CONTINUED FRACTIONS WITH PARTIAL QUOTIENTS BOUNDED IN AVERAGE

Joshua N. Cooper
Department of Mathematics, University of South Carolina, LeConte College, 1523 Greene Street, Columbia, SC 29208, USA
e-mail: cooper@math.sc.edu
(Submitted September 2004-Final Revision August 2006)

Abstract

We ask, for which n does there exists a $k, 1 \leq k<n$ and $(k, n)=1$, so that k / n has a continued fraction whose partial quotients are bounded in average by a constant B ? This question is intimately connected with several other well-known problems, and we provide a lower bound in the case of $B=2$. The proof, which is completely elementary, involves a simple "shifting" argument, the Catalan numbers, and the solution to a linear recurrence.

1. INTRODUCTION

An important question in the theory of quasirandomness, uniform distribution of points, and diophantine approximation is the following: For which $n \in \mathbb{Z}$ is it true that there exists an integer $k, 1 \leq k<n$ and $(k, n)=1$, so that k / n has a continued fraction whose partial quotients are bounded in average by a constant B ? That is, if we write $k / n=\left[0 ; a_{1}, a_{2}, \ldots, a_{m}\right]$, we wish to find k so that

$$
t^{-1} \sum_{i=1}^{t} a_{i} \leq B
$$

for all t with $1 \leq t \leq m$. Denote by $\mathcal{F}(B)$ the set of all n for which such a k exists. These sets are discussed at length in [2] and the related matter of partial quotients bounded uniformly by a constant appears as an integral part of [6]. This latter question is closely connected with Zaremba's Conjecture ([8]), which states that such a k exists for all $n>1$ if we take $B=5$.

Define the continuant $K\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ to be the denominator of the continued fraction $k / n=\left[0 ; a_{1}, a_{2}, \ldots, a_{m}\right]$. In [3], it is proven that, if $S_{n}(B)$ is the number of sequences $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{m}\right)$ bounded uniformly by B with $K(\mathbf{a}) \leq n$ and $H(B)$ is the Hausdorff dimension of the set of continued fractions with partial quotients bounded uniformly by B, then

$$
\lim _{n \rightarrow \infty} \frac{\log \left(S_{n}(B)\right)}{\log n}=2 H(B) .
$$

Then, in [4], $H(2)$ is calculated with a great deal of accuracy: $H(2) \approx 0.53128$. Therefore, $S_{n}(2)$, and thus the number of p / q with $q \leq n$ whose partial quotients are bounded by 2 , is $n^{1.0625 \ldots+o(1)}$. (This improves the previous best known lower bound, $n \approx 1.017$ computed in [3], slightly.)

Define $\bar{S}_{n}(B)$ to be the number of sequences $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ with partial quotients bounded in average by B so that $K(\mathbf{a}) \leq n$. Clearly, $\bar{S}_{n}(B) \geq S_{n}(B)$, so $\bar{S}_{n}(2) \gg n^{1.0625}$. In the next section, we prove something much stronger, however - an exponent of ≈ 1.5728394 -
thus providing a lower bound in the first nontrivial case. Section 3 discusses the implications for the density of $\mathcal{F}(2)$ and a few open problems.

2. THE PROOF

Theorem 1: For any $\epsilon>0, \bar{S}_{n}(2) \gg n^{2 \log 2 / \log (1+\sqrt{2})-\epsilon}$.
Proof: The proof consists of two parts: computing the number of positive sequences of length m bounded in average by 2 , and then computing the smallest possible m so that $K\left(a_{1}, \ldots, a_{m}\right)>n$ and the a_{i} are bounded in average by 2 .

First, we wish to know how many sequences $\left(a_{1}, \ldots, a_{m}\right)$ there are with $a_{j} \geq 1$ for each $j \in[m]$ and $\sum_{j=1}^{r} a_{j} \leq 2 r$ for each $r \in[m]$. Call this number $T(m)$. By writing $b_{j}=a_{j}-1$, we could equivalently ask for sequences $\left(b_{1}, \ldots, b_{m}\right)$ with $b_{j} \geq 0$ for each $j \in[m]$ and $\sum_{j=1}^{r} b_{j} \leq$ r for each $r \in[m]$. This is precisely the number of lattice paths from $(0,0)$ to (m, m) which do not cross the line $y=x$, and so $T(m)$ is the $m^{\text {th }}$ Catalan number, or $(m+1)^{-1}\binom{2 m}{m}=$ $4^{m(1-o(1))}$.

In the following lemmas, we show that $K\left(a_{1}, \ldots, a_{m}\right) \leq n$ if $m \leq \log n(1-o(1)) / \log (1+$ $\sqrt{2})$. Therefore, setting m as large as possible, we have at least

$$
4^{\log n(1-o(1)) / \log (1+\sqrt{2})}=n^{2 \log 2 / \log (1+\sqrt{2})-o(1)}
$$

sequences with partial quotients bounded in average by 2 and continuant $\leq n$.
We must show that the size of a continuant with partial quotients bounded in average by B is at most the largest size of a continuant with partial quotients bounded by B.
Lemma 2: If the sequence $\left(a_{1}, \ldots, a_{m}\right)$ of positive integers is bounded in average by $B>1$, then $K\left(a_{1}, \ldots, a_{m}\right) \leq K(\underbrace{B, \ldots, B}_{m})$.

Proof: We prove the Lemma by a "shifting" argument. That is, we perform induction on the size of the entry a_{j} such that $a_{j}>B$ and j is as small as possible. If $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ contains no $a_{t}>B$, we are done, because increasing the partial quotients can only increase the continuant. If there is some $a_{t}>B$, let $t \geq 2$ be the smallest such index. We consider two cases: (i) $a_{t} \geq B+2$ or $a_{t-1}<B$, and (ii) $a_{t}=B+1, a_{k}=B$ for $s \leq k \leq t-1$ for some $2 \leq s \leq t-1$, and $a_{s-1}<B$. (Clearly, $\mathbf{a} \neq\left(B, B, \ldots, B, B+1, a_{t+1}, \ldots, a_{m}\right)$, since this sequence is not bounded in average by B. Therefore we may assume $s \geq 2$.)
Case (i):
Let $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)=\left(a_{1}, \ldots, a_{t-1}+1, a_{t}-1, \ldots, a_{m}\right)$. We show that $K(\mathbf{b})>K(\mathbf{a})$. First, note that

$$
\sum_{j=1}^{r} b_{j}= \begin{cases}\sum_{j=1}^{r} a_{j} & \text { if } r \neq t-1 \\ 1+\sum_{j=1}^{t-1} a_{j} & \text { if } r=t-1 .\end{cases}
$$

Since $a_{t} \geq B+1, \sum_{j=1}^{t-1} a_{j} \leq t B-B-1$, so $1+\sum_{j=1}^{t-1} a_{j} \leq(t-1) B$, and \mathbf{b} is bounded in average by B. Second, note that it suffices to consider the case of $t=m$, since, if $K\left(b_{1}, \ldots, b_{j}\right)>$ $K\left(a_{1}, \ldots, a_{j}\right)$ for $1 \leq j \leq t$, then $K(\mathbf{b})>K(\mathbf{a})$. (That is, $K(\cdot)$ is monotone increasing.)

Let $q_{j}=K\left(a_{1}, \ldots, a_{j}\right)$ and $q_{j}^{\prime}=K\left(b_{1}, \ldots, b_{j}\right)$. (We use the convention that $q_{j}=0$ when $j<0$ and $q_{0}=1$.) Clearly, $q_{j}=q_{j}^{\prime}$ if $j<t-1$. When $j=t-1$, we have $q_{t-1}^{\prime}>q_{t-1}$ by monotonicity. When $j=t$,

$$
q_{t}=a_{t} q_{t-1}+q_{t-2}=a_{t}\left(a_{t-1} q_{t-2}+q_{t-3}\right)+q_{t-2}=\left(a_{t} a_{t-1}+1\right) q_{t-2}+a_{t} q_{t-3},
$$

and

$$
\begin{aligned}
q_{t}^{\prime} & =\left(b_{t} b_{t-1}+1\right) q_{t-2}^{\prime}+b_{t} q_{t-3}^{\prime} \\
& =\left(\left(a_{t}-1\right)\left(a_{t-1}+1\right)+1\right) q_{t-2}+\left(a_{t}-1\right) q_{t-3} \\
& =q_{t}+q_{t-2}\left(a_{t}-a_{t-1}-1\right)-q_{t-3} .
\end{aligned}
$$

Since $a_{t} \geq a_{t-1}+2$ and $q_{t-2}>q_{t-3}$, we have

$$
q_{t}^{\prime} \geq q_{t}+q_{t-2}-q_{t-3}>q_{t} .
$$

Case (ii):
Now, assume that $a_{t}=B+1, a_{k}=B$ for $s \leq k \leq t-1$ for some $2 \leq s \leq t-1$, and $a_{s-1}<B$. Then define $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ by letting $b_{j}=a_{j}$ if $j \neq s-1$ and $j \neq t$; $b_{s-1}=a_{s-1}+1$; and $b_{t}=a_{t}-1$. Again, we may assume that $t=m$. Then

$$
\sum_{j=1}^{r} b_{j}= \begin{cases}\sum_{j=1}^{r} a_{j} & \text { if } r=t \text { or } r<s-1 \\ 1+\sum_{j=1}^{r} a_{j} & \text { if } s-1 \leq r \leq t-1\end{cases}
$$

For any r such that $s-1 \leq r \leq t-1$,

$$
\sum_{j=1}^{r} a_{j}=\sum_{j=1}^{t} a_{j}-\sum_{j=r+1}^{t} a_{j} \leq B t-(B(t-r-1)+(B+1)) \leq B r-1 .
$$

Therefore, $\sum_{j=1}^{r} b_{j} \leq B r$ for all $r \in[t]$, and we may conclude that \mathbf{b} is bounded in average by B.

Define F_{k} as follows: $F_{0}=0, F_{1}=1$, and, for $k>1, F_{k}=B F_{k-1}+F_{k-2}$. Then it is easy to see by induction that

$$
K(\underbrace{B, \ldots, B}_{k}, x)=F_{k+1} x+F_{k} .
$$

Also,

$$
\begin{equation*}
K\left(y, c_{1}, \ldots, c_{r}\right)=y K\left(c_{1}, \ldots, c_{r}\right)+K\left(c_{2}, \ldots, c_{r}\right) \tag{1}
\end{equation*}
$$

Taking $k=t-s$, we deduce

$$
K\left(a_{s-1}, \ldots, a_{t}\right)=a_{s-1}\left((B+1) F_{k+1}+F_{k}\right)+(B+1) F_{k}+F_{k-1},
$$

and

$$
\begin{aligned}
K\left(b_{s-1}, \ldots, b_{t}\right) & =\left(a_{s-1}+1\right)\left(B F_{k+1}+F_{k}\right)+B F_{k}+F_{k-1} \\
& =K\left(a_{s-1}, \ldots, a_{t}\right)+\left(B-a_{s-1}\right) F_{k+1} \\
& \geq K\left(a_{s-1}, \ldots, a_{t}\right)+F_{k+1} .
\end{aligned}
$$

If $s=2$, we are done. Otherwise, we use that

$$
\begin{aligned}
K\left(b_{s-2}, \ldots, b_{t}\right) & =a_{s-2} K\left(b_{s-1}, \ldots, b_{t}\right)+K\left(b_{s}, \ldots, b_{t}\right) \\
& \geq a_{s-2} K\left(a_{s-1}, \ldots, a_{t}\right)+F_{k+1}+b_{t} K\left(b_{s}, \ldots, b_{t-1}\right)+K\left(b_{s}, \ldots, b_{t-2}\right) \\
& =a_{s-2} K\left(a_{s-1}, \ldots, a_{t}\right)+F_{k+1}+K\left(a_{s}, \ldots, a_{t}\right)-K\left(a_{s}, \ldots, a_{t-1}\right) \\
& =K\left(a_{s-2}, \ldots, a_{t}\right) .
\end{aligned}
$$

Now, inductive application of (1) to the continuants $K\left(b_{s-j}, \ldots, b_{t}\right), 3 \leq j \leq s-1$, yields $K(\mathbf{b}) \geq K(\mathbf{a})$, since $a_{s-j}=b_{s-j}$ in this range.

By repeating cases (i) and (ii) as appropriate, we will eventually reach a sequence of partial quotients bounded by B, and at each stage we never decrease the corresponding continuant. The result therefore follows.

It remains to find a bound on $K(B, \ldots, B)$.
Lemma 3: If $B \geq 1, K(\underbrace{B, \ldots, B}_{m}) \leq\left(\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right)\right)^{m+1}$.
Proof: We proceed by induction. The case $m=0$ is trivial. Suppose it is true for all $m<M$. Then, by (1),

$$
\begin{aligned}
K(\underbrace{B, \ldots, B}_{M}) & =B K(\underbrace{B, \ldots, B}_{M-1})+K(\underbrace{B, \ldots, B}_{M-2}) \\
& \leq B\left(\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right)\right)^{M}+\left(\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right)\right)^{M-1} \\
& \leq\left(\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right)\right)^{M-1}\left(\frac{1}{2} B^{2}+\frac{1}{2} B \sqrt{B^{2}+4}+1\right) \\
& =\left(\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right)\right)^{M+1} \cdot
\end{aligned}
$$

3. THE DENSITY OF $\mathcal{F}(2)$

Corollary 4: There is a constant C and a subset S of the positive integers such that $\log \mid S \cap$ $[n] \mid / \log n \geq \log 2 / \log (1+\sqrt{2})-o(1) \approx 0.786$ so that, for each $n \in S$, there exists a $k \in[n]$, $(k, n)=1$ so that k / n has partial quotients bounded in average by 2 .

Proof: Let U be the set of all reduced fractions $p / q, 1<p<q$, whose partial quotients $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ are bounded in average by 2 and such that $\mathbf{a}^{\prime}=\left(a_{2}, \ldots, a_{m}\right)$ is bounded in average by 2 . The number of such a with $K(\mathbf{a}) \leq n$ is at least twice the number of sequences $\mathbf{a}^{\prime}=\left(a_{2}, \ldots, a_{m}\right)$ bounded in average by 2 with $K\left(\mathbf{a}^{\prime}\right) \leq n / 3$, because, if $\left[\mathbf{a}^{\prime}\right]=p / q$, then $K(\mathbf{a})=a_{1} q+p \leq 3 K\left(\mathbf{a}^{\prime}\right) \leq n$. (The fact that \mathbf{a}^{\prime} is bounded in average by 2 implies that $\left[1, \mathbf{a}^{\prime}\right]$
and $\left[2, \mathbf{a}^{\prime}\right]$ are also.) Then, since every rational has at most two representations as a continued fraction, the number of elements of U whose denominator is $\leq n$ is at least $\bar{S}_{n / 3}(2)$, which is at least $n^{2 \log 2 / \log (1+\sqrt{2})-o(1)}$. Let S be the set of denominators of fractions appearing in U. If $p / q=[\mathbf{a}]$ is in U, then $\left[\mathbf{a}^{\prime}\right]=\left(q-a_{1} p\right) / p$, so p is the continuant of a sequence whose partial quotients are bounded in average by 2 . Therefore, $\bar{S}_{n / 3}(2) \leq|S \cap[n]|^{2}$, and we may conclude that $\log |S \cap[n]| / \log n \geq \log 2 / \log (1+\sqrt{2})-o(1)$.

Attempts by the author to find a generalization of the above result to $\mathcal{F}(B)$ by applying much more careful counting arguments when $B>2$ have failed thus far. It would also be interesting to (i), calculate the Hausdorff dimension of the set of reals in $[0,1$) whose partial quotients are bounded in average by B, and (ii), draw a connection, similar to that of the "uniform" case, between this quantity and the asymptotic density of $\mathcal{F}(B)$.

REFERENCES

[1] J. N. Cooper. "Quasirandom Permutations." J. Combin. Theory Ser. A 106.1 (2004): 123-143.
[2] J. N. Cooper. Survey of Quasirandomness in Number Theory, 2003, preprint.
[3] T. W. Cusick. "Continuants With Bounded Digits, III." Monatsh. Math. 99.2 (1985): 105-109.
[4] D. Hensley. "A Polynomial Time Algorithm for the Hausdorff Dimension of Continued Fraction Cantor Sets." J. Number Theory 58.1 (1996): 9-45.
[5] G. Larcher. "On the Distribution of Sequences Connected with Good Lattice Points." Monatsh. Math. 101 (1986): 135-150.
[6] H. Niederreiter. "Quasi-Monte Carlo Methods and Pseudo-random Numbers." Bull. Amer. Math. Soc. 84 (1978): 957-1041.
[7] G. Ramharter. "Some Metrical Properties of Continued Fractions." Mathematika $\mathbf{3 0 . 1}$ (1983): 117-132.
[8] S. K. Zaremba, ed. "Applications of Number Theory to Numerical Analysis." Proceedings of the Symposium at the Centre for Research in Mathematics, University of Montréal, Academic Press, New York-London, (1972).

AMS Classification Numbers: 11K50; 11K38

必必

