent the only factorization
equivalent schemes which utilize the general factorization problem of any large number n = pq.
Contrary to the other proposals they do not require any special form of the primes.
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