CONTINUED FRACTIONS WITH PARTIAL QUOTIENTS BOUNDED IN AVERAGE

Joshua N. Cooper

Department of Mathematics, University of South Carolina, LeConte College, 1523 Greene Street, Columbia, SC 29208, USA e-mail: cooper@math.sc.edu (Submitted September 2004-Final Revision August 2006)

ABSTRACT

We ask, for which n does there exists a k, $1 \le k < n$ and (k, n) = 1, so that k/n has a continued fraction whose partial quotients are bounded in average by a constant B? This question is intimately connected with several other well-known problems, and we provide a lower bound in the case of B = 2. The proof, which is completely elementary, involves a simple "shifting" argument, the Catalan numbers, and the solution to a linear recurrence.

1. INTRODUCTION

An important question in the theory of quasirandomness, uniform distribution of points, and diophantine approximation is the following: For which $n \in \mathbb{Z}$ is it true that there exists an integer $k, 1 \leq k < n$ and (k, n) = 1, so that k/n has a continued fraction whose partial quotients are bounded in average by a constant B? That is, if we write $k/n = [0; a_1, a_2, \ldots, a_m]$, we wish to find k so that

$$t^{-1} \sum_{i=1}^{t} a_i \le B$$

for all t with $1 \le t \le m$. Denote by $\mathcal{F}(B)$ the set of all n for which such a k exists. These sets are discussed at length in [2] and the related matter of partial quotients bounded *uniformly* by a constant appears as an integral part of [6]. This latter question is closely connected with Zaremba's Conjecture ([8]), which states that such a k exists for all n > 1 if we take B = 5.

Define the continuant $K(a_1, a_2, ..., a_m)$ to be the denominator of the continued fraction $k/n = [0; a_1, a_2, ..., a_m]$. In [3], it is proven that, if $S_n(B)$ is the number of sequences $\mathbf{a} = (a_1, ..., a_m)$ bounded uniformly by B with $K(\mathbf{a}) \leq n$ and H(B) is the Hausdorff dimension of the set of continued fractions with partial quotients bounded uniformly by B, then

$$\lim_{n \to \infty} \frac{\log(S_n(B))}{\log n} = 2H(B).$$

Then, in [4], H(2) is calculated with a great deal of accuracy: $H(2) \approx 0.53128$. Therefore, $S_n(2)$, and thus the number of p/q with $q \leq n$ whose partial quotients are bounded by 2, is $n^{1.0625...+o(1)}$. (This improves the previous best known lower bound, $n^{\approx 1.017}$ computed in [3], slightly.)

Define $\bar{S}_n(B)$ to be the number of sequences $\mathbf{a} = (a_1, \dots, a_m)$ with partial quotients bounded in average by B so that $K(\mathbf{a}) \leq n$. Clearly, $\bar{S}_n(B) \geq S_n(B)$, so $\bar{S}_n(2) \gg n^{1.0625}$. In the next section, we prove something much stronger, however – an exponent of ≈ 1.5728394 –

thus providing a lower bound in the first nontrivial case. Section 3 discusses the implications for the density of $\mathcal{F}(2)$ and a few open problems.

2. THE PROOF

Theorem 1: For any $\epsilon > 0$, $\bar{S}_n(2) \gg n^{2\log 2/\log(1+\sqrt{2})-\epsilon}$.

Proof: The proof consists of two parts: computing the number of positive sequences of length m bounded in average by 2, and then computing the smallest possible m so that $K(a_1, \ldots, a_m) > n$ and the a_i are bounded in average by 2.

First, we wish to know how many sequences (a_1, \ldots, a_m) there are with $a_j \geq 1$ for each $j \in [m]$ and $\sum_{j=1}^r a_j \leq 2r$ for each $r \in [m]$. Call this number T(m). By writing $b_j = a_j - 1$, we could equivalently ask for sequences (b_1, \ldots, b_m) with $b_j \geq 0$ for each $j \in [m]$ and $\sum_{j=1}^r b_j \leq r$ for each $r \in [m]$. This is precisely the number of lattice paths from (0,0) to (m,m) which do not cross the line j = x, and so j = 1 are the sum of j = 1 and j =

In the following lemmas, we show that $K(a_1, \ldots, a_m) \leq n$ if $m \leq \log n(1 - o(1)) / \log(1 + \sqrt{2})$. Therefore, setting m as large as possible, we have at least

$$4^{\log n(1-o(1))/\log(1+\sqrt{2})} = n^{2\log 2/\log(1+\sqrt{2})-o(1)}$$

sequences with partial quotients bounded in average by 2 and continuant $\leq n$. \square

We must show that the size of a continuant with partial quotients bounded in average by B is at most the largest size of a continuant with partial quotients bounded by B.

Lemma 2: If the sequence (a_1, \ldots, a_m) of positive integers is bounded in average by B > 1, then $K(a_1, \ldots, a_m) \leq K(\underbrace{B, \ldots, B}_{m})$. **Proof**: We prove the Lemma by a "shifting" argument. That is, we perform induction

Proof: We prove the Lemma by a "shifting" argument. That is, we perform induction on the size of the entry a_j such that $a_j > B$ and j is as small as possible. If $\mathbf{a} = (a_1, \ldots, a_m)$ contains no $a_t > B$, we are done, because increasing the partial quotients can only increase the continuant. If there is some $a_t > B$, let $t \ge 2$ be the smallest such index. We consider two cases: (i) $a_t \ge B + 2$ or $a_{t-1} < B$, and (ii) $a_t = B + 1$, $a_k = B$ for $s \le k \le t - 1$ for some $0 \le s \le t - 1$, and $0 \le s \le t - 1$, and $0 \le s \le t - 1$. (Clearly, $0 \ne t \le t - 1$), $0 \le t \le t - 1$. (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$). (Clearly, $0 \ne t \le t \le t - 1$).

Let $\mathbf{b} = (b_1, \dots, b_m) = (a_1, \dots, a_{t-1} + 1, a_t - 1, \dots, a_m)$. We show that $K(\mathbf{b}) > K(\mathbf{a})$. First, note that

$$\sum_{j=1}^{r} b_j = \begin{cases} \sum_{j=1}^{r} a_j & \text{if } r \neq t-1\\ 1 + \sum_{j=1}^{t-1} a_j & \text{if } r = t-1. \end{cases}$$

Since $a_t \ge B+1$, $\sum_{j=1}^{t-1} a_j \le tB-B-1$, so $1+\sum_{j=1}^{t-1} a_j \le (t-1)B$, and **b** is bounded in average by B. Second, note that it suffices to consider the case of t=m, since, if $K(b_1,\ldots,b_j) > K(a_1,\ldots,a_j)$ for $1 \le j \le t$, then $K(\mathbf{b}) > K(\mathbf{a})$. (That is, $K(\cdot)$ is monotone increasing.)

Let $q_j = K(a_1, \ldots, a_j)$ and $q'_j = K(b_1, \ldots, b_j)$. (We use the convention that $q_j = 0$ when j < 0 and $q_0 = 1$.) Clearly, $q_j = q'_j$ if j < t - 1. When j = t - 1, we have $q'_{t-1} > q_{t-1}$ by monotonicity. When j = t,

$$q_t = a_t q_{t-1} + q_{t-2} = a_t (a_{t-1} q_{t-2} + q_{t-3}) + q_{t-2} = (a_t a_{t-1} + 1) q_{t-2} + a_t q_{t-3},$$

and

$$\begin{aligned} q_t' &= (b_t b_{t-1} + 1) q_{t-2}' + b_t q_{t-3}' \\ &= ((a_t - 1)(a_{t-1} + 1) + 1) q_{t-2} + (a_t - 1) q_{t-3} \\ &= q_t + q_{t-2}(a_t - a_{t-1} - 1) - q_{t-3}. \end{aligned}$$

Since $a_t \ge a_{t-1} + 2$ and $q_{t-2} > q_{t-3}$, we have

$$q_t' \ge q_t + q_{t-2} - q_{t-3} > q_t.$$

Case (ii):

Now, assume that $a_t = B+1$, $a_k = B$ for $s \le k \le t-1$ for some $2 \le s \le t-1$, and $a_{s-1} < B$. Then define $\mathbf{b} = (b_1, \dots, b_m)$ by letting $b_j = a_j$ if $j \ne s-1$ and $j \ne t$; $b_{s-1} = a_{s-1} + 1$; and $b_t = a_t - 1$. Again, we may assume that t = m. Then

$$\sum_{j=1}^{r} b_j = \begin{cases} \sum_{j=1}^{r} a_j & \text{if } r = t \text{ or } r < s - 1 \\ 1 + \sum_{j=1}^{r} a_j & \text{if } s - 1 \le r \le t - 1. \end{cases}$$

For any r such that $s-1 \le r \le t-1$,

$$\sum_{j=1}^{r} a_j = \sum_{j=1}^{t} a_j - \sum_{j=r+1}^{t} a_j \le Bt - (B(t-r-1) + (B+1)) \le Br - 1.$$

Therefore, $\sum_{j=1}^{r} b_j \leq Br$ for all $r \in [t]$, and we may conclude that **b** is bounded in average by B.

Define F_k as follows: $F_0 = 0$, $F_1 = 1$, and, for k > 1, $F_k = BF_{k-1} + F_{k-2}$. Then it is easy to see by induction that

$$K(\underbrace{B,\ldots,B}_{k},x)=F_{k+1}x+F_{k}.$$

Also,

$$K(y, c_1, \dots, c_r) = yK(c_1, \dots, c_r) + K(c_2, \dots, c_r).$$
 (1)

Taking k = t - s, we deduce

$$K(a_{s-1},\ldots,a_t)=a_{s-1}((B+1)F_{k+1}+F_k)+(B+1)F_k+F_{k-1},$$

and

$$K(b_{s-1}, \dots, b_t) = (a_{s-1} + 1)(BF_{k+1} + F_k) + BF_k + F_{k-1}$$
$$= K(a_{s-1}, \dots, a_t) + (B - a_{s-1})F_{k+1}$$
$$> K(a_{s-1}, \dots, a_t) + F_{k+1}.$$

If s = 2, we are done. Otherwise, we use that

$$K(b_{s-2},\ldots,b_t) = a_{s-2}K(b_{s-1},\ldots,b_t) + K(b_s,\ldots,b_t)$$

$$\geq a_{s-2}K(a_{s-1},\ldots,a_t) + F_{k+1} + b_tK(b_s,\ldots,b_{t-1}) + K(b_s,\ldots,b_{t-2})$$

$$= a_{s-2}K(a_{s-1},\ldots,a_t) + F_{k+1} + K(a_s,\ldots,a_t) - K(a_s,\ldots,a_{t-1})$$

$$= K(a_{s-2},\ldots,a_t).$$

Now, inductive application of (1) to the continuants $K(b_{s-j}, \ldots, b_t)$, $3 \le j \le s-1$, yields $K(\mathbf{b}) \ge K(\mathbf{a})$, since $a_{s-j} = b_{s-j}$ in this range.

By repeating cases (i) and (ii) as appropriate, we will eventually reach a sequence of partial quotients bounded by B, and at each stage we never decrease the corresponding continuant. The result therefore follows. \Box

It remains to find a bound on $K(B, \ldots, B)$.

Lemma 3: If
$$B \ge 1$$
, $K(\underbrace{B, \dots, B}_{m}) \le (\frac{1}{2}(B + \sqrt{B^2 + 4}))^{m+1}$.

Proof: We proceed by induction. The case m = 0 is trivial. Suppose it is true for all m < M. Then, by (1),

$$K(\underbrace{B, \dots, B}_{M}) = BK(\underbrace{B, \dots, B}_{M-1}) + K(\underbrace{B, \dots, B}_{M-2})$$

$$\leq B\left(\frac{1}{2}(B + \sqrt{B^{2} + 4})\right)^{M} + \left(\frac{1}{2}(B + \sqrt{B^{2} + 4})\right)^{M-1}$$

$$\leq \left(\frac{1}{2}(B + \sqrt{B^{2} + 4})\right)^{M-1} \left(\frac{1}{2}B^{2} + \frac{1}{2}B\sqrt{B^{2} + 4} + 1\right)$$

$$= \left(\frac{1}{2}(B + \sqrt{B^{2} + 4})\right)^{M+1}. \quad \Box$$

3. THE DENSITY OF $\mathcal{F}(2)$

Corollary 4: There is a constant C and a subset S of the positive integers such that $\log |S \cap [n]|/\log n \ge \log 2/\log(1+\sqrt{2}) - o(1) \approx 0.786$ so that, for each $n \in S$, there exists a $k \in [n]$, (k,n) = 1 so that k/n has partial quotients bounded in average by 2.

Proof: Let U be the set of all reduced fractions p/q, $1 , whose partial quotients <math>\mathbf{a} = (a_1, a_2, \ldots, a_m)$ are bounded in average by 2 and such that $\mathbf{a}' = (a_2, \ldots, a_m)$ is bounded in average by 2. The number of such \mathbf{a} with $K(\mathbf{a}) \le n$ is at least twice the number of sequences $\mathbf{a}' = (a_2, \ldots, a_m)$ bounded in average by 2 with $K(\mathbf{a}') \le n/3$, because, if $[\mathbf{a}'] = p/q$, then $K(\mathbf{a}) = a_1q + p \le 3K(\mathbf{a}') \le n$. (The fact that \mathbf{a}' is bounded in average by 2 implies that $[1, \mathbf{a}']$

and $[2, \mathbf{a}']$ are also.) Then, since every rational has at most two representations as a continued fraction, the number of elements of U whose denominator is $\leq n$ is at least $\bar{S}_{n/3}(2)$, which is at least $n^{2\log 2/\log(1+\sqrt{2})-o(1)}$. Let S be the set of denominators of fractions appearing in U. If $p/q = [\mathbf{a}]$ is in U, then $[\mathbf{a}'] = (q - a_1 p)/p$, so p is the continuant of a sequence whose partial quotients are bounded in average by 2. Therefore, $\bar{S}_{n/3}(2) \leq |S \cap [n]|^2$, and we may conclude that $\log |S \cap [n]|/\log n \geq \log 2/\log(1+\sqrt{2}) - o(1)$. \square

Attempts by the author to find a generalization of the above result to $\mathcal{F}(B)$ by applying much more careful counting arguments when B > 2 have failed thus far. It would also be interesting to (i), calculate the Hausdorff dimension of the set of reals in [0,1) whose partial quotients are bounded in average by B, and (ii), draw a connection, similar to that of the "uniform" case, between this quantity and the asymptotic density of $\mathcal{F}(B)$.

REFERENCES

- [1] J. N. Cooper. "Quasirandom Permutations." J. Combin. Theory Ser. A 106.1 (2004): 123-143
- [2] J. N. Cooper. Survey of Quasirandomness in Number Theory, 2003, preprint.
- [3] T. W. Cusick. "Continuants With Bounded Digits, III." Monatsh. Math. 99.2 (1985): 105-109.
- [4] D. Hensley. "A Polynomial Time Algorithm for the Hausdorff Dimension of Continued Fraction Cantor Sets." J. Number Theory **58.1** (1996): 9-45.
- [5] G. Larcher. "On the Distribution of Sequences Connected with Good Lattice Points." Monatsh. Math. 101 (1986): 135-150.
- [6] H. Niederreiter. "Quasi-Monte Carlo Methods and Pseudo-random Numbers." Bull. Amer. Math. Soc. 84 (1978): 957-1041.
- [7] G. Ramharter. "Some Metrical Properties of Continued Fractions." *Mathematika* **30.1** (1983): 117-132.
- [8] S. K. Zaremba, ed. "Applications of Number Theory to Numerical Analysis." *Proceedings* of the Symposium at the Centre for Research in Mathematics, University of Montréal, Academic Press, New York-London, (1972).

AMS Classification Numbers: 11K50; 11K38
