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ABSTRACT

The inradius of a triangle is the radius of the inscribed circle. In particular, the inradius
of a primitive Pythagorean triangle is always an integer. We show how to find the number of
primitive Pythagorean triangles with a given inradius.

1. INTRODUCTION

Let a right triangle have sides whose lengths are x, y, z, where z is the length of the
hypotenuse. Such a triple is called primitive if GCD(x, y, z) = 1. It is well-known that x, y, z
is a primitive Pythagorean triple (we will abbreviate PPT) if and only if

x = 2ab, y = a2 − b2, z = a2 + b2 (1)

where a, b are integers such that

a > b > 0, (a, b) = 1, a 6≡ b (mod 2) (2)

(see [1], Theorem 4.17). The inradius of a triangle is the radius of the inscribed circle. Let r be
the inradius of PPT x, y, z. The following theorem, which uses a simple geometric argument,
allows us to express r in terms of x, y, and z.

Theorem 1: If r, x, y, z are defined as above, then

r =
x + y − z

2
. (3)

Proof: Let the perpendicular sides of the triangle meet at point C. Draw radii from
the center of the circle to the three points of tangency. Consider the quadrilateral consisting of
the radii to the sides of length x and y, and the tangent lines drawn to those sides from point
C. Since angle C is a right angle by hypothesis, and since a tangent to a circle is perpendicular
to a radius drawn to the point of contact, the quadrilateral has 3 right angles. Therefore the
fourth angle must also be a right angle, so the quadrilateral is a rectangle. Since two adjacent
sides (namely the radii) have equal length, it follows that the quadrilateral is a square whose
side has length r. Thus the points of tangency split the sides of the triangle as follows: (1)
the side of length x is split into segments of length r and x−r; (2) the side of length y is split
into segments of length r and y − r; (3) the hypotenuse is split into segments of length x− r
and y − r. (The last statement follows from the fact that tangents drawn from an external
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point to a circle have equal length.) Thus we have (x − r) + (y − r) = z, from which the
conclusion follows.

Corollary 1: If r is the inradius of PPT x, y, z, then r is a positive integer.

Proof: This follows from Theorem 1, the fact z and exactly one of x, y are odd, and
the triangle ineqality.

Let T (r) denote the number of PPT’s with inradius r. Theorem 1 below enables us to
compute T (r).

Definition 1: If the natural number r ≥ 2, let ω(r) denote the number of distinct prime
factors of r.

Definition 2: If the natural number r ≥ 2, let ω∗(r) denote the number of distinct odd
prime divisors of r, so that

ω∗(r) =
{

ω(r) if r is odd
ω(r)− 1 if r is even

. (4)

Theorem 2: If r is a natural number, then T (r) = 2ω∗(r).

Proof: If we combine (1) and (3), we obtain r = b(a− b).
Now (a, b) = 1 → (b, a− b) = 1 and a 6≡ b (mod 2) → a− b is odd.
If r is odd , r > 1, and b|r, let

r =
n∏

i=1

pei
i , b =

n∏
i=1

pfi

i , a− b =
n∏

i=1

pei−fi

i

where the pi are distinct odd primes and 0 ≤ fi ≤ ei for all i. Now

(b, a− b) = 1 → Min{fi, ei − fi} = 0 for all i → fi = 0 or ei for all i .

Thus we have 2n = 2ω(r) = 2ω∗(r) possible values of b.
If r = 2km where k ≥ 1 and m is odd, then we have b = 2jd, a − b = 2k−jδ where

0 ≤ j ≤ k and dδ = m. As before, (b, a − b) = 1 → j = 0 or j = k. But if j = 0, then
2k|(a− b), so a− b is even, an impossibility. Therefore b = 2kd, a− b = δ. As in the proof for
the case when r is odd, the number of choices of d is 2ω(m) = 2ω∗(r).

Corollary 2: T (r) = 1 if and only if r = 2k for some k ≥ 0.

Proof: If k ≥ 1, then the corollary follows directly from Theorem 1. If k = 0, then
1 = r = b(a− b) → b = 1, a = 2 → x = 4, y = 3, z = 5.
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