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ABSTRACT
Let {uy} be defined by uj_p, =+ =u_1 =0,ug =1 and u, + a1Up—1+ -+ CGpln_m =
0 (m > 2, n>1). In this paper we show that the congruence 2™ + a;2™ ' +--- +a,, =0
(mod p) has m distinct solutions if and only if u,_p, =+ = up—2 =0 (mod p) and u,_1 =1
(mod p), where p is a prime such that p > m and p|/a,,.

1. INTRODUCTION

In [2] the author extended Lucas series to general linear recurring sequences by defining
{un(ay,...,am)} as follows:

Ulep =+ =u_1 =0, ug =1, (1)
Up + A1Up—1 + -+ Gppn—m =0 (n=1,2,3,...),
where m > 2 and aq, ... ,a,, are complex numbers.
Let Z be the set of integers. In this paper we establish the following result.

Theorem 1: Let m > 2, m,ay,... ,Gm € Z, Uy = up(ay,... ,an), and let p be a prime such
that p > m and p |/a,,. Then the congruence x™ + a;x™ ' + .-+ + a,, = 0 (mod p) has m
distinct solutions if and only if

Upomy = =Up—2=0 (modp) and up—1 =1 (mod p). (2)

The famous Chebotarev density theorem implies that (see for example [4]) if the poly-
nomial 2™ + a;2™ ! + .-+ a,, (a1,... ,a, € Z) is irreducible over Z(x), then the set S of
primes p such that 2™ +a2™ ' +---+a,, =0 (mod p) has m solutions has a positive density
d(S), that is,

tp< S
d(S) = lim {p: p = 5 P < }’ > 0.
z—+oo [{p: p <z, pisa prime}|

Thus, by Theorem 1 we have

Corollary 1: Letm > 2, ay,... ,am € Z and u, = up(ay,... ,am). Ifz™+arxz™ 14+ +a,
is irreducible over Z(x), then there are infinitely many prime p satisfying (2).

2. PROOF OF THEOREM 1
Let f(z) = 2™ + a;2™ ' + -+ + a,,. If f(z) = 0 (mod p) has m distinct solutions
bi,... by, then we have f(z) = (x —b1)--- (z — by,) (mod p) and b; # b; (mod p) for i # j
(see [1, Theorem 108]). Suppose (x — by)---(z — by) = 2™ + Ajz™ 1 + ... + A,,. Then
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S (a; — A))z™™ = 0 (mod p) for any integer z. Since p > m, by [1, Theorem 107] or
Lagrange’s theorem we must have a; = A; (mod p) for ¢ = 1,2,... ,m. By the definition of
{up}, it is evident that u, = u,(A1,...,Ay) (mod p) for all n > 1 — m. Since pl/a,, we see

that p|/by - - - by,. Hence, applying [2, Theorem 2.3] and Fermat’s little theorem we obtain

=up(A1,... ,Amn) =u, (modp) (n>1-—m).

Note that u;_,, =+ =wu_1 =0 and ug = 1. So (2) holds.
Conversely, suppose (2) is true. Let
p—1—m
ag =1, g(x) = Z u;zP~1 7™ and  f(x chx
7=0

Then we see that

Cr = E a;u; = E AiUp—1—k—i (0 <k< p—= 1)7
oi<m mazx{0,m—k}<i<min{m,p—1—k}
0<jsp—1-m
iti=p—1—k

where max{a, b} and min{a, b} denote the maximum and minimum elements in the set {a,b}
respectively. Clearly we have ¢,_1 = apup =1 and

Co = AmUp—1—m = (A0Up—1 + A1Up—2 + ** + AmUp_1—m) — AoUp_1
= —up_1 = —1 (mod p).

For k € {1,2,... ,p — 2} we claim that

C = Z QGiUp—1—k—i- (3)

maz{0,m—k}<i<m

If p - 1 — k > m, then clearly (3) holds. If 1 <p—1—k <m and for p — k < i < m we have
1-— —1—-k—-i< —-landsoup_1_p—; = 0. Thus, Z;n:pfk AiUp—1—k—i = 0 and hence,
(3) is also true.

If m < k < p—2, from (1) and (3) we see that ¢, = > 1w aiup—1-p—; = 0. If 1 <k < m—1,

by (1), (3) and the fact that u,_,, =--- = up_2 =0 (mod p) we get
Cr = Z QiUp—1—k—i = Z aiUp—1—k—i — Z QiUp—1—k—i
m—k<i<m oism o<i<m—k—1

= — Z ajup—1—k—; =0 (mod p).

0<i<m—k—1
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Therefore, ¢, =0 (mod p) for k =1,2,... ,p— 2.
Now, putting the above together we obtain

m p—1—-m p—1
= (Z ai:l:mi> Z wjgP~ I | = Z P =2P71 =1 (modp). (4)
i=0 j=0 k=0

Since P! —1 = (z—1)(z—2)--- (x—p+1) (mod p) by Lagrange’s theorem (see [1, Theorem
112]), we see that f(z) is congruent to the product of distinct linear polynomials (mod p).
This completes the proof of Theorem 1.

3. APPLICATION TO CUBIC CONGRUENCES

Theorem 2: Let a1, as,a3 € Z, u, = up(a1,az,a3), a = (a? —3az)?, b = —2a3+9ajas —27as,
and let p > 3 be a prime such that p |/ abaz(b®> — 4a). Then the following statements are
equz’valent

(i) 23 + @122 + azx + a3 = 0 (mod p) has three solutions,
(ii) up—14n = up (mod p) for alln > =2,

(iii) up—3 = up—2 =0 (mod p) and up—1 =1 (mod p),
(iv) up—2 =0 (mod p),

(v) U,_z, =0 (mod p),

(
(vi

r—(3

3
vi) $p+1 = a?d — 2a (mod p),
1—(§

)
vii) V, By = (af —3ag) ™= (mod p),

(viil) if (2) =1, thenp | U, ) py;if (5) =—1, thenp |V, 2

3

where (1) is the Legendre symbol and {Uyp}, {Vi}, {sn} are gwen by

Up=0, Ui =1, Upy1 =0U, —aUp_1 (n>1),
V0:2, V1:b Vn+1:bv aVn 1 (n>1)
S0 =3, $1=—a1, S2 = aj —2as, Sn+3 + a15p+2 + A28p41 + azs, =0 (n > 0).

Proof: From the definition of u,, we see that (ii) is equivalent to (iii). As p|/b? — 4a and
b>—4a

is the discriminant of z3 + a122 + asx + as, the congruence 22 + a12? + asr +az =0
(mod p) has no multiple solutions. By Theorem 1, (i) and (iii) are equivalent. According to
[3, Theorem 4.3], (i) is equivalent to (iv). By [3, Theorem 3.2(i)], (iv) and (v) are equivalent.
From [3, Theorem 4.1] we know that (i) is equivalent to (vi). By [3, Lemma 3.1], (vi) is
equivalent to (vii). It is well known that (see [5])

Uppn = Up Vi, Vo, =V2—24" and V72— (b? — 4a)U? = 4a™.

Thus, we have
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Therefore, (vii) is equivalent to

2 3 1-(2)
Vf_<%) =2 (1 + (%)) (a? —3a3)" 7 (mod p).
6

As V2 — (b — 4a)U2 = 4a™, the above congruence is equivalent to

2 _ 3 1-(2)
(b? — 4a)U§_(§> =2 (1 - <¥>) (a? —3a3)" 7 (mod p).
6

Thus, (vii) and (viii) are equivalent and the theorem is proved.
Remark 1: Let a1, az,a3 € Z be such that 23 + a;2? + asx + a3 is irreducible in Z[z]. From
Theorem 2 and Chebotarev density theorem we know that there are infinitely many primes p
satisfying (i)-(viii) in Theorem 2.

Let p be a prime such that p > 3 and p|/a? — 3as. From [3, Theorem 4.1 and 4.2] and [3,
Lemma 3.1] we know that

22 4+ a12? + asxr + a3 =0 (mod p) has no solutions

col's

1-(%)
= spp1=az (modp) <= V, p) = —(a] —3a2) 72

3

(mod p)

and

22+ a12® + asr + a3 =0 (mod p) has one and only one solution

= Spi1 Z ag, a% — 2ay (mod p)

1-(%) 1—(£)

—(
— Vp—é%) # —(af —3a2) "7, 2(af —3a2)" = (mod p).

ol

By Chebotarev density theorem, there are also infinitely many primes satisfying one of the
above conditions in terms of {s,} or {V,,}.
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