ISODECIMAL NUMBERS

C. Maniscalco
Dipartimento di Matematica, Universitá di Palermo, Via Archirafi, 34, 90123 Palermo (Italy)
e-mail: maniscal@math.unipa.it
(Submitted January 2005-Final Revision January 2006)

Abstract

The aim of this paper is to investigate pairs of real numbers of the type $\left(x, \frac{1}{x}\right),\left(x, \frac{a}{x}\right)$ and $\left(x, x^{2}\right)$, where the first component is a real number $x \neq 0$ and the fractional parts of the coordinates are equal. We call such numbers isodecimal.

1. INTRODUCTION

In section 2 , we introduce the concept of an isodecimal equivalence relation on \mathbb{R}, the set of real numbers. Using this equivalence relation, we will give a new characterization of the golden section $\alpha=\frac{1+\sqrt{5}}{2}$ in section 5 . In section 3, we determine when numbers are isodecimal to their reciprocals. In sections 4 and 6 , we examine those real numbers isodecimal to a proportional number of the reciprocal or to the square of the number. Moreover, we solve the question of finding real numbers $x \neq 0$ isodecimal to $\frac{1}{x}$, corresponding to a fixed integer m in a sense that the integer part of x is equal to m. In section 6 , we introduce the notion of an isodecimal point in \mathbb{R}^{2}, and we investigate when isodecimal points are points lying on the equilateral hyperbola $y=\frac{a}{x}$. In this section, we also construct a one-to-one correspondence of the equilateral hyperbola $y=\frac{a}{x}$ onto the hyperbola $y=\frac{4^{n} a}{x}$, for each integer $n>0$, that preserves isodecimal points. Finally, in section 7, we investigate those isodecimal points on parabola $y=a x^{2}$. Moreover, using the same technique, we construct a one-to-one correspondence, σ, between the parabola $y=a x^{2}$ and the parabola $y=-4 a x^{2}$. Unlike what happens for hyperbolas, such a mapping doesn't preserve the isodecimal property. Theorem 7.2 provides a necessary and sufficient condition under which the isodecimal property is preserved by both σ and σ^{-1}.

2. NOTATIONS AND USEFUL FACTS

Let x be a real number. Throughout this paper, we make use of the standard notations $\lfloor x\rfloor$ and $\lceil x\rceil$ for the floor and ceiling functions. We also let $I(x)$ be the integer part of $x, \operatorname{sgn}(x)$ be the sign of $x, F(x)$ be the decimal/fractional part of x . Note that $I(x)=\operatorname{sgn}(x)\lfloor|x|\rfloor$ and

$$
F(x)=x-I(x)= \begin{cases}0 . a_{1} a_{2} a_{3} \ldots, & \text { if } x=n . a_{1} a_{2} a_{3} \ldots>0 \\ 0, & \text { if } x=0, \\ -0 . a_{1} a_{2} a_{3} \ldots, & \text { if } x=n . a_{1} a_{2} a_{3} \ldots<0\end{cases}
$$

Definition 2.1: The real number x is said to be isodecimal to y if $F(x)=F(y)$.
Lemma 2.1: If x, y are real numbers and k is an integer, $k \neq 0$, then:
i) If $\operatorname{sgn}(x)=\operatorname{sgn}(y)$, then x is isodecimal to y if and only if $x-y \in \mathbb{Z}$;
ii) If $\operatorname{sgn}(x) \neq \operatorname{sgn}(y)$, then x is isodecimal to y if and only if $x, y \in \mathbb{Z}$;
iii) If $F(x)=F(y)$ then $F(k x)=F(k y)$.

Proof: (i) If $F(x)=F(y)$ then $x-y=I(x)-I(y) \in \mathbb{Z}$. On the other hand, if $\operatorname{sgn}(x)=$ $\operatorname{sgn}(y)$ and $x-y=k$, with $k \in \mathbb{Z}$, then $x=y+k$, and $I(x)=I(y)+k$. Therefore, $x-I(x)=$ $y+k-(I(y)+k)=y-I(y)$, namely, $F(x)=F(y)$.
(ii) If $x<0<y$ then $F(x) \leq 0 \leq F(y)$ and the result holds if and only if $F(x)=F(y)=0$.
(iii) This is a trivial consequence of (i) and (ii).

3. NUMBERS ISODECIMAL TO RECIPROCAL

Let $E=\left\{x \in \mathbb{R} \backslash\{0\}: F(x)=F\left(\frac{1}{x}\right)\right\}$.
Theorem 3.1: We shall show that $x \in E$ if and only if there exists $k \in \mathbb{Z}$ such that

$$
x=\frac{k \pm \sqrt{k^{2}+4}}{2}
$$

Proof: By (i) of Lemma 2.1, $x \in E$ if and only if there exists a $k \in \mathbb{Z}$, such that x is a solution of the equation $x^{2}-k x-1=0$.
Theorem 3.2: Let $m \in \mathbb{Z}$ be fixed and let $x \in \mathbb{R} \backslash\{0\}$ be such that

$$
\begin{equation*}
m=I(x) \text { and } F(x)=F\left(\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Then, the following statements hold:
i) If $m \neq \pm 1$ and $m \neq 0$ then there exists one and only one x with property (1).
ii) If $m= \pm 1$, there exist two real numbers satisfying property (1).
iii) If $m=0$ there exist countably many real numbers x for which (1) is true.

Proof: Let us begin by observing that if $F(x)=0$, then $x=I(x)$. Therefore, x fulfills
(1) if and only if $x=m$ and $0=F(m)=F\left(\frac{1}{m}\right)$. Hence, m and $\frac{1}{m}$ are integers or $m= \pm 1$.

Now, we investigate those real numbers x satisfying (1) with $F(x) \neq 0$ and $m \in \mathbb{Z} \backslash\{0\}$ being fixed. We examine two cases:
i) For this case, we assume that $m \geq 1$. If x satisfies (1) than $F(x)=d_{m} \in[0,1]$. Hence, by definition, $x=m+d_{m}$ and $\frac{1}{x}=\frac{1}{m+d_{m}}=d_{m}$. Therefore, d_{m} is the unique solution belonging to $[0,1]$ of the equation $d^{2}+m d-1=0$. If $m>1, x$ is unique while $x=1$ and $x=1+d_{1}$ if $m=1$.
ii) In this case, we assume that $m \leq-1$. Then, $F(x)=d_{m} \in[-1,0]$ so that $x=m+d_{m}$ and $\frac{1}{x}=\frac{1}{m+d_{m}}=d_{m}$. Therefore, d_{m} is the unique solution belonging to $[-1,0]$ of the equation $d^{2}+m d-1=0$. Hence, if $m<-1, x$ is unique. Furthermore, if $m=-1$ then we have $x=-1$ and $x=-1+d_{-1}$. Observe that when $m=0$, the x values fulfilling (1) are the reciprocals of the numbers y with $I(y) \neq 0$.

In the previous proof, we have seen that, for a fixed $m \in \mathbb{Z} \backslash\{0\}$, the $x_{m} \neq \pm 1$ fulfilling (1) are such that

$$
F\left(x_{m}\right)=F\left(\frac{1}{x_{m}}\right)=d_{m}= \begin{cases}\frac{-m+\sqrt{m^{2}+4}}{2} & \text { if } m>0 \\ \frac{-m-\sqrt{m^{2}+4}}{2} & \text { if } m<0\end{cases}
$$

Obviously, $\frac{1}{x_{m}}=d_{m}$. Moreover, $x_{m}^{2}+\left(\frac{1}{x_{m}}\right)^{2}=\left(m+d_{m}\right)^{2}+d_{m}^{2}=2 d_{m}\left(m+d_{m}\right)+m^{2}$ $=2+m^{2}$.

Hence, we have proved the following theorem.

Theorem 3.3: For each $m \in \mathbb{Z} \backslash\{0\}$, the equation $d^{2}+m d-1=0$ has only one solution such that the point $P_{m}=(m+d, d)$ is characterized by the following properties: P_{m} is on the equilateral hyperbola $y=\frac{1}{x}$, its coordinates are isodecimal numbers and the sum of the squares of the coordinates is equal to $2+m^{2}$.

4. NUMBERS ISODECIMAL TO THEIR SQUARE

Theorem 4.1: Let x be a real number then:
i) if $x>0$ then x is isodecimal to x^{2} if and only if there exists an integer $h \geq 0$ such that $x=\frac{1+\sqrt{1+4 h}}{2}$;
ii) if $x \leq 0$ then x is isodecimal to x^{2} if and only if x is an integer.

Proof: i) If $x>0$ then, by applying (i) of Lemma 2.1, x is isodecimal to x^{2} if and only if $x^{2}-x=h$ with $h \in \mathbb{Z}$; the result follows because x is a positive integer.
ii) If $x \leq 0$ then, by (ii) of Lemma 2.1, x is isodecimal to x^{2} if and only if x is an integer. In this case, $x=\frac{1-\sqrt{1+4 h}}{2}$ where $h=n(n-1)$ with n a positive integer.

5. NUMBERS ISODECIMAL TO BOTH THE RECIPROCAL AND SQUARE

Theorem 5.1: The only real numbers $x \neq 0$ isodecimal to both x^{2} and $\frac{1}{x}$ are $x= \pm 1$ and $x=\frac{1+\sqrt{5}}{2}$.

Proof: By Theorem 3.1 and Theorem 4.1, if $F(x)=F\left(\frac{1}{x}\right)=F\left(x^{2}\right)$ then $x=\frac{k \pm \sqrt{k^{2}+4}}{2}=$ $\frac{1 \pm \sqrt{1+4 h}}{2}$ with $h, k \in \mathbb{Z}$. Therefore, we have

$$
\begin{equation*}
k-1 \pm \sqrt{k^{2}+4}= \pm \sqrt{1+4 h} \tag{2}
\end{equation*}
$$

Squaring both sides of the equation (2), we obtain

$$
\begin{equation*}
\mp(k-1) \sqrt{k^{2}+4}=2 h-k^{2}+k-2 . \tag{3}
\end{equation*}
$$

The left hand in (3) is an integer only if $k=0$ or $k=1$. If $k=0$ we obtain $x= \pm 1$ satisfying $F(x)=F\left(x^{2}\right)=F\left(\frac{1}{x}\right)$. If $k=1$, by Theorem 3.1, we have $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ that are isodecimal to their inverse. By applying Theorem 4.1, we conclude that α is isodecimal also to α^{2}, while β is not isodecimal to β^{2}.

6. ISODECIMAL POINTS ON EQUILATERAL HYPERBOLAS

Definition 6.1: A point (x, y) of \mathbb{R}^{2} is called isodecimal if x is isodecimal to y.
Let a be a fixed real number, $a \neq 0$. In this section, we investigate those isodecimal points lying on the equilateral hyperbola $y=\frac{a}{x}$.
Theorem 6.1: We shall look at two cases:
i) If $a>0$ then a point (x, y) on $y=\frac{a}{x}$ is isodecimal if and only if

$$
\begin{equation*}
x=\frac{k \pm \sqrt{k^{2}+4 a}}{2}, \text { with } k \in \mathbb{Z} \tag{4}
\end{equation*}
$$

ii)If $a<0$ there exist isodecimal points (x, y) on $y=\frac{a}{x}$ if and only if a is an integer. In such a case there are only a finite number of isodecimal points and they are related to the decomposition of $|a|$ into prime factors.

Proof: i) This result follows immediately by (i) of Lemma 2.1.
ii) By (ii) of Lemma 2.1, x is isodecimal to $\frac{a}{x}$ if and only if there exist $n, m \in \mathbb{Z} \backslash\{0\}$ such that $a=n m$. However, the only isodecimal points on $y=\frac{a}{x}$ with $a=m n$ are (m, n).

Next, we observe that the tangent line to $y=\frac{a}{x}$ at $\left(x_{0}, \frac{a}{x_{0}}\right)$ is

$$
\begin{equation*}
y(x)=\frac{a}{x_{0}^{2}}\left(2 x_{0}-x\right) . \tag{5}
\end{equation*}
$$

The line (5) intersects the coordinate axes respectively at $T_{1}=\left(2 x_{0}, 0\right)$ and $T_{2}=\left(0, \frac{2 a}{x_{0}}\right)$. By (iii) of Lemma 2.1, we know that if $\left(x_{0}, \frac{a}{x_{0}}\right)$ is isodecimal then the abscissa of T_{1} is isodecimal to the ordinate of T_{2}. In such a case, the point $\left(2 x_{0}, \frac{2 a}{x_{0}}\right)$, whose projections onto the axes are T_{1} and T_{2}, is an isodecimal point on the equilateral hyperbola $y=\frac{4 a}{x}$ (see fig.1). If we iterate this process, we see that the point $\left(4 x_{0}, \frac{4 a}{x_{0}}\right)$ is isodecimal on the equilateral hyperbola $y=\frac{16 a}{x}$. Obviously, the iteration process can be continued. Letting H_{n} be the equilateral hyperbola $y=\frac{4^{n} a}{x}, n=0,1,2 \ldots \ldots$, the geometric construction illustrated above provides a one-to-one mapping τ_{n} of H_{0} onto H_{n}. It is obvious that if $Q_{0}=\left(x_{0}, \frac{a}{x_{0}}\right)$ then $Q_{n}=\tau_{n}\left(Q_{0}\right)=\left(2^{n} x_{0}, \frac{2^{n} a}{x_{0}}\right)$. An immediate consequence of (iii) of Lemma 2.1 is that if Q_{0} is isodecimal then Q_{n} is isodecimal too.

Fig. 1 Construction of the application τ_{1}

Now, we observe that if $a>0$ by (4) there exist $k, h \in \mathbb{Z}$ such that

$$
\begin{equation*}
x_{0}=\frac{k \pm \sqrt{k^{2}+4 a}}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{n} x_{0}=\frac{h \pm \sqrt{h^{2}+4^{n+1} a}}{2} \tag{7}
\end{equation*}
$$

The integer h is related to k by the identity

$$
\begin{equation*}
2^{n} k \pm \sqrt{\left(2^{n} k\right)^{2}+4^{n+1} a}=h \pm \sqrt{h^{2}+4^{n+1} a} . \tag{8}
\end{equation*}
$$

By simple calculations, we see that (8) is true if and only if $h=2^{n} k$. Hence, we obtain the following theorem:
Theorem 6.2: Let $a>0$ and $H_{n}(n=0,1,2 \ldots)$ be the equilateral hyperbola $y=\frac{4^{n} a}{x}$. A point $P=\left(z_{0}, \frac{4^{n} a}{z_{0}}\right) \in H_{n}$ is an isodecimal point corresponding to an isodecimal point $Q \in H_{0}$ if and only if

$$
z_{0}=\frac{h \pm \sqrt{h^{2}+4^{n+1} a}}{2}
$$

with $h=2^{n} k$, where k is an integer.

7. ISODECIMAL POINTS ON PARABOLA

Let a be a fixed number, $a \neq 0$. In this section, we investigate those isodecimal points $P=\left(x, a x^{2}\right)$ lying on the parabola $y=a x^{2}$.
Theorem 7.1: We shall look at two cases:
i)If $\operatorname{sgn}(x)=\operatorname{sgn}(a)$ then P is isodecimal if and only if there exists $h \in \mathbb{Z}$ such that

$$
x=\frac{1 \pm \sqrt{1+4 a h}}{2 a} .
$$

ii) If $\operatorname{sgn}(x) \neq \operatorname{sgn}(a)$, the point P is isodecimal if and only if

$$
a=\frac{q}{p^{2}} \text { and } x=p \text { with } p, q \in \mathbb{Z} \backslash\{0\} .
$$

Proof: i) This result follows immediately from (i) of Lemma 2.1.
ii) By (ii) of Lemma 2.1, P is isodecimal if and only if there exists $p, q \in \mathbb{Z} \backslash\{0\}$ such that $x=p, a x^{2}=q$.

Let $L_{i}, i=0,1$, be the parabola $y=(-4)^{i} a x^{2}$. The geometric process introduced in the previous section allows us to construct a one-to-one mapping $\sigma: L_{0} \rightarrow L_{1}$.

The tangent line to L_{0} at $P_{0}=\left(x_{0}, a x_{0}^{2}\right)$ is $y(x)=a x_{0}\left(2 x-x_{0}\right)$, such a line intersects the coordinates axes respectively at $S_{1}=\left(\frac{x_{0}}{2}, 0\right)$ and $S_{2}=\left(0,-a x_{0}^{2}\right)$; the point $P_{1}=\left(\frac{x_{0}}{2},-a x_{0}^{2}\right)$, whose projections onto the axes are S_{1} and S_{2}, is on the parabola $y=-4 a x^{2}$. We now define
$\sigma\left(x, a x^{2}\right)=\left(\frac{x}{2},-a x^{2}\right)$ ．It is obvious that σ is a one－to－one mapping that doesn＇t preserves the property to be isodecimal．
Theorem 7．2：A necessary and sufficient condition that the point $P_{0}=\left(x_{0}, a x_{0}^{2}\right)$ ，with $x_{0} \neq 0$ ， and the point $\sigma\left(P_{0}\right)=\left(\frac{x_{0}}{2}, a x_{0}^{2}\right)$ are both isodecimal is that

$$
\begin{equation*}
a=\frac{q}{4 p^{2}} \text { with } p, q \in \mathbb{Z} \text { and } x_{0}=2 p \tag{9}
\end{equation*}
$$

Proof：We examine two cases：
i）For this case，we assume that $\operatorname{sgn}\left(x_{0}\right)=\operatorname{sgn}(a)$ ．Then，by（i）of Theorem 7．1，P_{0} is isodecimal if and only if

$$
\begin{equation*}
x_{0}=\frac{1 \pm \sqrt{1+4 a h}}{2 a}, \text { with } h \in \mathbb{Z} \tag{10}
\end{equation*}
$$

By（ii）of Theorem 7．1，$\sigma\left(P_{0}\right)=\left(\frac{x_{0}}{2},-a x_{0}^{2}\right)$ is isodecimal if and only if there exist $p, q \in \mathbb{Z}$ ， such that $\frac{x_{0}}{2}=p$ and $-a x_{0}^{2}=-q$ ．Then

$$
\begin{equation*}
a=\frac{q}{4 p^{2}} \text { and } x_{0}=2 p \text { with } p, q \in \mathbb{Z} \tag{11}
\end{equation*}
$$

The choice of a and x_{0} as in（11）fulfills（10）where $h=q-2 p$ and the sign is + if $p(p-q)<0$ ， while we have the same value of h and the sign－if $p(p-q)>0$ ．
ii）In this case，we assume $\operatorname{sgn}\left(x_{0}\right) \neq \operatorname{sgn}(a)$ ．By（ii）of Theorem 7．1，P_{0} is isodecimal if and only if there exist $m, q \in \mathbb{Z}$ such that $x_{0}=m$ and $a x_{0}^{2}=q$ ．Then

$$
\begin{equation*}
a=\frac{q}{m^{2}} \text { and } x_{0}=m \text { with } m, q \in \mathbb{Z} \tag{12}
\end{equation*}
$$

By（i）of Theorem 7．1，$\sigma\left(P_{0}\right)=\left(\frac{x_{0}}{2},-a x_{0}^{2}\right)$ is isodecimal if and only if

$$
\begin{equation*}
x_{0}=\frac{-1 \pm \sqrt{1+16 a h}}{4 a}, \text { with } h \in \mathbb{Z} \text {. } \tag{13}
\end{equation*}
$$

Combining（12）and（13），we see that m must be even，say $m=2 p$ ．Let

$$
x_{0}=2 p, a=\frac{q}{4 p^{2}} \text { and } h=q+p \text { with } p, q \in \mathbb{Z}
$$

If $p(p+2 q)>0$ then（13）is fulfilled with the sign + ；if $p(p+2 q)<0$ then（13）is fulfilled with the sign - ．

ACKNOWLEDGMENT

The author is grateful to the referee for his useful comments and suggestions on a previous version of the paper．

Supported by M．U．R．S．T．and by G．N．A．M．P．A．of the＂Istituto Nazionale di Alta Matem－ atica＂of Italy．

AMS Classification Numbers：11B39

※凶゙き

