C. Maniscalco

Dipartimento di Matematica, Universitá di Palermo, Via Archirafi, 34, 90123 Palermo (Italy) e-mail: maniscal@math.unipa.it (Submitted January 2005-Final Revision January 2006)

ABSTRACT

The aim of this paper is to investigate pairs of real numbers of the type $(x, \frac{1}{x})$, $(x, \frac{a}{x})$ and (x, x^2) , where the first component is a real number $x \neq 0$ and the fractional parts of the coordinates are equal. We call such numbers *isodecimal*.

1. INTRODUCTION

In section 2, we introduce the concept of an isodecimal equivalence relation on \mathbb{R} , the set of real numbers. Using this equivalence relation, we will give a new characterization of the golden section $\alpha = \frac{1+\sqrt{5}}{2}$ in section 5. In section 3, we determine when numbers are isodecimal to their reciprocals. In sections 4 and 6, we examine those real numbers isodecimal to a proportional number of the reciprocal or to the square of the number. Moreover, we solve the question of finding real numbers $x \neq 0$ isodecimal to $\frac{1}{x}$, corresponding to a fixed integer m in a sense that the integer part of x is equal to m. In section 6, we introduce the notion of an isodecimal point in \mathbb{R}^2 , and we investigate when isodecimal points are points lying on the equilateral hyperbola $y = \frac{a}{x}$ onto the hyperbola $y = \frac{4^n a}{x}$, for each integer n > 0, that preserves isodecimal points. Finally, in section 7, we investigate those isodecimal points on parabola $y = ax^2$. Moreover, using the same technique, we construct a one-to-one correspondence of hyperbolas, such a mapping doesn't preserve the isodecimal property. Theorem 7.2 provides a necessary and sufficient condition under which the isodecimal property is preserved by both σ and σ^{-1} .

2. NOTATIONS AND USEFUL FACTS

Let x be a real number. Throughout this paper, we make use of the standard notations $\lfloor x \rfloor$ and $\lceil x \rceil$ for the floor and ceiling functions. We also let I(x) be the integer part of x, sgn(x) be the sign of x, F(x) be the decimal/fractional part of x. Note that I(x) = sgn(x)||x|| and

$$F(x) = x - I(x) = \begin{cases} 0.a_1 a_2 a_3 \dots, & \text{if } x = n.a_1 a_2 a_3 \dots > 0, \\ 0, & \text{if } x = 0, \\ -0.a_1 a_2 a_3 \dots, & \text{if } x = n.a_1 a_2 a_3 \dots < 0. \end{cases}$$

Definition 2.1: The real number x is said to be isodecimal to y if F(x) = F(y).

- **Lemma 2.1**: If x, y are real numbers and k is an integer, $k \neq 0$, then:
- i) If sgn(x) = sgn(y), then x is isodecimal to y if and only if $x y \in \mathbb{Z}$;
- ii) If $sgn(x) \neq sgn(y)$, then x is isodecimal to y if and only if $x, y \in \mathbb{Z}$;
- *iii)* If F(x) = F(y) then F(kx) = F(ky).

Proof: (i) If F(x) = F(y) then $x - y = I(x) - I(y) \in \mathbb{Z}$. On the other hand, if sgn(x) = sgn(y) and x - y = k, with $k \in \mathbb{Z}$, then x = y + k, and I(x) = I(y) + k. Therefore, x - I(x) = y + k - (I(y) + k) = y - I(y), namely, F(x) = F(y). (ii) If x < 0 < y then $F(x) \leq 0 < F(y)$ and the result holds if and only if F(x) = F(y) = 0.

(ii) If x < 0 < y then $F(x) \le 0 \le F(y)$ and the result holds if and only if F(x) = F(y) = 0. (iii) This is a trivial consequence of (i) and (ii). \Box

3. NUMBERS ISODECIMAL TO RECIPROCAL

Let $E = \{x \in \mathbb{R} \setminus \{0\} : F(x) = F(\frac{1}{x})\}.$ **Theorem 3.1**: We shall show that $x \in E$ if and only if there exists $k \in \mathbb{Z}$ such that

$$x = \frac{k \pm \sqrt{k^2 + 4}}{2}$$

Proof: By (i) of Lemma 2.1, $x \in E$ if and only if there exists a $k \in \mathbb{Z}$, such that x is a solution of the equation $x^2 - kx - 1 = 0$. \Box

Theorem 3.2: Let $m \in \mathbb{Z}$ be fixed and let $x \in \mathbb{R} \setminus \{0\}$ be such that

$$m = I(x) \text{ and } F(x) = F(\frac{1}{x}).$$
 (1)

Then, the following statements hold:

i) If $m \neq \pm 1$ and $m \neq 0$ then there exists one and only one x with property (1).

ii) If $m = \pm 1$, there exist two real numbers satisfying property (1).

iii) If m = 0 there exist countably many real numbers x for which (1) is true.

Proof: Let us begin by observing that if F(x) = 0, then x = I(x). Therefore, x fulfills (1) if and only if x = m and $0 = F(m) = F(\frac{1}{m})$. Hence, m and $\frac{1}{m}$ are integers or $m = \pm 1$.

Now, we investigate those real numbers x satisfying (1) with $F(x) \neq 0$ and $m \in \mathbb{Z} \setminus \{0\}$ being fixed. We examine two cases:

i) For this case, we assume that $m \ge 1$. If x satisfies (1) than $F(x) = d_m \in [0, 1]$. Hence, by definition, $x = m + d_m$ and $\frac{1}{x} = \frac{1}{m+d_m} = d_m$. Therefore, d_m is the unique solution belonging to [0, 1] of the equation $d^2 + md - 1 = 0$. If m > 1, x is unique while x = 1 and $x = 1 + d_1$ if m = 1.

ii) In this case, we assume that $m \leq -1$. Then, $F(x) = d_m \in [-1,0]$ so that $x = m + d_m$ and $\frac{1}{x} = \frac{1}{m+d_m} = d_m$. Therefore, d_m is the unique solution belonging to [-1,0] of the equation $d^2 + md - 1 = 0$. Hence, if m < -1, x is unique. Furthermore, if m = -1 then we have x = -1 and $x = -1 + d_{-1}$. Observe that when m = 0, the x values fulfilling (1) are the reciprocals of the numbers y with $I(y) \neq 0$. \Box

In the previous proof, we have seen that, for a fixed $m \in \mathbb{Z} \setminus \{0\}$, the $x_m \neq \pm 1$ fulfilling (1) are such that

$$F(x_m) = F(\frac{1}{x_m}) = d_m = \begin{cases} \frac{-m + \sqrt{m^2 + 4}}{2} & \text{if } m > 0, \\ \frac{-m - \sqrt{m^2 + 4}}{2} & \text{if } m < 0. \end{cases}$$

Obviously, $\frac{1}{x_m} = d_m$. Moreover, $x_m^2 + (\frac{1}{x_m})^2 = (m + d_m)^2 + d_m^2 = 2d_m(m + d_m) + m^2 = 2 + m^2$.

Hence, we have proved the following theorem.

Theorem 3.3: For each $m \in \mathbb{Z} \setminus \{0\}$, the equation $d^2 + md - 1 = 0$ has only one solution such that the point $P_m = (m + d, d)$ is characterized by the following properties: P_m is on the equilateral hyperbola $y = \frac{1}{x}$, its coordinates are isodecimal numbers and the sum of the squares of the coordinates is equal to $2 + m^2$.

4. NUMBERS ISODECIMAL TO THEIR SQUARE

Theorem 4.1: Let x be a real number then:

i) if x > 0 then x is isodecimal to x^2 if and only if there exists an integer $h \ge 0$ such that $x = \frac{1+\sqrt{1+4h}}{2}$;

ii) if $x \leq 0$ then x is isodecimal to x^2 if and only if x is an integer.

Proof: i) If x > 0 then, by applying (i) of Lemma 2.1, x is isodecimal to x^2 if and only if $x^2 - x = h$ with $h \in \mathbb{Z}$; the result follows because x is a positive integer. ii) If $x \leq 0$ then, by (ii) of Lemma 2.1, x is isodecimal to x^2 if and only if x is an integer. In

this case, $x = \frac{1-\sqrt{1+4h}}{2}$ where h = n(n-1) with n a positive integer.

5. NUMBERS ISODECIMAL TO BOTH THE RECIPROCAL AND SQUARE

Theorem 5.1: The only real numbers $x \neq 0$ isodecimal to both x^2 and $\frac{1}{x}$ are $x = \pm 1$ and $x = \frac{1+\sqrt{5}}{2}$.

Proof: By Theorem 3.1 and Theorem 4.1, if $F(x) = F(\frac{1}{x}) = F(x^2)$ then $x = \frac{k \pm \sqrt{k^2 + 4}}{2} = \frac{1 \pm \sqrt{1 + 4h}}{2}$ with $h, k \in \mathbb{Z}$. Therefore, we have

$$k - 1 \pm \sqrt{k^2 + 4} = \pm \sqrt{1 + 4h}.$$
 (2)

Squaring both sides of the equation (2), we obtain

$$\mp (k-1)\sqrt{k^2 + 4} = 2h - k^2 + k - 2. \tag{3}$$

The left hand in (3) is an integer only if k = 0 or k = 1. If k = 0 we obtain $x = \pm 1$ satisfying $F(x) = F(x^2) = F(\frac{1}{x})$. If k = 1, by Theorem 3.1, we have $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ that are isodecimal to their inverse. By applying Theorem 4.1, we conclude that α is isodecimal also to α^2 , while β is not isodecimal to β^2 . \Box

6. ISODECIMAL POINTS ON EQUILATERAL HYPERBOLAS

Definition 6.1: A point (x, y) of \mathbb{R}^2 is called isodecimal if x is isodecimal to y.

Let a be a fixed real number, $a \neq 0$. In this section, we investigate those isodecimal points lying on the equilateral hyperbola $y = \frac{a}{x}$.

Theorem 6.1: We shall look at two cases: i) If a > 0 then a point (x, y) on $y = \frac{a}{x}$ is isodecimal if and only if

$$x = \frac{k \pm \sqrt{k^2 + 4a}}{2}, \quad with \ k \in \mathbb{Z}.$$
(4)

ii) If a < 0 there exist isodecimal points (x, y) on $y = \frac{a}{x}$ if and only if a is an integer. In such a case there are only a finite number of isodecimal points and they are related to the decomposition of |a| into prime factors.

Proof: i) This result follows immediately by (i) of Lemma 2.1. ii) By (ii) of Lemma 2.1, x is isodecimal to $\frac{a}{x}$ if and only if there exist $n, m \in \mathbb{Z} \setminus \{0\}$ such that a = nm. However, the only isodecimal points on $y = \frac{a}{x}$ with a = mn are (m, n). \Box

Next, we observe that the tangent line to $y = \frac{a}{x}$ at $(x_0, \frac{a}{x_0})$ is

$$y(x) = \frac{a}{x_0^2} (2x_0 - x).$$
(5)

The line (5) intersects the coordinate axes respectively at $T_1 = (2x_0, 0)$ and $T_2 = (0, \frac{2a}{x_0})$. By (iii) of Lemma 2.1, we know that if $(x_0, \frac{a}{x_0})$ is isodecimal then the abscissa of T_1 is isodecimal to the ordinate of T_2 . In such a case, the point $(2x_0, \frac{2a}{x_0})$, whose projections onto the axes are T_1 and T_2 , is an isodecimal point on the equilateral hyperbola $y = \frac{4a}{x}$ (see fig.1). If we iterate this process, we see that the point $(4x_0, \frac{4a}{x_0})$ is isodecimal on the equilateral hyperbola $y = \frac{16a}{x}$. Obviously, the iteration process can be continued. Letting H_n be the equilateral hyperbola $y = \frac{4^n a}{x}$, n = 0, 1, 2....., the geometric construction illustrated above provides a one-to-one mapping τ_n of H_0 onto H_n . It is obvious that if $Q_0 = (x_0, \frac{a}{x_0})$ then $Q_n = \tau_n(Q_0) = (2^n x_0, \frac{2^n a}{x_0})$. An immediate consequence of (iii) of Lemma 2.1 is that if Q_0 is isodecimal then Q_n is isodecimal too.

Fig. 1 Construction of the application τ_1

Now, we observe that if a > 0 by (4) there exist $k, h \in \mathbb{Z}$ such that

$$x_0 = \frac{k \pm \sqrt{k^2 + 4a}}{2} \tag{6}$$

and

$$2^{n}x_{0} = \frac{h \pm \sqrt{h^{2} + 4^{n+1}a}}{2}.$$
(7)

The integer h is related to k by the identity

$$2^{n}k \pm \sqrt{(2^{n}k)^{2} + 4^{n+1}a} = h \pm \sqrt{h^{2} + 4^{n+1}a}.$$
(8)

By simple calculations, we see that (8) is true if and only if $h = 2^n k$. Hence, we obtain the following theorem:

Theorem 6.2: Let a > 0 and H_n (n = 0, 1, 2...) be the equilateral hyperbola $y = \frac{4^n a}{x}$. A point $P = (z_0, \frac{4^n a}{z_0}) \in H_n$ is an isodecimal point corresponding to an isodecimal point $Q \in H_0$ if and only if

$$z_0 = \frac{h \pm \sqrt{h^2 + 4^{n+1}a}}{2}$$

with $h = 2^n k$, where k is an integer.

7. ISODECIMAL POINTS ON PARABOLA

Let a be a fixed number, $a \neq 0$. In this section, we investigate those isodecimal points $P = (x, ax^2)$ lying on the parabola $y = ax^2$.

Theorem 7.1: We shall look at two cases: i) If sgn(x) = sgn(a) then P is isodecimal if and only if there exists $h \in \mathbb{Z}$ such that

$$x = \frac{1 \pm \sqrt{1 + 4ah}}{2a}$$

ii) If $sgn(x) \neq sgn(a)$, the point P is isodecimal if and only if

$$a = \frac{q}{p^2}$$
 and $x = p$ with $p, q \in \mathbb{Z} \setminus \{0\}$.

Proof: i) This result follows immediately from (i) of Lemma 2.1. ii) By (ii) of Lemma 2.1, P is isodecimal if and only if there exists $p, q \in \mathbb{Z} \setminus \{0\}$ such that $x = p, ax^2 = q$. \Box

Let L_i , i = 0, 1, be the parabola $y = (-4)^i a x^2$. The geometric process introduced in the previous section allows us to construct a one-to-one mapping $\sigma : L_0 \to L_1$.

The tangent line to L_0 at $P_0 = (x_0, ax_0^2)$ is $y(x) = ax_0(2x - x_0)$, such a line intersects the coordinates axes respectively at $S_1 = (\frac{x_0}{2}, 0)$ and $S_2 = (0, -ax_0^2)$; the point $P_1 = (\frac{x_0}{2}, -ax_0^2)$, whose projections onto the axes are S_1 and S_2 , is on the parabola $y = -4ax^2$. We now define

 $\sigma(x, ax^2) = (\frac{x}{2}, -ax^2)$. It is obvious that σ is a one-to-one mapping that doesn't preserves the property to be isodecimal.

Theorem 7.2: A necessary and sufficient condition that the point $P_0 = (x_0, ax_0^2)$, with $x_0 \neq 0$, and the point $\sigma(P_0) = (\frac{x_0}{2}, ax_0^2)$ are both isodecimal is that

$$a = \frac{q}{4p^2} \text{ with } p, q \in \mathbb{Z} \text{ and } x_0 = 2p.$$
(9)

Proof: We examine two cases:

i) For this case, we assume that $sgn(x_0) = sgn(a)$. Then, by (i) of Theorem 7.1, P_0 is isodecimal if and only if

$$x_0 = \frac{1 \pm \sqrt{1 + 4ah}}{2a}, \text{ with } h \in \mathbb{Z}.$$
(10)

By (ii) of Theorem 7.1, $\sigma(P_0) = (\frac{x_0}{2}, -ax_0^2)$ is isodecimal if and only if there exist $p, q \in \mathbb{Z}$, such that $\frac{x_0}{2} = p$ and $-ax_0^2 = -q$. Then

$$a = \frac{q}{4p^2} \text{ and } x_0 = 2p \text{ with } p, q \in \mathbb{Z}.$$
(11)

The choice of a and x_0 as in (11) fulfills (10) where h = q - 2p and the sign is + if p(p-q) < 0, while we have the same value of h and the sign - if p(p-q) > 0.

ii) In this case, we assume $sgn(x_0) \neq sgn(a)$. By (ii) of Theorem 7.1, P_0 is isodecimal if and only if there exist $m, q \in \mathbb{Z}$ such that $x_0 = m$ and $ax_0^2 = q$. Then

$$a = \frac{q}{m^2} \text{ and } x_0 = m \text{ with } m, q \in \mathbb{Z}.$$
 (12)

By (i) of Theorem 7.1, $\sigma(P_0) = (\frac{x_0}{2}, -ax_0^2)$ is isodecimal if and only if

$$x_0 = \frac{-1 \pm \sqrt{1 + 16ah}}{4a}, \text{ with } h \in \mathbb{Z}.$$
(13)

Combining (12) and (13), we see that m must be even, say m = 2p. Let

$$x_0 = 2p, \ a = \frac{q}{4p^2} \ and \ h = q + p \ with \ p, q \in \mathbb{Z}.$$

If p(p+2q) > 0 then (13) is fulfilled with the sign +; if p(p+2q) < 0 then (13) is fulfilled with the sign -.

ACKNOWLEDGMENT

The author is grateful to the referee for his useful comments and suggestions on a previous version of the paper.

Supported by M.U.R.S.T. and by G.N.A.M.P.A. of the "Istituto Nazionale di Alta Matematica" of Italy.

AMS Classification Numbers: 11B39

$$\mathbf{X}$$
 \mathbf{X} \mathbf{X}