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ABSTRACT

For an arbitrary real number α with convergents p0
q0

, p1
q1

, p2
q2

, . . . , b(n + qi)αc − bnαc is
equal to pi, and so is independent of n, except at a small specified number of values of n. For
fixed n, this relation holds for all or for all except a finite number of values of i.

1. INTRODUCTION

Bunder and Tognetti noted in [3] that any section of the graph of bnτc where τ = 1
2 (
√

5−
1)) is “matched” for larger values of n. More precisely they proved:

b(n + Fi)τc − bnτc = Fi−1

except at n = kFi+1 + bkτcFi where

b(n + Fi)τc − bnτc = Fi−1 − (−1)i.

In this paper we will generalize this result to:

b(n + qi)αc − bnαc = pi (possibly− (−1)i)

where α is an arbitrary positive irrational number and p0
q0

, p1
q1

, p2
q2

, . . . are the convergents of

α - just as F0
F1

, F1
F2

, F2
F3

, . . . are the convergents of τ .

2. CONTINUED FRACTIONS AND CONVERGENTS

Definition 1: If α is any real number and α = [a0, a1, a2, . . . ] in continued fraction form,
then the ith convergent of α is given by:

pi

qi
= [a0, a1, a2, . . . , ai ].

We quote the following properties of convergents from Khintchine [5]:
Lemma 1: If α = [a0, a1, a2, . . . ] then
(i) p−1 = q−2 = 1 and p−2 = q−1 = 0.
(ii) For i ≥ 0:

(a) pi = aipi−1 + pi−2

(b) qi = aiqi−1 + qi−2.
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3. THE MAIN RESULT

We will be using work of Fraenkel, Levitt and Shimshoni [4] (their result assumes 1 < α <
2, but holds for α ≥ 0). In particular they use a generalization of the Zeckendorf expansion of
an integer (used in [3]). This generalization, as pointed out in Allouche and Shallit [1], is in
fact due to Ostrowski 1922 (see [6]).
Theorem 1: Given a positive irrational α with convergents p0

q0
, p1

q1
, p2

q2
, . . . , every positive

integer n can be represented uniquely by the Ostrowski α-numeration:

n =
m∑

i=h

kiqi

where kh 6= 0, m ≥ h ≥ 0 and the ki satisfy the following conditions:
(i) For each i, 0 ≤ ki ≤ ai+1.
(ii) If i > 0 and ki = ai+1, ki−1 = 0.
(iii) If h = 0, kh < a1.
Note: In the remainder of the paper, every such representation of an integer will be assumed
to be an Ostrowski α-numeration.
Theorem 2: Given a positive irrational α with convergents p0

q0
, p1

q1
, p2

q2
, . . . , if

n =
m∑

i=h

kiqi

then

bnαc =
m∑

i=h

kipi + (−1 if h is odd).

Proof: Let α = α′ + r where 1 < α′ < 2 and r is an integer ≥ −1. The convergents for
α′ are p′

0
q0

, p′
1

q1
, p′

2
q2

, . . . where p′i + rqi = pi.
Theorem 1 gives us the unique numeration for n, which is the same for α and for α′, and

by Fraenkel, Levitt and Shimshoni [4]:

bnα′c =
m∑

i=h

kip
′
i + (−1 if h is odd).

So,

bnαc = nr + bnα′c

=
m∑

i=h

rkiqi +
m∑

i=h

ki(pi − rqi) + (−1 if h is odd)

=
m∑

i=h

kipi + (−1 if h is odd).

We can now prove our main result.
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Theorem 3: If α is a positive irrational with convergents p0
q0

, p1
q1

, p2
q2

, . . . and n =
∑m

i=h kiqi,
then

b(n + qj)αc − bnαc =
{

pj if h ≤ j or j + h is even,
pj + (−1)j if j < h and j + h is odd.

Proof: Let n =
∑m

i=h kiqi. In each of the cases below we find the corresponding Ostrowski
α-enumeration of n + qj and then use Theorem 2.
Case 1: If j < h− 1 or j = h− 1 and kh < ah+1 then

n + qj = qj +
m∑

i=h

kiqi.

Then b(n + qj)αc − bnαc = pj + (−1 if j is odd) +(1 if h is odd), which gives the result.
Case 2: If j = h− 1 and kh = ah+1,

n =
r∑

k=0

ah+2k+1qh+2k +
m∑

i=h+2r+1

kiqi

where r ≥ 0, kh+2r+1 < ah+2r+2, and kh+2r+2 < ah+2r+3 or m = h + 2r. Then

n + qj = (kh+2r+1 + 1)qh+2r+1 +
m∑

i=h+2r+2

kiqi.

Then j + h is odd and:

b(n + qj)αc − bnαc = ph+2r+1 + (−1 if h is even)−
r∑

k=0

ah+2k+1ph+2k + (1 if h is odd)

= pj + (−1)j .

Case 3: If m ≥ j ≥ h and either 0 < kj < aj+1 − 1, 0 < kj = aj+1 − 1 and kj−1 = 0, or
kj = 0 and kj+1 < aj+2, then,

n + qj =
j−1∑
i=h

kiqi + (kj + 1)qj +
m∑

i=j+1

kiqi

and
b(n + qj)αc − bnαc = pj .

Case 4: If m ≥ j ≥ h, kj = aj+1 − 1, kj+1 < aj+2 and kj−1 > 0 then,

n + qj =
j−2∑
i=h

kiqi + (kj−1 − 1)qj−1 + (kj+1 + 1)qj+1 +
m∑

i=j+2

kiqi

and
b(n + qj)αc − bnαc = −pj−1 + pj+1 − kjpj = pj .
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Case 5: If m ≥ j = h = 0 and k0 = a1 − 1,

n = (a1 − 1)q0 +
r∑

k=1

a2k+1q2k +
m∑

i=2r+1

kiqi

where k2r+1 < a2r+2 and r ≥ 0 (as h = 0, k0 > 1). Then,

n + qj = (k2r+1 + 1)q2r+1 +
m∑

i=2r+2

kiqi

and

b(n + qj)αc − bnαc = p2r+1 − 1− (a1 − 1)p0 −
r∑

k=1

a2k+1p2k = p1 − 1− a1p0 + p0 = p0.

Case 6: If m ≥ j ≥ h, kj = aj+1 − 1 and kj+1 = aj+2 then aj+1 = 1 and

n =
j−1∑
i=h

kiqi +
r∑

k=0

aj+2k+2qj+2k+1 +
m∑

i=j+2r+2

kiqi

where r ≥ 0 and kj+2r+2 < aj+2r+3 or j + 2r + 1 = m, then,

n + qj =
j−1∑
i=h

kiqi + (kj+2r+2 + 1)qj+2r+2 +
m∑

i=j+2r+3

kiqi,

and

b(n + qj)αc − bnαc = pj+2r+2 −
r∑

k=0

aj+2k+2pj+2k+1 = pj .

Case 7: If m ≥ j ≥ h and kj = aj+1 then j > 0 and kj−1 = 0 or j = h and

n =
j−2r−2∑

i=h

kiqi +
r+s∑
k=0

aj+2k−2r+1qj+2k−2r +
m∑

i=j+2s+1

kiqi

where r, s ≥ 0, h ≤ j − 2r − 2 or h = j − 2r, and j + 2s ≤ m, there are several cases. If
m = j + 2s, the last summation is zero. If m > j + 2s, kj+2s+1 < aj+2s+2. If j − 2r − 2 < h
the first summation is zero. If j − 2r − 2 ≥ h, kj−2r−2 < aj+2r−1. If j − 2r = 0, as q−1 = 0,
the second summation sums to qj+2s+1, i.e. h = j +2s+1, which is impossible. So j−2r > 0.
If j − 2r > 1, kj−2r−2 + 1 < aj−2r−1 or kj−2r−2 + 1 = aj−2r−1, j − 2r − 2 > 0 and either
kj−2r−3 = 0 or h = j − 2r − 2,

n + qj =
j−2r−3∑

i=h

kiqi + (kj−2r−2 + 1)qj−2r−2 + (aj−2r − 1)qj−2r−1+

r∑
k=1

aj−2r+2kqj−2r+2k−1 + (kj+2s+1 + 1)qj+2s+1 +
m∑

i=j+2s+2

kiqi.

If h = j − 2r > 1, we have the same but with zero for the first summation and kj−2r−2.
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Then in these cases:

b(n + qj)αc − bnαc = pj−2r−2 + (aj−2r − 1)pj−2r−1

+
r∑

k=1

aj−2r+2kpj−2r+2k−1 + pj+2s+1 −
r+s∑
k=0

aj+2k−2r+1pj+2k−2r = pj .

If j − 2r > 1, kj−2r−2 + 1 = aj−2r−1, h ≤ j − 2r − 3 and kj−2r−3 > 0,

n + qj =
j−2r−4∑

i=h

kiqi + (kj−2r−3 − 1)qj−2r−3

+
r∑

k=0

aj−2r+2kqj−2r+2k−1 + (kj+2s+1 + 1)qj+2s+1 +
m∑

i=j+2s+2

kiqi.

If h = j − 2r − 2 = 0 and k0 + 1 = a1, the expansion of n + qj is the same but with zero for
the first sum and for the qj−2r−3 term.

In these cases:

b(n + qj)αc − bnαc = −pj−2r−3 +
r∑

k=0

aj−2r+2kpj−2r+2k−1

+ pj+2s+1 −
r+s∑
k=0

aj+2k−2r+1pj+2k−2r − kj−2r−2pj−2r−2 = pj .

If j − 2r = 1, h is 1,

n + qj = (a1 − 1)q0 +
r∑

k=1

a2k+1q2k + (k2r+2s+2 + 1)q2r+2s+2 +
m∑

i=2r+2s+3

kiqi

and

b(n + qj)αc − bnαc = (a1 − 1)p0 +
r∑

k=1

a2k+1p2k + p2r+2s+2 −
r+s∑
k=0

a2k+2p2k+1 + 1 = pj .

Case 8: If j > m + 1 or j = m + 1 then n + qj =
∑m

i=h kiqi + qj and b(n + qj)αc− bnαc = pj .

Case 9: If j = m + 1 and am+2 = 1 then n + qj =
∑m−1

i=h kiqi + (km − 1)qm + qm+2 and
b(n + qj)αc − bnαc = −pm + pm+2 = pj .

4. THE MISMATCH POINTS

It follows that the values of n (called j-mismatch points in [3]) where b(n+qj)αc−bnαc 6=
pj are those with n =

∑m
i=j+2r+1 kiqi, where r ≥ 0.

If n =
∑m

i=h kiqi is fixed, b(n + qj)αc − bnαc 6= pj only when j = h − 1, h − 3, . . . ,
h− 2bh−1

2 c − 1.
If h = 0, b(n + qj)αc − bnαc = pj for all j.
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5. A SPECIAL CASE

In the special case where ai is a constant i.e., α = [a, a, a, . . . ] = 1
2 (a + (a2 + 4)1/2), it is

easy to show from Lemma 1 that pi = qi+1.
We now show that the numbers n where

b(n + qj)αc − bnαc = pj + (−1)j

(the j-mismatch points) are exactly the numbers of the form

n = kqj+1 + bkαcqj .

First we need a lemma:
Lemma 2: If α = [a, a, a, . . . ] and t, i ≥ 0 then qiqt + qi+1qt+1 = qi+t+2.

Proof:
qiqt + qi+1qt+1 = qiqt + (aqi + qi−1)qt+1

= qi−1qt+1 + qi(aqt+1 + qt)
= qi−1qt+1 + qiqt+2

= qi−2qt+2 + qi−1qt+3

= . . .

= q−1qt+i+1 + q0qt+i+2

= qi+t+2 as q−1 = 0 and q0 = aq−1 + q−2 = 1.

Theorem 4: Given α = [a, a, a, a . . . ] =1
2 (a + (a2 + 4)1/2),

(a) If n is not of the form kqj−1 + bkαcqj , then b(n + qj)αc − bnαc = pj .
(b) If n is of the form kqj−1 + bkαcqj , then b(n + qj)αc − bnαc = pj + (−1)j .

Proof: (a) If n =
∑m

i=h kiqi and b(n + qj)αc − bnαc 6= pj , then j < h and j + h (and so
h− j) is odd by Theorem 3.

Let k =
∑m

i=h kiqi−j−1, then by Theorem 3, using pi−j−1 = qi−j and Lemma 2,

kqj−1 + bkαcqj =
m∑

i=h

ki(qj−1qi−j−1 + qjqi−j)

=
m∑

i=h

kiqi = n.

Hence if n is not of the form kqj−1 + bkαcqj then b(n + qj)αc − bnαc = pj .
(b) Let k =

∑m
i=h1

kiqi, then, as above, if n = kqj−1 + bkαcqj

n =
m∑

i=h1

kiqi+j+1 + (−qj if h1 is odd).

If h1 is even we have j < h1 + j + 1 = h(for n) and j + h is odd.
If h1 is odd qh1+j+1 − qj = a

∑h1+j
r=j+1 qr so h(for n) = j + 1 > j and j + h is odd.
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So in either case, by Theorem 3:

b(n + qj)αc − bnαc = pj + (−1)j .

The j-mismatch points for α = [b, a, a, a, ...] can be shown to be kqj−1 + bk(α + a − b)cqj ,
but the result does not generalize, in an obvious way, to αs representable as other repeated
continued fractions.

6. AN ALTERNATIVE TO THEOREM 2

The 0 < α < 1, and so p0 = 0, case of the following alternative to Theorem 2 appears in
Brown [2] and in Allouche and Shallit [1]. It follows easily from our Theorems 2 and 3.
Theorem 5: If α is a positive irrational number with convergents p0

q0
, p1

q1
, p2

q2
, . . . and n has

Ostrowski α-numeration
∑m

i=h kiqi, then b(n + 1)αc =
∑m

i=h kipi + p0.
Proof: By Theorems 3 and 2, as q0 = 1:

b(n + 1)αc = bnαc+
{

p0 if h is even,

p0 + 1 if h is odd.

=
m∑

i=h

kipi + p0

The results in Theorems 2 and 5 look quite different, however we could have used (the 0 < α < 1
case of) the latter, instead of Theorem 2, to prove Theorem 3 in a similar way to the above.
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