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ABSTRACT

By combinatorial arguments, we prove that the number of self-avoiding walks on the strip
{0, 1} × Z is 8Fn − 4 when n is odd and is 8Fn − n when n is even. Also, when backwards
moves are prohibited, we derive simple expressions for the number of length n self-avoiding
walks on {0, 1} × Z, Z× Z, the triangular lattice, and the cubic lattice.

1. INTRODUCTION

A self-avoiding walk is a path on a lattice that does not visit the same point twice.
Although the number of self-avoiding walks of a prescribed length on the integer lattice Z×Z
remains a wide open question [2], Doron Zeilberger [4] proved
Theorem 1: For n > 1, the number of self-avoiding walks on the lattice strip {0, 1} × Z is

8Fn − εn

where εn = 4, when n is odd, and εn = n when n is even.
Zeilberger’s proof uses generating functions and the appearance of Fibonacci numbers is

considered a happy algebraic coincidence. Here we present an elementary combinatorial proof
of this fact where the Fibonacci numbers arise in a very natural way.

2. SELF-AVOIDING WALKS ON {0, 1} × Z

On the strip {0, 1}×Z, a self-avoiding walk begins at the origin (0, 0) and at any point is
allowed to move in any of three directions: up, sideways, or down, provided that we do not visit
any previously visited point. Letting Wn denote the set of n-step self-avoiding walks (hence-
forth abbreviated as n-saws) we may describe its elements by a length n string of letters from
the set {u, s, d}. For example, a typical element of W20 would be dddsuuuuusuusuuuusdd,
abbreviated d3su5su2su4sd2, which begins by going down 3 steps to the point (0,−3), moving
sideways to the point (1,−3), then moving 5 steps up, and so on until finally ending at the
point (0, 6). Letting wn denote the number of n-saws, we can verify that w1 = 3, w2 = 6,
w3 = 12, w4 = 20. Our challenge will be to explain why wn = 8Fn − εn, by elementary
combinatorial considerations.

It is well known [1] that for n ≥ 0, Fn counts sequences of 1s and 2s that sum to n − 1.
For k ≥ 0, let Fk denote the set of sequences of 1s and 2s that sum to k. Thus Fn−1 has
Fn elements. Our strategy is to show how almost every X in Fn−1 can be used to generate
eight distinct elements of Wn and that every element of Wn can be obtained uniquely in this
manner. The “almost” accounts for the fact that some elements of Fn−1 (two of them when n
is odd, and n/2 of them when n is even) only generate six elements of Wn, and this explains
the “error term” εn.
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From a typical element X of Fn−1, we will first generate four n-saws that end on or above
the x-axis. We shall denote these n-saws by SAW1(X), SAW2(X), SAW3(X), SAW4(X).
The horizontal reflection of these walks will produce four more n-saws that end below the
x-axis. Notice that when n > 0 is even, there are no n-saws that end on the x-axis, and when
n > 1 is odd, there are only two n-saws that end on the x-axis, namely d(n−1)/2su(n−1)/2

(which we call the n-cup), and its upside-down reflection u(n−1)/2sd(n−1)/2 (called the n-cap).
By our construction, we will say that SAW1(X) has type (u, u) to indicate that its first and
last step are in the up direction. SAW2(X) will have type (sd, u) indicating that its first
step is sideways or down, and its last step is up. Similarly, SAW3 will have type (u, sd) and
SAW4(X) will have type (sd, sd).

Our primary tool for creating self-avoiding walks from sequences of 1s and 2s is the
following set of instructions. For Y in Fk define I(Y ) by the rules

1 → u 2 → su.

That is, reading Y from left to right, every 1 tells the walk to move up and every 2 tells the
walk to move sideways then up. Notice that I(Y ) takes exactly k steps and, if k > 0, will end
with an up step. For example, from the sequence Y = 2211112 in F10, I(Y ) consists of the 10
steps (su)(su)uuuu(su).

For X in Fn−1, we define
SAW1(X) = uI(X).

That is, SAW1(X) begins by taking one step up and then follows the instructions of X. Thus
for X0 = 22112 in F8, SAW1(X0) is the 9-saw uI(22112) = u (su)(su)uu(su). Notice that
SAW1(X) is of type (u, u) since it begins and ends with an up step, and that every n-saw of
type (u, u) ending above the x-axis can be created uniquely in this manner. Notice that when
creating an n-saw from X in Fn−1, we must somehow “add one step” so it achieves a length
of n.

Since SAW2(X) is prescribed to be of type (sd, u), it must begin with a side or down
move, and end with an up move, ending above the x-axis. Here we let the number of 2s at the
beginning of X determine how many down steps to make before making a side move and then
returning to the x-axis. Suppose X begins with exactly j 2s (j ≥ 0) followed by 1 followed by
a (possibly empty) string Y from Fn−2−2j , then for X = 2j1Y , we define

SAW2(X) = djsuj+1I(Y ),

moving j steps down, followed by a side move, followed by j + 1 steps up, then following the
instructions of Y . For example, if X0 = 22112, then SAW2(X0) = d2su3I(12) = ddsuuu u(su).
If X1 = 12221, beginning with 1, then SAW2(X) = d0su1I(2221) = su (su)(su)(su)u begins
with a side move. Notice that djsuj+1 brings us to the point (1, 1) so SAW2(X) is a self-
avoiding walk of type (sd, u), and it has length n because the string 2j1, which has sum 2j +1,
generates the 2j + 2 steps djsuj+1. Finally, if X∗ consists of all 2s, i.e., when n is odd and
X∗ = 2(n−1)/2, then we define SAW2(X∗) = d(n−1)/2su(n−1)/2, the n-cup.

For SAW3(X), suppose X ends with exactly j 2s, where j ≥ 0. For X = Y 12j ,

SAW3(X) = uI(Y )ujsdj ,
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which is an n-saw of type (u, sd). For example, X0 = 22112 maps to SAW3(X0) =
uI(221)u1sd1 = u (su)(su)u usd. For X∗ = 2(n−1)/2 (when n is odd), we define SAW3(X∗) =
u(n−1)/2sd(n−1)/2, the n-cap.

Finally, for SAW4(X), we combine the ideas of SAW2 and SAW3. Suppose X begins
with j 2s and ends with k 2s, where j, k ≥ 0, and has at least two 1s in between. Then for
X = 2j1Y 12k,

SAW4(X) = djsuj+1I(Y )uksdk,

is an n-saw of type (sd, sd) that begins with j down steps and ends with k down steps. For
example, X0 = 22112 maps to SAW4(X0) = d2su3I(∅)u1sd1 = ddsuuu usd. If X does not
have at least two 1s, then SAW4(X) is undefined. Thus when n is odd, SAW4(X) is undefined
only for X∗ = 2(n−1)/2. When n is even, SAW4(X) is undefined for n

2 inputs of the form

2j12
(n−2)

2 −j where 0 ≤ j ≤ (n− 2)/2.
Summarizing, when n is odd, for every X in Fn−1 (which has Fn elements), we generate

four n-saws, except for the single input X∗ which generates only three of them. Altogether,
there are 4Fn − 1 n-saws that end on or above the x-axis. Reflecting these (except for the
n-cup and the n-cap) gives 4Fn − 3 n-saws that end strictly below the x-axis. Altogether,
there are 8Fn − 4 n-saws as was to be shown.

When n is even, then every X in Fn−1 generates four n-saws, except for the n
2 inputs

of the form 2j12
(n−2)

2 −j , which generate only three of them. Altogether, there are 4Fn − n
2

n-saws, all of which end (strictly) above the x-axis. Upon reflection, we have a total of 8Fn−n
self-avoiding walks of length n, as promised.

3. SELF-AVOIDING WALKS THAT “NEVER LOOK BACK”

In this section, we consider self-avoiding walk problems where we no longer have the option
of moving in the “down” direction. These were the objects of study by Lauren Williams [3].
Using Zeilberger’s generating function approach, she derived simple closed forms for counting
n-step “up-side self-avoiding walks” (which we denote by n-ussaws) on various lattices. In this
section, we derive many of these results by direct combinatorial arguments, beginning with
the lattice strip.
Corollary 2: For n ≥ 0, the number of n-step up-side self-avoiding walks on the lattice strip
{0, 1} × Z is the Fibonacci number Fn+2.

Proof: All n-ussaws can be uniquely obtained from X in Fn+1 (which has size Fn+2), by
taking I(X) and removing the final up step. Alternatively, one can prove this by induction.
Letting un denote the number of n-ussaws, one sees by inspection that u1 = 2 = F3, u2 =
3 = F4, and for n ≥ 3, the last step is either up (preceded by an (n − 1)-ussaw) or sideways,
preceded by up (preceded by an (n− 2)-ussaw); thus un = un−1 + un−2 = Fn+1 + Fn = Fn+2,
as desired.

For other lattices, it is easy to show that the number of n-ussaws can be described by
linear recurrences. Let an denote the number of n-ussaws on the plane Z×Z. Let tn denote the
number of n-ussaws on the triangular lattice, where at any point in the lattice there are four
legal directions: left, right, upper left, and upper right, denoted by `, r, u`, ur, respectively. Let
cn denote the number of n-ussaws on the restricted cubic lattice with points (x, y, z) where x
and y are restricted to the set {0, 1}, but z may be any nonnegative integer.
Theorem 3: a) For n ≥ 2, an = 2an−1 + an−2, where a0 = 1, a1 = 3.
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b) For n ≥ 2, tn = 3tn−1 + 2tn−2, where t0 = 1, t1 = 4.
c) For n ≥ 4, cn = cn−1 + 2cn−2 + 2cn−3 + 2cn−4, where c0 = 1, c1 = 3, c2 = 7, c3 = 17.

Proof: All of the initial conditions can be verified directly. The recurrences are all
established by considering how the n-ussaw ends.
a) On the plane, every n-ussaw either ends with u2 or it does not. For n ≥ 2, there are an−2

n-ussaws that end with u2 (since any (n− 2)-ussaw can have a u2 safely appended to it) and
for any (n− 1)-ussaw, regardless of how it ends (with up, left, or right), there are two ways to
legally extend it by one step so that it does not end in u2.
b) Similarly, an n-ussaw on the triangular lattice can end with u2

` or u2
r in 2tn−2 ways. Oth-

erwise, for any (n− 1)-ussaw, regardless of how it ends, there are three ways to legally extend
it by one step so that it does not end with u2

` or u2
r.

c) Letting c denote a clockwise move, and d denote a counter-clockwise move, then for n ≥ 4,
an n-ussaw must either end in u, uc, ud, uc2, ud2, uc3, ud3, preceded by a ussaw of the
appropriate length.

Finally, we let an,m, tn,m, wn,m, and cn,m count the n-ussaws that end at a specified height
m for the plane, the triangular lattice, the strip {0, 1} ×Z, and the cubic lattice, respectively.
Theorem 4: For 0 ≤ m ≤ n,
a) an,m =

∑m+1
k=0

(
m+1

k

)(
n−k
m

)
.

b) tn,m = 2man,m.
c) wn,m =

(
m+1
n−m

)
.

d)
∑

n≥m wn,m = 2m+1.

e)
∑

n≥m cn,m = 7m+1.

Proof: a) An n-ussaw of height m consists of m up steps and n−m steps to the left or
right. Formally, we can denote such a walk by

W = sj0
0 usj1

1 usj2
2 u . . . us

jm−1
m−1 usjm

m ,

where for 0 ≤ i ≤ m, si is either equal to ` (denoting a left move) or equal to r (denoting a
right move), ji ≥ 0, and j0 + j1 + · · ·+ jm = n−m. Now we ask, for 0 ≤ k ≤ m+1, how many
of these have exactly k of the si equal to ` with ji ≥ 1? In other words, how many of these
walks have exactly k “left strings”? There are

(
m+1

k

)
ways to choose which of the si will equal

`. Then we must count the ways to solve j0 + j1 + · · ·+ jm = n−m where ji ≥ 1 when si = `
and ji ≥ 0 when si = r. Equivalently, we must count all nonnegative integer solutions to
x0 +x1 + · · ·+xm = n−m−k, whose well-known solution is

(
m+(n−m−k)

n−m−k

)
=

(
n−k
m

)
. Summing

over all possible values of k gives us the desired solution.
b) On the triangular lattice, an n-ussaw of height m can be described as

sj0
0 u1s

j1
1 u2s

j2
2 u3 . . . um−1s

jm−1
m−1 umsjm

m .

The same conditions apply to si and ji as on the plane, but now each ui can be designated as
either u` or ur. Hence there are 2m times as many solutions on the triangular lattice.
c) For the lattice strip, all n-ussaws of height m are of the form

sj0usj1usj2u . . . usjm−1usjm ,
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where for 0 ≤ i ≤ m, where each s represents a sideways move, each ji equals 0 or 1, and
j0 + · · ·+ jm = n−m. Thus there are

(
m+1
n−m

)
ways to choose which ji are equal to 1.

d) One could just sum the answer to part c) to obtain(
m + 1

0

)
+

(
m + 1

1

)
+ · · ·+

(
m + 1
m + 1

)
= 2m+1,

but a more combinatorially pleasing solution is to note that any ussaw of height m can be
uniquely obtained from a sequence X of m + 1 1s and 2s by following the instructions of I(X)
and removing the last step. Notice that I(X) is a ussaw of height m + 1 that ends with an up
step, so removing that last step gives us a ussaw of height m.
e) Letting c denote a clockwise move and d denote a counterclockwise move, all ussaws of
height m on the cubic graph are of the form

s0us1us2u . . . usm,

where each si has seven possibilities, either c, c2, c3, d, d2, d3 or “empty”. More specifically, and
by the same logic, cn,m is the coefficient of xn of the polynomial (1 + 2x + 2x2 + 2x3)m+1.
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