SELF MATCHING IN $\lfloor n \alpha\rfloor$

Martin W. Bunder

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong NSW 2522 AUSTRALIA
e-mail: martin_bunder@uow.edu.au
(Submitted June 2004-Final Revision May 2006)

Abstract

For an arbitrary real number α with convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots,\left\lfloor\left(n+q_{i}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor$ is equal to p_{i}, and so is independent of n, except at a small specified number of values of n. For fixed n, this relation holds for all or for all except a finite number of values of i.

1. INTRODUCTION

Bunder and Tognetti noted in [3] that any section of the graph of $\lfloor n \tau\rfloor$ where $\tau=\frac{1}{2}(\sqrt{5}-$ $1)$) is "matched" for larger values of n. More precisely they proved:

$$
\left\lfloor\left(n+F_{i}\right) \tau\right\rfloor-\lfloor n \tau\rfloor=F_{i-1}
$$

except at $n=k F_{i+1}+\lfloor k \tau\rfloor F_{i}$ where

$$
\left\lfloor\left(n+F_{i}\right) \tau\right\rfloor-\lfloor n \tau\rfloor=F_{i-1}-(-1)^{i} .
$$

In this paper we will generalize this result to:

$$
\left\lfloor\left(n+q_{i}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{i} \quad\left(\text { possibly }-(-1)^{i}\right)
$$

where α is an arbitrary positive irrational number and $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots$ are the convergents of α - just as $\frac{F_{0}}{F_{1}}, \frac{F_{1}}{F_{2}}, \frac{F_{2}}{F_{3}}, \ldots$ are the convergents of τ.

2. CONTINUED FRACTIONS AND CONVERGENTS

Definition 1: If α is any real number and $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ in continued fraction form, then the i th convergent of α is given by:

$$
\frac{p_{i}}{q_{i}}=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{i}\right] .
$$

We quote the following properties of convergents from Khintchine [5]:
Lemma 1: If $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ then
(i) $p_{-1}=q_{-2}=1$ and $p_{-2}=q_{-1}=0$.
(ii) For $i \geq 0$:
(a) $p_{i}=a_{i} p_{i-1}+p_{i-2}$
(b) $q_{i}=a_{i} q_{i-1}+q_{i-2}$.

3. THE MAIN RESULT

We will be using work of Fraenkel, Levitt and Shimshoni [4] (their result assumes $1<\alpha<$ 2 , but holds for $\alpha \geq 0$). In particular they use a generalization of the Zeckendorf expansion of an integer (used in [3]). This generalization, as pointed out in Allouche and Shallit [1], is in fact due to Ostrowski 1922 (see [6]).
Theorem 1: Given a positive irrational α with convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots$, every positive integer n can be represented uniquely by the Ostrowski α-numeration:

$$
n=\sum_{i=h}^{m} k_{i} q_{i}
$$

where $k_{h} \neq 0, m \geq h \geq 0$ and the k_{i} satisfy the following conditions:
(i) For each $i, 0 \leq k_{i} \leq a_{i+1}$.
(ii) If $i>0$ and $k_{i}=a_{i+1}, k_{i-1}=0$.
(iii) If $h=0, k_{h}<a_{1}$.

Note: In the remainder of the paper, every such representation of an integer will be assumed to be an Ostrowski α-numeration.
Theorem 2: Given a positive irrational α with convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots$, if

$$
n=\sum_{i=h}^{m} k_{i} q_{i}
$$

then

$$
\lfloor n \alpha\rfloor=\sum_{i=h}^{m} k_{i} p_{i}+(-1 \text { if } h \text { is odd }) .
$$

Proof: Let $\alpha=\alpha^{\prime}+r$ where $1<\alpha^{\prime}<2$ and r is an integer ≥-1. The convergents for α^{\prime} are $\frac{p_{0}^{\prime}}{q_{0}}, \frac{p_{1}^{\prime}}{q_{1}}, \frac{p_{2}^{\prime}}{q_{2}}, \ldots$ where $p_{i}^{\prime}+r q_{i}=p_{i}$.

Theorem 1 gives us the unique numeration for n, which is the same for α and for α^{\prime}, and by Fraenkel, Levitt and Shimshoni [4]:

$$
\left\lfloor n \alpha^{\prime}\right\rfloor=\sum_{i=h}^{m} k_{i} p_{i}^{\prime}+(-1 \text { if } h \text { is odd }) .
$$

So,

$$
\begin{aligned}
\lfloor n \alpha\rfloor & =n r+\left\lfloor n \alpha^{\prime}\right\rfloor \\
& =\sum_{i=h}^{m} r k_{i} q_{i}+\sum_{i=h}^{m} k_{i}\left(p_{i}-r q_{i}\right)+(-1 \text { if } h \text { is odd }) \\
& =\sum_{i=h}^{m} k_{i} p_{i}+(-1 \text { if } h \text { is odd }) .
\end{aligned}
$$

We can now prove our main result.

Theorem 3: If α is a positive irrational with convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots$ and $n=\sum_{i=h}^{m} k_{i} q_{i}$, then

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor= \begin{cases}p_{j} & \text { if } h \leq j \text { or } j+h \text { is even, } \\ p_{j}+(-1)^{j} & \text { if } j<h \text { and } j+h \text { is odd. }\end{cases}
$$

Proof: Let $n=\sum_{i=h}^{m} k_{i} q_{i}$. In each of the cases below we find the corresponding Ostrowski α-enumeration of $n+q_{j}$ and then use Theorem 2.
Case 1: If $j<h-1$ or $j=h-1$ and $k_{h}<a_{h+1}$ then

$$
n+q_{j}=q_{j}+\sum_{i=h}^{m} k_{i} q_{i}
$$

Then $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}+(-1$ if j is odd $)+(1$ if h is odd $)$, which gives the result.
Case 2: If $j=h-1$ and $k_{h}=a_{h+1}$,

$$
n=\sum_{k=0}^{r} a_{h+2 k+1} q_{h+2 k}+\sum_{i=h+2 r+1}^{m} k_{i} q_{i}
$$

where $r \geq 0, k_{h+2 r+1}<a_{h+2 r+2}$, and $k_{h+2 r+2}<a_{h+2 r+3}$ or $m=h+2 r$. Then

$$
n+q_{j}=\left(k_{h+2 r+1}+1\right) q_{h+2 r+1}+\sum_{i=h+2 r+2}^{m} k_{i} q_{i} .
$$

Then $j+h$ is odd and:

$$
\begin{aligned}
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor & =p_{h+2 r+1}+(-1 \text { if } h \text { is even })-\sum_{k=0}^{r} a_{h+2 k+1} p_{h+2 k}+(1 \text { if } h \text { is odd }) \\
& =p_{j}+(-1)^{j} .
\end{aligned}
$$

Case 3: If $m \geq j \geq h$ and either $0<k_{j}<a_{j+1}-1,0<k_{j}=a_{j+1}-1$ and $k_{j-1}=0$, or $k_{j}=0$ and $k_{j+1}<a_{j+2}$, then,

$$
n+q_{j}=\sum_{i=h}^{j-1} k_{i} q_{i}+\left(k_{j}+1\right) q_{j}+\sum_{i=j+1}^{m} k_{i} q_{i}
$$

and

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j} .
$$

Case 4: If $m \geq j \geq h, k_{j}=a_{j+1}-1, k_{j+1}<a_{j+2}$ and $k_{j-1}>0$ then,

$$
n+q_{j}=\sum_{i=h}^{j-2} k_{i} q_{i}+\left(k_{j-1}-1\right) q_{j-1}+\left(k_{j+1}+1\right) q_{j+1}+\sum_{i=j+2}^{m} k_{i} q_{i}
$$

and

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=-p_{j-1}+p_{j+1}-k_{j} p_{j}=p_{j} .
$$

Case 5: If $m \geq j=h=0$ and $k_{0}=a_{1}-1$,

$$
n=\left(a_{1}-1\right) q_{0}+\sum_{k=1}^{r} a_{2 k+1} q_{2 k}+\sum_{i=2 r+1}^{m} k_{i} q_{i}
$$

where $k_{2 r+1}<a_{2 r+2}$ and $r \geq 0\left(\right.$ as $\left.h=0, k_{0}>1\right)$. Then,

$$
n+q_{j}=\left(k_{2 r+1}+1\right) q_{2 r+1}+\sum_{i=2 r+2}^{m} k_{i} q_{i}
$$

and

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{2 r+1}-1-\left(a_{1}-1\right) p_{0}-\sum_{k=1}^{r} a_{2 k+1} p_{2 k}=p_{1}-1-a_{1} p_{0}+p_{0}=p_{0}
$$

Case 6: If $m \geq j \geq h, k_{j}=a_{j+1}-1$ and $k_{j+1}=a_{j+2}$ then $a_{j+1}=1$ and

$$
n=\sum_{i=h}^{j-1} k_{i} q_{i}+\sum_{k=0}^{r} a_{j+2 k+2} q_{j+2 k+1}+\sum_{i=j+2 r+2}^{m} k_{i} q_{i}
$$

where $r \geq 0$ and $k_{j+2 r+2}<a_{j+2 r+3}$ or $j+2 r+1=m$, then,

$$
n+q_{j}=\sum_{i=h}^{j-1} k_{i} q_{i}+\left(k_{j+2 r+2}+1\right) q_{j+2 r+2}+\sum_{i=j+2 r+3}^{m} k_{i} q_{i}
$$

and

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j+2 r+2}-\sum_{k=0}^{r} a_{j+2 k+2} p_{j+2 k+1}=p_{j}
$$

Case 7: If $m \geq j \geq h$ and $k_{j}=a_{j+1}$ then $j>0$ and $k_{j-1}=0$ or $j=h$ and

$$
n=\sum_{i=h}^{j-2 r-2} k_{i} q_{i}+\sum_{k=0}^{r+s} a_{j+2 k-2 r+1} q_{j+2 k-2 r}+\sum_{i=j+2 s+1}^{m} k_{i} q_{i}
$$

where $r, s \geq 0, h \leq j-2 r-2$ or $h=j-2 r$, and $j+2 s \leq m$, there are several cases. If $m=j+2 s$, the last summation is zero. If $m>j+2 s, k_{j+2 s+1}<a_{j+2 s+2}$. If $j-2 r-2<h$ the first summation is zero. If $j-2 r-2 \geq h, k_{j-2 r-2}<a_{j+2 r-1}$. If $j-2 r=0$, as $q_{-1}=0$, the second summation sums to $q_{j+2 s+1}$, i.e. $h=j+2 s+1$, which is impossible. So $j-2 r>0$. If $j-2 r>1, k_{j-2 r-2}+1<a_{j-2 r-1}$ or $k_{j-2 r-2}+1=a_{j-2 r-1}, j-2 r-2>0$ and either $k_{j-2 r-3}=0$ or $h=j-2 r-2$,

$$
\begin{gathered}
n+q_{j}=\sum_{i=h}^{j-2 r-3} k_{i} q_{i}+\left(k_{j-2 r-2}+1\right) q_{j-2 r-2}+\left(a_{j-2 r}-1\right) q_{j-2 r-1}+ \\
\sum_{k=1}^{r} a_{j-2 r+2 k} q_{j-2 r+2 k-1}+\left(k_{j+2 s+1}+1\right) q_{j+2 s+1}+\sum_{i=j+2 s+2}^{m} k_{i} q_{i}
\end{gathered}
$$

If $h=j-2 r>1$, we have the same but with zero for the first summation and $k_{j-2 r-2}$.

Then in these cases:

$$
\begin{aligned}
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor & =p_{j-2 r-2}+\left(a_{j-2 r}-1\right) p_{j-2 r-1} \\
& +\sum_{k=1}^{r} a_{j-2 r+2 k} p_{j-2 r+2 k-1}+p_{j+2 s+1}-\sum_{k=0}^{r+s} a_{j+2 k-2 r+1} p_{j+2 k-2 r}=p_{j} .
\end{aligned}
$$

If $j-2 r>1, k_{j-2 r-2}+1=a_{j-2 r-1}, h \leq j-2 r-3$ and $k_{j-2 r-3}>0$,

$$
\begin{aligned}
n+q_{j} & =\sum_{i=h}^{j-2 r-4} k_{i} q_{i}+\left(k_{j-2 r-3}-1\right) q_{j-2 r-3} \\
& +\sum_{k=0}^{r} a_{j-2 r+2 k} q_{j-2 r+2 k-1}+\left(k_{j+2 s+1}+1\right) q_{j+2 s+1}+\sum_{i=j+2 s+2}^{m} k_{i} q_{i}
\end{aligned}
$$

If $h=j-2 r-2=0$ and $k_{0}+1=a_{1}$, the expansion of $n+q_{j}$ is the same but with zero for the first sum and for the $q_{j-2 r-3}$ term.

In these cases:

$$
\begin{aligned}
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor & =-p_{j-2 r-3}+\sum_{k=0}^{r} a_{j-2 r+2 k} p_{j-2 r+2 k-1} \\
& +p_{j+2 s+1}-\sum_{k=0}^{r+s} a_{j+2 k-2 r+1} p_{j+2 k-2 r}-k_{j-2 r-2} p_{j-2 r-2}=p_{j} .
\end{aligned}
$$

If $j-2 r=1, h$ is 1,

$$
n+q_{j}=\left(a_{1}-1\right) q_{0}+\sum_{k=1}^{r} a_{2 k+1} q_{2 k}+\left(k_{2 r+2 s+2}+1\right) q_{2 r+2 s+2}+\sum_{i=2 r+2 s+3}^{m} k_{i} q_{i}
$$

and

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=\left(a_{1}-1\right) p_{0}+\sum_{k=1}^{r} a_{2 k+1} p_{2 k}+p_{2 r+2 s+2}-\sum_{k=0}^{r+s} a_{2 k+2} p_{2 k+1}+1=p_{j} .
$$

Case 8: If $j>m+1$ or $j=m+1$ then $n+q_{j}=\sum_{i=h}^{m} k_{i} q_{i}+q_{j}$ and $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}$.
Case 9: If $j=m+1$ and $a_{m+2}=1$ then $n+q_{j}=\sum_{i=h}^{m-1} k_{i} q_{i}+\left(k_{m}-1\right) q_{m}+q_{m+2}$ and $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=-p_{m}+p_{m+2}=p_{j}$.

4. THE MISMATCH POINTS

It follows that the values of n (called j-mismatch points in $[3]$) where $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor \neq$ p_{j} are those with $n=\sum_{i=j+2 r+1}^{m} k_{i} q_{i}$, where $r \geq 0$.

If $n=\sum_{i=h}^{m} k_{i} q_{i}$ is fixed, $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor \neq p_{j}$ only when $j=h-1, h-3, \ldots$, $h-2\left\lfloor\frac{h-1}{2}\right\rfloor-1$.

If $h=0,\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}$ for all j.

5. A SPECIAL CASE

In the special case where a_{i} is a constant i.e., $\alpha=[a, a, a, \ldots]=\frac{1}{2}\left(a+\left(a^{2}+4\right)^{1 / 2}\right)$, it is easy to show from Lemma 1 that $p_{i}=q_{i+1}$.

We now show that the numbers n where

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}+(-1)^{j}
$$

(the j-mismatch points) are exactly the numbers of the form

$$
n=k q_{j+1}+\lfloor k \alpha\rfloor q_{j} .
$$

First we need a lemma:
Lemma 2: If $\alpha=[a, a, a, \ldots]$ and $t, i \geq 0$ then $q_{i} q_{t}+q_{i+1} q_{t+1}=q_{i+t+2}$.
Proof:

$$
\begin{aligned}
q_{i} q_{t}+q_{i+1} q_{t+1} & =q_{i} q_{t}+\left(a q_{i}+q_{i-1}\right) q_{t+1} \\
& =q_{i-1} q_{t+1}+q_{i}\left(a q_{t+1}+q_{t}\right) \\
& =q_{i-1} q_{t+1}+q_{i} q_{t+2} \\
& =q_{i-2} q_{t+2}+q_{i-1} q_{t+3} \\
& =\ldots \\
& =q_{-1} q_{t+i+1}+q_{0} q_{t+i+2} \\
& =q_{i+t+2} \text { as } q_{-1}=0 \text { and } q_{0}=a q_{-1}+q_{-2}=1 .
\end{aligned}
$$

Theorem 4: Given $\alpha=[a, a, a, a \ldots]=\frac{1}{2}\left(a+\left(a^{2}+4\right)^{1 / 2}\right)$,
(a) If n is not of the form $k q_{j-1}+\lfloor k \alpha\rfloor q_{j}$, then $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}$.
(b) If n is of the form $k q_{j-1}+\lfloor k \alpha\rfloor q_{j}$, then $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}+(-1)^{j}$.

Proof: (a) If $n=\sum_{i=h}^{m} k_{i} q_{i}$ and $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor \neq p_{j}$, then $j<h$ and $j+h$ (and so $h-j$) is odd by Theorem 3 .

Let $k=\sum_{i=h}^{m} k_{i} q_{i-j-1}$, then by Theorem 3, using $p_{i-j-1}=q_{i-j}$ and Lemma 2,

$$
\begin{aligned}
k q_{j-1}+\lfloor k \alpha\rfloor q_{j} & =\sum_{i=h}^{m} k_{i}\left(q_{j-1} q_{i-j-1}+q_{j} q_{i-j}\right) \\
& =\sum_{i=h}^{m} k_{i} q_{i}=n .
\end{aligned}
$$

Hence if n is not of the form $k q_{j-1}+\lfloor k \alpha\rfloor q_{j}$ then $\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}$.
(b) Let $k=\sum_{i=h_{1}}^{m} k_{i} q_{i}$, then, as above, if $n=k q_{j-1}+\lfloor k \alpha\rfloor q_{j}$

$$
n=\sum_{i=h_{1}}^{m} k_{i} q_{i+j+1}+\left(-q_{j} \text { if } h_{1} \text { is odd }\right)
$$

If h_{1} is even we have $j<h_{1}+j+1=h($ for $n)$ and $j+h$ is odd.
If h_{1} is odd $q_{h_{1}+j+1}-q_{j}=a \sum_{r=j+1}^{h_{1}+j} q_{r}$ so $h($ for $n)=j+1>j$ and $j+h$ is odd.

So in either case, by Theorem 3:

$$
\left\lfloor\left(n+q_{j}\right) \alpha\right\rfloor-\lfloor n \alpha\rfloor=p_{j}+(-1)^{j} .
$$

The j-mismatch points for $\alpha=[b, a, a, a, \ldots]$ can be shown to be $k q_{j-1}+\lfloor k(\alpha+a-b)\rfloor q_{j}$, but the result does not generalize, in an obvious way, to α s representable as other repeated continued fractions.

6. AN ALTERNATIVE TO THEOREM 2

The $0<\alpha<1$, and so $p_{0}=0$, case of the following alternative to Theorem 2 appears in Brown [2] and in Allouche and Shallit [1]. It follows easily from our Theorems 2 and 3.
Theorem 5: If α is a positive irrational number with convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots$ and n has Ostrowski α-numeration $\sum_{i=h}^{m} k_{i} q_{i}$, then $\lfloor(n+1) \alpha\rfloor=\sum_{i=h}^{m} k_{i} p_{i}+p_{0}$.

Proof: By Theorems 3 and 2, as $q_{0}=1$:

$$
\begin{gathered}
\lfloor(n+1) \alpha\rfloor=\lfloor n \alpha\rfloor+ \begin{cases}p_{0} & \text { if } h \text { is even }, \\
p_{0}+1 & \text { if } h \text { is odd. }\end{cases} \\
=\sum_{i=h}^{m} k_{i} p_{i}+p_{0}
\end{gathered}
$$

The results in Theorems 2 and 5 look quite different, however we could have used (the $0<\alpha<1$ case of) the latter, instead of Theorem 2, to prove Theorem 3 in a similar way to the above.

ACKNOWLEDGMENT

The author wishes to thank the anonymous referees for their suggestions and, in particular, for the references to Ostrowski [6] and Allouche and Shallit [1].

REFERENCES

[1] J-P. Allouche and J. Shallit. Automatic Sequences, Cambridge University Press (2003).
[2] T.C. Brown. "Descriptions of the Characteristic Sequence of an Irrational." Canad. Math. Bull. 36 (1993): 15-21.
[3] M.W. Bunder and K.P. Tognetti. "On the Self Matching Properties of [j $j]$]." Discrete Mathematics 241 (2001): 139-151.
[4] A.S. Fraenkel, J. Levitt and M. Shimshoni. "Characterization of the Set of Values $f(n)=$ [no], $n=1,2, \ldots . "$ Discrete Mathematics 2 (1972): 335-345.
[5] A.Y. Khintchine. Continued Fractions, P. Noordhof Ltd. (1963) 3rd edition.
[6] A. Ostrowski. "Bemerkungen zur Theorie der Diophantischen Approximationen." Abh. Math. Sem. Hamburg 1 (1922): 77-98, 250-251.

AMS Classification Numbers: 11A55, 11A67, 11B39

国国

