A CRITERION FOR POLYNOMIALS TO BE CONGRUENT TO THE PRODUCT OF LINEAR POLYNOMIALS $(\bmod p)$

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China
e-mail: hyzhsun@public.hy.js.cn
(Submitted November 2004-Final Revision February 2005)

Abstract

Let $\left\{u_{n}\right\}$ be defined by $u_{1-m}=\cdots=u_{-1}=0, u_{0}=1$ and $u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m}=$ $0(m \geq 2, n \geq 1)$. In this paper we show that the congruence $x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \equiv 0$ $(\bmod p)$ has m distinct solutions if and only if $u_{p-m} \equiv \cdots \equiv u_{p-2} \equiv 0(\bmod p)$ and $u_{p-1} \equiv 1$ $(\bmod p)$, where p is a prime such that $p>m$ and $p \vee a_{m}$.

1. INTRODUCTION

In [2] the author extended Lucas series to general linear recurring sequences by defining $\left\{u_{n}\left(a_{1}, \ldots, a_{m}\right)\right\}$ as follows:

$$
\begin{align*}
& u_{1-m}=\cdots=u_{-1}=0, u_{0}=1 \\
& u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m}=0 \quad(n=1,2,3, \ldots), \tag{1}
\end{align*}
$$

where $m \geq 2$ and a_{1}, \ldots, a_{m} are complex numbers.
Let \mathbb{Z} be the set of integers. In this paper we establish the following result.
Theorem 1: Let $m \geq 2, m, a_{1}, \ldots, a_{m} \in \mathbb{Z}, u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$, and let p be a prime such that $p>m$ and $p \bigvee a_{m}$. Then the congruence $x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \equiv 0(\bmod p)$ has m distinct solutions if and only if

$$
\begin{equation*}
u_{p-m} \equiv \cdots \equiv u_{p-2} \equiv 0 \quad(\bmod p) \quad \text { and } \quad u_{p-1} \equiv 1 \quad(\bmod p) . \tag{2}
\end{equation*}
$$

The famous Chebotarev density theorem implies that (see for example [4]) if the polynomial $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}\left(a_{1}, \ldots, a_{m} \in \mathbb{Z}\right)$ is irreducible over $\mathbb{Z}(x)$, then the set S of primes p such that $x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \equiv 0(\bmod p)$ has m solutions has a positive density $d(S)$, that is,

$$
d(S)=\lim _{x \rightarrow+\infty} \frac{|\{p: p \leq x, p \in S\}|}{\mid\{p: p \leq x, p \text { is a prime }\} \mid}>0 .
$$

Thus, by Theorem 1 we have
Corollary 1: Let $m \geq 2, a_{1}, \ldots, a_{m} \in \mathbb{Z}$ and $u_{n}=u_{n}\left(a_{1}, \ldots, a_{m}\right)$. If $x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$ is irreducible over $\mathbb{Z}(x)$, then there are infinitely many prime p satisfying (2).

2. PROOF OF THEOREM 1

Let $f(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$. If $f(x) \equiv 0(\bmod p)$ has m distinct solutions b_{1}, \ldots, b_{m}, then we have $f(x) \equiv\left(x-b_{1}\right) \cdots\left(x-b_{m}\right)(\bmod p)$ and $b_{i} \not \equiv b_{j}(\bmod p)$ for $i \neq j$ (see [1, Theorem 108]). Suppose $\left(x-b_{1}\right) \cdots\left(x-b_{m}\right)=x^{m}+A_{1} x^{m-1}+\cdots+A_{m}$. Then
$\sum_{i=1}^{m}\left(a_{i}-A_{i}\right) x^{m-i} \equiv 0(\bmod p)$ for any integer x. Since $p>m$, by [1, Theorem 107] or Lagrange's theorem we must have $a_{i} \equiv A_{i}(\bmod p)$ for $i=1,2, \ldots, m$. By the definition of $\left\{u_{n}\right\}$, it is evident that $u_{n} \equiv u_{n}\left(A_{1}, \ldots, A_{m}\right)(\bmod p)$ for all $n \geq 1-m$. Since $p \vee a_{m}$ we see that $p \backslash b_{1} \cdots b_{m}$. Hence, applying [2, Theorem 2.3] and Fermat's little theorem we obtain

$$
\begin{aligned}
u_{n+p-1} & \equiv u_{n+p-1}\left(A_{1}, \ldots, A_{m}\right)=\sum_{i=1}^{m} \frac{b_{i}^{n+p-1+m-1}}{\prod_{\substack{j=1 \\
j \neq i}}^{m}\left(b_{i}-b_{j}\right)} \equiv \sum_{i=1}^{m} \frac{b_{i}^{n+m-1}}{\prod_{\substack{j=1 \\
j \neq i}}^{m}\left(b_{i}-b_{j}\right)} \\
& =u_{n}\left(A_{1}, \ldots, A_{m}\right) \equiv u_{n} \quad(\bmod p) \quad(n \geq 1-m) .
\end{aligned}
$$

Note that $u_{1-m}=\cdots=u_{-1}=0$ and $u_{0}=1$. So (2) holds.
Conversely, suppose (2) is true. Let

$$
a_{0}=1, g(x)=\sum_{j=0}^{p-1-m} u_{j} x^{p-1-m-j} \quad \text { and } \quad f(x) g(x)=\sum_{k=0}^{p-1} c_{k} x^{k}
$$

Then we see that

$$
c_{k}=\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j p-1-m \\ i+j=p-1-k}} a_{i} u_{j}=\sum_{\max \{0, m-k\} \leqslant i \leqslant \min \{m, p-1-k\}} a_{i} u_{p-1-k-i}(0 \leq k \leq p-1),
$$

where $\max \{a, b\}$ and $\min \{a, b\}$ denote the maximum and minimum elements in the set $\{a, b\}$ respectively. Clearly we have $c_{p-1}=a_{0} u_{0}=1$ and

$$
\begin{aligned}
c_{0} & =a_{m} u_{p-1-m} \equiv\left(a_{0} u_{p-1}+a_{1} u_{p-2}+\cdots+a_{m} u_{p-1-m}\right)-a_{0} u_{p-1} \\
& =-u_{p-1} \equiv-1(\bmod p)
\end{aligned}
$$

For $k \in\{1,2, \ldots, p-2\}$ we claim that

$$
\begin{equation*}
c_{k}=\sum_{\max \{0, m-k\} \leqslant i \leqslant m} a_{i} u_{p-1-k-i} . \tag{3}
\end{equation*}
$$

If $p-1-k \geqslant m$, then clearly (3) holds. If $1 \leqslant p-1-k<m$ and for $p-k \leqslant i \leqslant m$ we have $1-m \leqslant p-1-k-i \leqslant-1$ and so $u_{p-1-k-i}=0$. Thus, $\sum_{i=p-k}^{m} a_{i} u_{p-1-k-i}=0$ and hence, (3) is also true.

If $m \leqslant k \leqslant p-2$, from (1) and (3) we see that $c_{k}=\sum_{i=0}^{m} a_{i} u_{p-1-k-i}=0$. If $1 \leqslant k \leqslant m-1$, by (1), (3) and the fact that $u_{p-m} \equiv \cdots \equiv u_{p-2} \equiv 0(\bmod p)$ we get

$$
\begin{aligned}
c_{k} & =\sum_{m-k \leqslant i \leqslant m} a_{i} u_{p-1-k-i}=\sum_{0 \leqslant i \leqslant m} a_{i} u_{p-1-k-i}-\sum_{0 \leqslant i \leqslant m-k-1} a_{i} u_{p-1-k-i} \\
& =-\sum_{0 \leqslant i \leqslant m-k-1} a_{i} u_{p-1-k-i} \equiv 0(\bmod p) .
\end{aligned}
$$

Therefore, $c_{k} \equiv 0(\bmod p)$ for $k=1,2, \ldots, p-2$.
Now, putting the above together we obtain

$$
\begin{equation*}
f(x) g(x)=\left(\sum_{i=0}^{m} a_{i} x^{m-i}\right)\left(\sum_{j=0}^{p-1-m} u_{j} x^{p-1-m-j}\right)=\sum_{k=0}^{p-1} c_{k} x^{k} \equiv x^{p-1}-1 \quad(\bmod p) . \tag{4}
\end{equation*}
$$

Since $x^{p-1}-1 \equiv(x-1)(x-2) \cdots(x-p+1)(\bmod p)$ by Lagrange's theorem (see 1 , Theorem 112]), we see that $f(x)$ is congruent to the product of distinct linear polynomials $(\bmod p)$. This completes the proof of Theorem 1.

3. APPLICATION TO CUBIC CONGRUENCES

Theorem 2: Let $a_{1}, a_{2}, a_{3} \in \mathbb{Z}, u_{n}=u_{n}\left(a_{1}, a_{2}, a_{3}\right), a=\left(a_{1}^{2}-3 a_{2}\right)^{3}, b=-2 a_{1}^{3}+9 a_{1} a_{2}-27 a_{3}$, and let $p>3$ be a prime such that $p \vee a b a_{3}\left(b^{2}-4 a\right)$. Then the following statements are equivalent:
(i) $x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \equiv 0(\bmod p)$ has three solutions,
(ii) $u_{p-1+n} \equiv u_{n}(\bmod p)$ for all $n \geq-2$,
(iii) $u_{p-3} \equiv u_{p-2} \equiv 0(\bmod p)$ and $u_{p-1} \equiv 1(\bmod p)$,
(iv) $u_{p-2} \equiv 0(\bmod p)$,
(v) $U_{\frac{p-\left(\frac{p}{3}\right)}{3}} \equiv 0(\bmod p)$,
(vi) $s_{p+1} \equiv a_{1}^{2}-2 a_{2}(\bmod p)$,
(vii) $V_{\frac{p-\left(\frac{p}{3}\right)}{3}} \equiv 2\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}}(\bmod p)$,
(viii) if $\left(\frac{a}{p}\right)=1$, then $p \left\lvert\, U_{\frac{p-\left(\frac{p}{3}\right)}{6}}\right.$; if $\left(\frac{a}{p}\right)=-1$, then $p \left\lvert\, V_{\frac{p-\left(\frac{p}{3}\right)}{6}}\right.$,
where $\left(\frac{n}{m}\right)$ is the Legendre symbol, and $\left\{U_{n}\right\},\left\{V_{n}\right\},\left\{s_{n}\right\}$ are given by

$$
\begin{aligned}
& U_{0}=0, U_{1}=1, U_{n+1}=b U_{n}-a U_{n-1} \quad(n \geq 1), \\
& V_{0}=2, \quad V_{1}=b, V_{n+1}=b V_{n}-a V_{n-1} \quad(n \geq 1), \\
& s_{0}=3, s_{1}=-a_{1}, s_{2}=a_{1}^{2}-2 a_{2}, s_{n+3}+a_{1} s_{n+2}+a_{2} s_{n+1}+a_{3} s_{n}=0 \quad(n \geq 0) .
\end{aligned}
$$

Proof: From the definition of u_{n} we see that (ii) is equivalent to (iii). As $p / b^{2}-4 a$ and $-\frac{b^{2}-4 a}{27}$ is the discriminant of $x^{3}+a_{1} x^{2}+a_{2} x+a_{3}$, the congruence $x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \equiv 0$ $(\bmod p)$ has no multiple solutions. By Theorem 1, (i) and (iii) are equivalent. According to [3, Theorem 4.3], (i) is equivalent to (iv). By [3, Theorem 3.2(i)], (iv) and (v) are equivalent. From [3, Theorem 4.1] we know that (i) is equivalent to (vi). By [3, Lemma 3.1], (vi) is equivalent to (vii). It is well known that (see [5])

$$
U_{2 n}=U_{n} V_{n}, \quad V_{2 n}=V_{n}^{2}-2 a^{n} \quad \text { and } \quad V_{n}^{2}-\left(b^{2}-4 a\right) U_{n}^{2}=4 a^{n} .
$$

Thus, we have

$$
V_{\frac{p-\left(\frac{p}{3}\right)}{3}}=V_{\frac{p-\left(\frac{p}{3}\right)}{6}}^{2}-2 a^{\frac{p-\left(\frac{p}{3}\right)}{6}} \equiv V_{\frac{p-\left(\frac{p}{3}\right)}{6}}^{2}-2\left(\frac{a_{1}^{2}-3 a_{2}}{p}\right)\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}} \quad(\bmod p) .
$$

Therefore, (vii) is equivalent to

$$
V_{\frac{p-\left(\frac{p}{3}\right)}{6}}^{2} \equiv 2\left(1+\left(\frac{a_{1}^{2}-3 a_{2}}{p}\right)\right)\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}} \quad(\bmod p) .
$$

As $V_{n}^{2}-\left(b^{2}-4 a\right) U_{n}^{2}=4 a^{n}$, the above congruence is equivalent to

$$
\left(b^{2}-4 a\right) U_{\frac{p-\left(\frac{p}{3}\right)}{6}}^{2} \equiv 2\left(1-\left(\frac{a_{1}^{2}-3 a_{2}}{p}\right)\right)\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}}(\bmod p) .
$$

Thus, (vii) and (viii) are equivalent and the theorem is proved.
Remark 1: Let $a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ be such that $x^{3}+a_{1} x^{2}+a_{2} x+a_{3}$ is irreducible in $\mathbb{Z}[x]$. From Theorem 2 and Chebotarev density theorem we know that there are infinitely many primes p satisfying (i)-(viii) in Theorem 2.

Let p be a prime such that $p>3$ and $p \vee a_{1}^{2}-3 a_{2}$. From [3, Theorem 4.1 and 4.2] and [3, Lemma 3.1] we know that

$$
\begin{aligned}
& x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \equiv 0(\bmod p) \quad \text { has no solutions } \\
& \Longleftrightarrow \Longleftrightarrow s_{p+1} \equiv a_{2}(\bmod p) \Longleftrightarrow V_{\frac{p-\left(\frac{p}{3}\right)}{3}} \equiv-\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}}(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
& x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \equiv 0(\bmod p) \quad \text { has one and only one solution } \\
& \Longleftrightarrow s_{p+1} \not \equiv a_{2}, a_{1}^{2}-2 a_{2}(\bmod p) \\
& \Longleftrightarrow V_{\frac{p-\left(\frac{p}{3}\right)}{3}} \not \equiv-\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}}, 2\left(a_{1}^{2}-3 a_{2}\right)^{\frac{1-\left(\frac{p}{3}\right)}{2}}(\bmod p) .
\end{aligned}
$$

By Chebotarev density theorem, there are also infinitely many primes satisfying one of the above conditions in terms of $\left\{s_{n}\right\}$ or $\left\{V_{n}\right\}$.

REFERENCES

[1] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. (5th edition), Oxford Univ. Press, Oxford, 1981, 84-86.
[2] Z.H. Sun. "Linear Recursive Sequences and Powers of Matrices." Fibonacci Quart. 39 (2001): 339-351.
[3] Z.H. Sun. "Cubic and Quartic Congruences Modulo a Prime." J. Number Theory 102 (2003): 41-89.
[4] D. Terr. Chebotarev Density Theorem. http://mathworld.wolfram.com/ChebotarevDensityTheorem.html.
[5] H.C. Williams. Édouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts (Vol. 22), Wiley, New York, 1998, p. 74.

AMS Classification Numbers: 11A07, 11B39, 11B50, 11T06

