ON LUCAS-BERNOULLI NUMBERS

Paul Thomas Young

Department of Mathematics, College of Charleston, Charleston, SC 29424
e-mail: paul@math.cofc.edu
(Submitted February 2005-Final Revision October 2005)

Abstract

In this article we investigate the Bernoulli numbers \hat{B}_{n} associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$. We give explicit expressions for these numbers and prove analogues of Kummer congruences for them.

1. INTRODUCTION

The Bernoulli numbers B_{n} are the rational numbers defined by the generating function

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

Among the many important properties of these numbers are the Kummer congruences, a strong form of which read as follows: Let p be an odd prime, assume that $p-1$ does not divide m, and that $(p-1) p^{a}$ divides c for some $a \geq 0$. Then for all $k \geq 0$,

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{B_{m+j c}}{m+j c} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right) \tag{1.2}
\end{equation*}
$$

where $A=\min \{m-1, k(a+1)\}$ and $\mathbb{Z}_{(p)}$ denotes the ring of rational numbers with denominator relatively prime to p (cf. [2]).

The Bernoulli numbers have been generalized in many ways, and analogues of the congruences (1.2) hold for many of these generalizations ([1], [6], [8]). For one type of generalization, let c_{1}, c_{2}, \ldots be indeterminates and consider the formal power series

$$
\begin{equation*}
\lambda(t)=t+\sum_{i=1}^{\infty} c_{i} \frac{t^{i+1}}{i+1} \tag{1.3}
\end{equation*}
$$

in $\mathbb{Q}\left[c_{1}, c_{2}, \ldots\right][[t]]$. Let ε denote the formal compositional inverse of λ in $\left.\mathbb{Q}\left[c_{1}, c_{2}, \ldots\right][t t]\right]$, and define the universal Bernoulli numbers \hat{B}_{n} in $\mathbb{Q}\left[c_{1}, c_{2}, \ldots\right]$ by

$$
\begin{equation*}
\frac{t}{\varepsilon(t)}=\sum_{n=0}^{\infty} \hat{B}_{n} \frac{t^{n}}{n!} \tag{1.4}
\end{equation*}
$$

(cf. [3]). In this generalization each \hat{B}_{n} is actually a polynomial of degree n in $c_{1}, c_{2}, \ldots, c_{n}$ with rational coefficients. Recently Adelberg [1] has proved that if $c=l(p-1)$ where p^{a} divides l, $m \geq a+2$, and $m \not \equiv 0,1(\bmod p-1)$, then

$$
\begin{equation*}
\frac{\hat{B}_{m+c}}{m+c}-c_{p-1}^{l} \frac{\hat{B}_{m}}{m} \equiv 0 \quad\left(\bmod p^{a+1} \mathbb{Z}_{(p)}\left[c_{1}, c_{2}, \ldots\right]\right) \tag{1.5}
\end{equation*}
$$

whereas if $m \equiv 1(\bmod p-1)$ and $m \geq a+2$ then

$$
\begin{equation*}
\frac{\hat{B}_{m+c}}{m+c}-c_{p-1}^{l} \frac{\hat{B}_{m}}{m} \equiv c_{p-1}^{l+q-2}\left(c_{p-1} c_{1}^{p}-c_{2 p-1}\right) l / 2 \quad\left(\bmod p^{a+1} \mathbb{Z}_{(p)}\left[c_{1}, c_{2}, \ldots\right]\right) \tag{1.6}
\end{equation*}
$$

where $q=(m-1) /(p-1)$. Note that (1.5) is similar to the $k=1$ case of (1.2). The analogy may be seen by mapping $c_{i} \mapsto(-1)^{i}$ in (1.3), so $\lambda(t) \mapsto \log (1+t)$ and in turn $\varepsilon(t) \mapsto e^{t}-1$, whence $\hat{B}_{n} \mapsto B_{n}$ by comparison of (1.4) with (1.1).

In this paper we examine the rational numbers \hat{B}_{n} obtained in (1.4) by mapping $c_{i} \mapsto U_{i+1}$ or $c_{i} \mapsto V_{i+1}$ in (1.3), where $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are Lucas sequences of the first and second kind. We will call the numbers \hat{B}_{n} thus obtained Lucas-Bernoulli numbers. We'll give congruences analogous to (1.2), and stronger than the general congruences (1.5), (1.6) for these numbers. Specifically, we show that if p is an odd prime, $p-1$ does not divide m, and the increment $c=l(p-1)$ where p^{a} divides l for some $a \geq 0$, then for all $k \geq 0$,

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} c_{p-1}^{(k-j) l} \frac{\hat{B}_{m+j c}}{m+j c} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right) \tag{1.7}
\end{equation*}
$$

where $A=\min \{m-1, k(a+1)\}$. One may use the explicit formula ([1], eq. (3.1)) for the polynomials \hat{B}_{n} / n in terms of the indeterminates c_{i} to express the congruences (1.7) as nonstandard congruences for the Lucas numbers U_{n}, V_{n}.

The polynomials $\hat{B}_{n} \in \mathbb{Q}\left[c_{1}, c_{2}, \ldots\right]$ defined in (1.4) are called universal Bernoulli numbers because the power series λ in (1.3) is the formal logarithm of the universal formal group law ([3], [5]). It appears to us that the congruences (1.2), (1.7) one obtains for the specializations $c_{i} \mapsto(-1)^{i}, c_{i} \mapsto U_{i+1}$, or $c_{i} \mapsto V_{i+1}$ are stronger than those in (1.5), (1.6) because these specializations make λ into the logarithm of an integral formal group law, whereas the universal formal group law is not integral. These considerations are discussed in section 5 below.

2. PRELIMINARIES

Let P and Q be integers, and define sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ by the recurrences

$$
\begin{equation*}
U_{n}=P U_{n-1}-Q U_{n-2}, \quad V_{n}=P V_{n-1}-Q V_{n-2}, \tag{2.1}
\end{equation*}
$$

with initial conditions $U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=P$. Then $r(t)=1-P t+Q t^{2}$ is the characteristic polynomial of the recurrence for either $\left\{U_{n}\right\}$ or $\left\{V_{n}\right\}$, with discriminant $D=$ $P^{2}-4 Q$. If $r(t)$ factors as $r(t)=(1-\alpha t)(1-\beta t)$ then $\alpha=(P+\sqrt{D}) / 2$ and $\beta=(P-\sqrt{D}) / 2$, so that $\alpha-\beta=\sqrt{D}$, and for all n we have

$$
\begin{equation*}
V_{n}=\alpha^{n}+\beta^{n}, \quad U_{n}=\frac{1}{\sqrt{D}}\left(\alpha^{n}-\beta^{n}\right), \tag{2.2}
\end{equation*}
$$

unless $D=0$, in which case $U_{n}=n \alpha^{n-1}$. These sequences may be generated by the differential forms

$$
\begin{equation*}
\frac{d t}{r(t)}=\sum_{n=1}^{\infty} U_{n} t^{n} \frac{d t}{t}, \quad \frac{d r}{r}=-\sum_{n=1}^{\infty} V_{n} t^{n} \frac{d t}{t} . \tag{2.3}
\end{equation*}
$$

We will make use of two well-known congruence properties of these numbers (cf. [7]): For any prime p we have

$$
\begin{equation*}
U_{p} \equiv(D \mid p) \quad(\bmod p), \quad \text { and } \quad V_{p} \equiv P \quad(\bmod p) \tag{2.4}
\end{equation*}
$$

where $(D \mid p)$ is the Legendre symbol. See (5.6), (5.7) for more general versions of (2.4).
Throughout this paper p will denote a prime number, \mathbb{Z}_{p} the ring of p-adic integers and $\mathbb{Z}_{(p)}$ the ring of rational numbers whose denominator is relatively prime to p, so that $\mathbb{Z}_{p} \bigcap \mathbb{Q}=\mathbb{Z}_{(p)}$. All our congruences involve rational numbers and are stated in $\mathbb{Z}_{(p)}$, but we often work in \mathbb{Z}_{p} rather than $\mathbb{Z}_{(p)}$ because \mathbb{Z}_{p} is complete. A congruence $x \equiv y\left(\bmod p^{A} \mathbb{Z}_{(p)}\right)$ means that $x-y$ is a rational number whose numerator is divisible by p^{A}. If R is a commutative ring with identity then R^{\times}will denote its multiplicative group of units and $R[[X]]$ will denote the ring of formal power series in the indeterminate X over R. Recall that a formal power series f is a unit in $R[[X]]$ if and only if the constant term of f is a unit in R, and that f has a compositional inverse in $R[[X]]$ if and only if f has constant term zero and linear coefficient in R^{\times}. The binomial expansion

$$
\begin{equation*}
(1+y)^{a}=\sum_{k=0}^{\infty}\binom{a}{k} y^{k} \tag{2.5}
\end{equation*}
$$

will be invoked in several contexts. First, if $a \in \mathbb{Z}_{p}$ and $y \in p \mathbb{Z}_{p}$ then the series (2.5) converges in \mathbb{Z}_{p}; therefore if $x \equiv 1\left(\bmod p \mathbb{Z}_{p}\right)$ and $a \in \mathbb{Z}_{p}$ then $x^{a} \in \mathbb{Z}_{p}$ as well. Second, if $a \in R$ and $y \in X R[[X]]$ is a power series with constant term zero then (2.5) makes sense in $R[[X]]$; thus if $f \in R[[X]]$ has constant term 1 , then $f^{a} \in R[[X]]$ for any $a \in R$.

If c is a nonnegative integer, the difference operator Δ_{c} with increment c operates on the sequence $\left\{a_{m}\right\}$ by

$$
\begin{equation*}
\Delta_{c} a_{m}=a_{m+c}-a_{m} . \tag{2.6}
\end{equation*}
$$

The powers Δ_{c}^{k} of Δ_{c} are defined by $\Delta_{c}^{0}=$ identity and $\Delta_{c}^{k}=\Delta_{c} \circ \Delta_{c}^{k-1}$ for positive integers k, so that

$$
\begin{equation*}
\Delta_{c}^{k} a_{m}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} a_{m+j c} \tag{2.7}
\end{equation*}
$$

for all nonnegative integers k. Thus for example the congruences (1.2) may be expressed as $\Delta_{c}^{k}\left\{B_{m} / m\right\} \equiv 0\left(\bmod p^{A} \mathbb{Z}_{(p)}\right)$. The calculations in our proof of the congruences (1.7) are primarily based on two principles. One is the identity

$$
\begin{equation*}
\Delta_{c}^{k}\left\{X_{m} Y_{m}\right\}=\sum_{i=0}^{k}\binom{k}{i} \Delta_{c}^{i}\left\{X_{m}\right\} \Delta_{c}^{k-i}\left\{Y_{m+i c}\right\} \tag{2.8}
\end{equation*}
$$

([8], eq. (5.38)). The other is Theorem 1.1 of [8], which states that if $h \in \mathbb{Z}_{p}[[T-1]]$ and $h\left(e^{t}\right)=\sum_{n=0}^{\infty} a_{n} t^{n} / n!$ then for $c \equiv 0\left(\bmod (p-1) p^{a}\right)$ we have $\Delta_{c}^{k} a_{m} \equiv 0\left(\bmod p^{A} \mathbb{Z}_{p}\right)$ for all $k \geq 0$, where $A=\min \{m, k(a+1)\}$.

3. LUCAS-BERNOULLI NUMBERS OF THE FIRST KIND

In this section we show that the numbers \hat{B}_{n} obtained by specializing $c_{i} \mapsto U_{i+1}$ may be expressed in terms of the usual Bernoulli numbers B_{n}, and prove the congruences (1.7) for these numbers.
Theorem 3.1: Let \hat{B}_{n} denote the numbers obtained in (1.4) by specializing $c_{i} \mapsto U_{i+1}$ in (1.3). Then for all n,

$$
\hat{B}_{n}=\sqrt{D}^{n} B_{n}+\alpha \delta_{1, n}
$$

where $\delta_{i, j}$ is the Kronecker delta. For even $n>0$ the denominator of \hat{B}_{n} is equal to the product of those primes p not dividing D such that $p-1$ divides n.

Proof: Following (2.3), let

$$
\begin{equation*}
\omega=\frac{d t}{r(t)}=\sum_{n=1}^{\infty} U_{n} t^{n-1} d t, \quad \text { so } \quad \lambda(t)=\int_{0}^{t} \omega=\sum_{n=1}^{\infty} U_{n} \frac{t^{n}}{n} \tag{3.1}
\end{equation*}
$$

agrees with (1.3). If $D=0$ then $\lambda(t)=t /(1-\alpha t)$, whereas if $D \neq 0$ then

$$
\begin{equation*}
\lambda(t)=\frac{1}{\sqrt{D}} \log \left(\frac{1-\beta t}{1-\alpha t}\right) . \tag{3.2}
\end{equation*}
$$

Therefore if $D=0$, the compositional inverse ε of λ satisfies $\varepsilon(t)=t /(1+\alpha t)$, and if $D \neq 0$ then

$$
\begin{equation*}
\varepsilon(t)=\frac{1-e^{\sqrt{D} t}}{\beta-\alpha e^{\sqrt{D} t}} . \tag{3.3}
\end{equation*}
$$

So if $D=0$ then $t / \varepsilon(t)=1+\alpha t$, whence $\hat{B}_{0}=1, \hat{B}_{1}=\alpha$, and $\hat{B}_{n}=0$ for $n>1$. The theorem is thus proven in this case. If $D \neq 0$ then

$$
\begin{equation*}
\frac{t}{\varepsilon(t)}=\alpha t+\frac{\sqrt{D} t}{e^{\sqrt{D}} t-1}, \tag{3.4}
\end{equation*}
$$

and comparison with (1.1) yields the stated identity.
The von Staudt-Clausen theorem (cf. [3]) states that the denominator of B_{n} is always squarefree, and for even $n>0$ is in fact equal to the product of those primes p such that $p-1$ divides n. This formula implies that the denominator of the number \hat{B}_{n} associated to $c_{i} \mapsto U_{i+1}$ is also squarefree, and for even $n>0$ is equal to the product of those primes p not dividing D such that $p-1$ divides n. Therefore $\hat{B}_{n} \in \mathbb{Z}_{(p)}$ for all $n>1$ when p is a prime dividing D.
Remarks: If we choose $r(t)$ so that its discriminant D is not a square, this formula provides another proof of the well-known facts that $B_{1}=-1 / 2$ and $B_{2 k+1}=0$ for all $k>0$, since it is clear that both B_{n} and \hat{B}_{n} are rational numbers. When $k>0$ the formula reads $\hat{B}_{2 k+1}=$ $\sqrt{D}^{2 k+1} B_{2 k+1}$, which cannot hold unless both sides are zero. With $n=1$ we have $\hat{B}_{1}=$ $(P / 2)+\sqrt{D}\left(B_{1}+(1 / 2)\right)$, implying $B_{1}+(1 / 2)=0$, and thus $\hat{B}_{1}=P / 2$.

The first few values of \hat{B}_{n} for $c_{i} \mapsto U_{i+1}$ are $\hat{B}_{0}=1, \hat{B}_{1}=P / 2, \hat{B}_{2}=D / 6, \hat{B}_{3}=0$, $\hat{B}_{4}=-D^{2} / 30, \hat{B}_{5}=0, \hat{B}_{6}=D^{3} / 42, \hat{B}_{7}=0, \hat{B}_{8}=-D^{4} / 30, \hat{B}_{9}=0, \hat{B}_{10}=5 D^{5} / 66$. The usual Bernoulli numbers B_{n} may be obtained in this way by choosing $P=-1$ and $Q=0$; in this case $U_{n}=(-1)^{n+1}$ for $n>0$.
Theorem 3.2: Let \hat{B}_{n} denote the numbers obtained in (1.4) by specializing the indeterminates $c_{i} \mapsto U_{i+1}$ in (1.3). Then if p is an odd prime, $p-1$ does not divide m, and the increment $c=l(p-1)$ where p^{a} divides l for some $a \geq 0$, then for all $k \geq 0$, the congruence

$$
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} c_{p-1}^{(k-j) l} \frac{\hat{B}_{m+j c}}{m+j c} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right)
$$

given in (1.7) holds, where $A=\min \{m-1, k(a+1)\}$.
Proof: In the case $m=1$ the left side of the congruence is just $(-1)^{k} U_{p}^{k l} P / 2$, which lies in $\mathbb{Z}_{(p)}$; the theorem is therefore true in this case. If $m>1$ is odd, the left side is zero and the theorem is also true in this case. Now assume $m>1$ is even, which implies $\hat{B}_{m}=\sqrt{D}^{m} B_{m}$ with $\sqrt{D}^{m} \in \mathbb{Z}$, and therefore the left side of the congruence becomes

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} U_{p}^{(k-j) l} \sqrt{D}^{m+j c} \frac{B_{m+j c}}{m+j c} . \tag{3.5}
\end{equation*}
$$

If p divides D then p divides U_{p} as well by (2.4); therefore the power of p dividing the j-th term in (3.5) is at least $(k-j) l+(m+j c) / 2$, which may be written as $k l+(m / 2)+j l(p-3) / 2$ and is therefore greater than $k l$. Since p^{a} divides l, we have $l \geq a+1$ so this exponent is at least $k(a+1)$, proving the theorem in this case.

Finally suppose that p does not divide D, while $m>1$ is even. In this case (2.4) tells us that $U_{p} \equiv D^{(p-1) / 2} \equiv(D \mid p)(\bmod p)$. Since $D^{(p-1) / 2} / U_{p} \equiv 1\left(\bmod p \mathbb{Z}_{p}\right)$, we may expand $\left(D^{(p-1) / 2} / U_{p}\right)^{e /(p-1)}$ in \mathbb{Z}_{p} for any integer e by (2.5). If we take $e=1$ this defines an element of \mathbb{Z}_{p} we'll denote by $U_{p}^{-1 /(p-1)} \sqrt{D}$. If $e=2 c$ is even this defines an element of \mathbb{Z}_{p} we'll denote by $D^{c} / U_{p}^{e /(p-1)}$, which in turn defines an element $U_{p}^{e /(p-1)} \in \mathbb{Z}_{p}$ such that $\left(U_{p}^{e /(p-1)}\right)^{(p-1)}=U_{p}^{e}$ and $U_{p}^{e /(p-1)} \equiv D^{c}\left(\bmod p \mathbb{Z}_{p}\right)$. The expression (3.5) may then be written as

$$
\begin{align*}
U_{p}^{k l+m /(p-1)} & \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left(U_{p}^{-1 /(p-1)} \sqrt{D}\right)^{m+j c} \frac{B_{m+j c}}{m+j c} \tag{3.6}\\
& =U_{p}^{k l+m /(p-1)} \Delta_{c}^{k}\left\{\left(U_{p}^{-1 /(p-1)} \sqrt{D}\right)^{m} \frac{B_{m}}{m}\right\} .
\end{align*}
$$

By the identity (2.8), this expression is equal to

$$
\begin{equation*}
U_{p}^{k l+m /(p-1)} \sum_{i=0}^{k}\binom{k}{i} \Delta_{c}^{i}\left\{\frac{B_{m}}{m}\right\} \Delta_{c}^{k-i}\left\{\left(U_{p}^{-1 /(p-1)} \sqrt{D}\right)^{m+i c}\right\} . \tag{3.7}
\end{equation*}
$$

By (1.2) we have $\Delta_{c}^{i}\left\{B_{m} / m\right\} \equiv 0\left(\bmod p^{A_{i}} \mathbb{Z}_{(p)}\right) \quad$ for $A_{i}=\min \{m-1, i(a+1)\}$. By the binomial theorem the term $U_{p}^{k l+m /(p-1)} \Delta_{c}^{k-i}\left\{\left(U_{p}^{-1 /(p-1)} \sqrt{D}\right)^{m+i c}\right\}$ is equal to

$$
\begin{equation*}
\sqrt{D}^{m+i c} U_{p}^{(k-i) l}\left(\left(\frac{D^{(p-1) / 2}}{U_{p}}\right)^{l}-1\right)^{k-i} \tag{3.8}
\end{equation*}
$$

Since $D^{(p-1) / 2} \equiv U_{p}(\bmod p)$ we have $\left(D^{(p-1) / 2} / U_{p}\right)^{l} \equiv 1\left(\bmod p^{(a+1)} \mathbb{Z}_{(p)}\right)$, and therefore (3.8) is zero modulo $p^{(k-i)(a+1)} \mathbb{Z}_{(p)}$. Therefore each term in the sum (3.7) is zero modulo $p^{A} \mathbb{Z}_{(p)}$, proving the theorem.

4. LUCAS-BERNOULLI NUMBERS OF THE SECOND KIND

In this section we express the numbers \hat{B}_{n} obtained by specializing $c_{i} \mapsto V_{i+1}$ in terms of the Bernoulli numbers B_{n} and the Stirling numbers $S(n, k)$ of the second kind, which are defined by the generating function

$$
\begin{equation*}
\frac{\left(e^{t}-1\right)^{k}}{k!}=\sum_{n=k}^{\infty} S(n, k) \frac{t^{n}}{n!}, \tag{4.1}
\end{equation*}
$$

and use this to prove the congruences (1.7) for these numbers.
Theorem 4.1: Let \hat{B}_{n} denote the numbers obtained in (1.4) by specializing $c_{i} \mapsto V_{i+1}$ in (1.3), where $P=1$ and Q is an arbitrary integer. Then for all n,

$$
\hat{B}_{n}=(-1)^{n} B_{n}-n \sum_{k=1}^{n}\binom{1 / 2}{k} 2^{2 k-1} Q^{k}(k-1)!S(n-1, k-1) .
$$

The denominator of \hat{B}_{n} is equal to the denominator of B_{n} for all n.
Proof: Following (2.3), let

$$
\begin{equation*}
\omega=-\frac{d r}{r}=\sum_{n=1}^{\infty} V_{n} t^{n-1} d t, \quad \text { so } \quad \lambda(t)=\int_{0}^{t} \omega=\sum_{n=1}^{\infty} V_{n} \frac{t^{n}}{n} \tag{4.2}
\end{equation*}
$$

agrees with (1.3), since we assume $P=1$. It follows that $\lambda(t)=-\log r(t)$, so that its compositional inverse ε satisfies

$$
\begin{equation*}
e^{-t}=1-\varepsilon(t)+Q \varepsilon(t)^{2} . \tag{4.3}
\end{equation*}
$$

By the quadratic formula we have

$$
\begin{equation*}
\varepsilon(t)=\frac{1-\sqrt{1+4 Q\left(e^{-t}-1\right)}}{2 Q} \tag{4.4}
\end{equation*}
$$

if $Q \neq 0$, whereas $\varepsilon(t)=1-e^{-t}$ if $Q=0$. Observe that the power series $f=1+4 Q\left(e^{-t}-1\right) \in$ $\mathbb{Q}[t t]]$ has constant term 1 , so that $\sqrt{f}=f^{1 / 2}$ may be expanded by (2.5) as a power series in $\mathbb{Q}[[t]]$, which also has constant term 1 ; this is the meaning of the square root symbol in (4.4).

The negative sign is chosen for the square root in order that the power series $\varepsilon \in \mathbb{Q}[[t]]$ has constant term zero, so (4.3) makes sense. Therefore for $Q \neq 0$,

$$
\begin{equation*}
\frac{t}{\varepsilon(t)}=\frac{2 Q t}{1-\sqrt{1+4 Q\left(e^{-t}-1\right)}}=\frac{-t\left(1+\sqrt{1+4 Q\left(e^{-t}-1\right)}\right)}{2\left(e^{-t}-1\right)} \tag{4.5}
\end{equation*}
$$

and the right side of (4.5) is correct even for $Q=0$.
The identity of the theorem follows by applying the binomial expansion (2.5) to the generating function (4.5), yielding

$$
\begin{align*}
\sum_{n=0}^{\infty} \hat{B}_{n} \frac{t^{n}}{n!} & =\frac{-t\left(1+\sqrt{1+4 Q\left(e^{-t}-1\right)}\right)}{2\left(e^{-t}-1\right)} \\
& =\frac{-t}{e^{-t}-1}-\frac{t}{2} \sum_{k=1}^{\infty}\binom{1 / 2}{k} 4^{k} Q^{k}\left(e^{-t}-1\right)^{k-1} \tag{4.6}\\
& =\frac{-t}{e^{-t}-1}-\sum_{n=1}^{\infty} n \frac{t^{n}}{n!} \sum_{k=1}^{n}\binom{1 / 2}{k} 2^{2 k-1} Q^{k}(k-1)!S(n-1, k-1) .
\end{align*}
$$

Expanding the right side using (1.1) and (4.1) gives the stated identity. Since $k!S(n, k) \in \mathbb{Z}$ we see that $\hat{B}_{n}-(-1)^{n} B_{n} \in n \mathbb{Z}$ for all n; therefore the denominator of \hat{B}_{n} is always equal to the denominator of B_{n}.
Remarks: The first few values of \hat{B}_{n} in this case are $\hat{B}_{0}=1, \hat{B}_{1}=\frac{1}{2}-Q, \hat{B}_{2}=\frac{1}{6}-2 Q^{2}$, $\hat{B}_{3}=3 Q^{2}-12 Q^{3}, \hat{B}_{4}=-\frac{1}{30}-4 Q^{2}+48 Q^{3}-120 Q^{4}, \hat{B}_{5}=5 Q^{2}-140 Q^{3}+900 Q^{4}-1680 Q^{5}$, $\hat{B}_{6}=\frac{1}{42}-6 Q^{2}+360 Q^{3}-4500 Q^{4}+20160 Q^{5}-30240 Q^{6}$. Clearly, if we choose $Q=0$ then we obtain $\hat{B}_{n}=(-1)^{n} B_{n}$. Although it is not an integer, the choice $Q=1 / 4$ gives us $\hat{B}_{n}=$ $(-2)^{-n} B_{n}$ for all n.
Theorem 4.2: Let \hat{B}_{n} denote the numbers obtained in (1.4) by specializing the indeterminates $c_{i} \mapsto V_{i+1}$ in (1.3), where $P=1$ and Q is an arbitrary integer. If p is an odd prime, $p-1$ does not divide m, and the increment $c=l(p-1)$ where p^{a} divides l for some $a \geq 0$, then for all $k \geq 0$,

$$
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{\hat{B}_{m+j c}}{m+j c} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right)
$$

where $A=\min \{m-1, k(a+1)\}$.
Proof: We define

$$
\begin{equation*}
g(T)=\frac{1+\sqrt{1+4 Q(T-1)}}{2(T-1)} \tag{4.7}
\end{equation*}
$$

so that $g\left(e^{t}\right)=-1 / \varepsilon(-t)$. Choose a positive integer b such that $(b, p)=1$, and consider $h(T)=b g\left(T^{b}\right)-g(T)$. We compute

$$
\begin{equation*}
h(T)=\frac{1}{2(T-1)}\left[\frac{b\left(1+\sqrt{1+4 Q\left(T^{b}-1\right)}\right)}{\Phi_{b}(T)}-1-\sqrt{1+4 Q(T-1)}\right], \tag{4.8}
\end{equation*}
$$

where

$$
\begin{align*}
T^{b}-1 & =((T-1)+1)^{b}-1 \\
& =b(T-1)+\binom{b}{2}(T-1)^{2}+\cdots+(T-1)^{b} \in \mathbb{Z}_{p}[[T-1]], \tag{4.9}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\Phi_{b}(T)=\frac{T^{b}-1}{T-1}=b+\binom{b}{2}(T-1)+\cdots+(T-1)^{b-1} \in \mathbb{Z}_{p}[[T-1]]^{\times} . \tag{4.10}
\end{equation*}
$$

By (4.9), $T^{b}-1$ has no constant term when considered as an element of $\mathbb{Z}_{p}[[T-1]]$, so both square root terms in (4.8) lie in $\mathbb{Z}_{p}[[T-1]]$. Furthermore since its constant term b is invertible in \mathbb{Z}_{p}, the polynomial $\Phi_{b}(T)$ is invertible as an element of $\mathbb{Z}_{p}[[T-1]]$, and therefore the expression in brackets in (4.8) lies in $\mathbb{Z}_{p}[[T-1]]$. The constant term of this expression in brackets is clearly $(b \cdot 2 / b)-1-1=0$, so this expression in brackets in (4.8) is divisible by $T-1$ and therefore $h(T) \in \mathbb{Z}_{p}[[T-1]]$.

In ([7], Theorem 1.1) we showed that if $h \in \mathbb{Z}_{p}[[T-1]]$ and $h\left(e^{t}\right)=\sum_{n=0}^{\infty} a_{n} t^{n} / n$! then for $c \equiv 0\left(\bmod (p-1) p^{a}\right)$ we have $\Delta_{c}^{k} a_{m} \equiv 0\left(\bmod p^{A} \mathbb{Z}_{p}\right)$ for all $k \geq 0$, where $A=\min \{m, k(a+1)\}$. Since $g\left(e^{t}\right)=-1 / \varepsilon(-t)$ and $h(T)=b g\left(T^{b}\right)-g(T)$ we have

$$
\begin{equation*}
h\left(e^{t}\right)=\sum_{n=0}^{\infty}\left(b^{n+1}-1\right) \frac{\hat{B}_{n+1}}{n+1}(-1)^{n+1} \frac{t^{n}}{n!} \tag{4.11}
\end{equation*}
$$

so that $a_{n}=\left(b^{n+1}-1\right)(-1)^{n+1} \hat{B}_{n+1} /(n+1)$. Therefore for any m,

$$
\begin{equation*}
\Delta_{c}^{k}\left\{\left(b^{m}-1\right) \frac{\hat{B}_{m}}{m}(-1)^{m}\right\} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right) \tag{4.12}
\end{equation*}
$$

where $A=\min \{m-1, k(a+1)\}$. Since the increment c is even the factor $(-1)^{m+j c}=(-1)^{m}$ independent of j and therefore may be factored out of the congruences. Now suppose that k and m are given such that $p-1$ does not divide m. Since the mutiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic of order $p-1$, we may choose a positive integer x such that $(x, p)=1$ and $x^{m} \not \equiv 1$
$(\bmod p)$. Now let $N>k(a+1)$ and put $b=x^{p^{N}}$. Since $y^{p^{s}(p-1)} \equiv 1\left(\bmod p^{s+1}\right)$ for any nonnegative integers y, s, it follows that this choice of b satisfies $(b, p)=1, b^{m} \equiv x^{m} \not \equiv 1(\bmod$ $p)$, and $b^{m+j c} \equiv b^{m}\left(\bmod p^{N+1}\right)$ for all j. Therefore from (4.12),

$$
\begin{align*}
0 & \equiv \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left(b^{m+j c}-1\right) \frac{\hat{B}_{m+j c}}{m+j c}(-1)^{m+j c} \\
& \equiv\left(b^{m}-1\right)(-1)^{m} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{\hat{B}_{m+j c}}{m+j c} \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right), \tag{4.13}
\end{align*}
$$

but since the factor $\left(b^{m}-1\right)(-1)^{m}$ is a unit in $\mathbb{Z}_{(p)}$ the result follows.
Theorem 4.3: Let \hat{B}_{n} denote the numbers obtained in (1.4) by specializing the indeterminates $c_{i} \mapsto V_{i+1}$ in (1.3), where $P=1$ and Q is an arbitrary integer. If p is an odd prime, $p-1$ does not divide m, and the increment $c=l(p-1)$ where p^{a} divides l for some $a \geq 0$, then for all $k \geq 0$, the congruence

$$
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} c_{p-1}^{(k-j) l} \frac{\hat{B}_{m+j c}}{m+j c} \equiv 0 \quad\left(\bmod p^{A} \mathbb{Z}_{(p)}\right)
$$

given in (1.7) holds, where $A=\min \{m-1, k(a+1)\}$.
Proof: We have $V_{p} \equiv 1(\bmod p)$, so by (2.5) there exists $V_{p}^{1 /(p-1)} \in \mathbb{Z}_{p}$ such that $\left(V_{p}^{1 /(p-1)}\right)^{p-1}=V_{p}$ and $V_{p}^{1 /(p-1)} \equiv 1\left(\bmod p \mathbb{Z}_{p}\right)$. The left side of the congruence of the theorem may be written as

$$
\begin{align*}
& \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} V_{p}^{(k-j) l} \frac{\hat{B}_{m+j c}}{m+j c} \\
& =V_{p}^{k l+m /(p-1)} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left(V_{p}^{-1 /(p-1)}\right)^{m+j c} \frac{\hat{B}_{m+j c}}{m+j c} \tag{4.14}\\
& =V_{p}^{k l+m /(p-1)} \Delta_{c}^{k}\left\{\left(V_{p}^{-1 /(p-1)}\right)^{m} \frac{\hat{B}_{m}}{m}\right\} .
\end{align*}
$$

By the identity (2.8), this expression is equal to

$$
\begin{equation*}
V_{p}^{k l+m /(p-1)} \sum_{i=0}^{k}\binom{k}{i} \Delta_{c}^{i}\left\{\frac{\hat{B}_{m}}{m}\right\} \Delta_{c}^{k-i}\left\{\left(V_{p}^{-1 /(p-1)}\right)^{m+i c}\right\} . \tag{4.15}
\end{equation*}
$$

By Theorem 4.2 we have $\Delta_{c}^{i}\left\{\hat{B}_{m} / m\right\} \equiv 0\left(\bmod p^{A_{i}} \mathbb{Z}_{(p)}\right)$ for $A_{i}=\min \{m-1, i(a+1)\}$. By the binomial theorem the term $V_{p}^{k l+m /(p-1)} \Delta_{c}^{k-i}\left\{\left(V_{p}^{-1 /(p-1)}\right)^{m+i c}\right\}$ is equal to

$$
\begin{equation*}
V_{p}^{(k-i) l}\left(V_{p}^{-l}-1\right)^{k-i} \tag{4.16}
\end{equation*}
$$

Since $V_{p} \equiv 1(\bmod p)$ we have $V_{p}^{-l} \equiv 1\left(\bmod p^{(a+1)} \mathbb{Z}_{(p)}\right)$, and therefore (4.16) is zero modulo $p^{(k-i)(a+1)} \mathbb{Z}_{(p)}$. Therefore each term in the sum (4.15) is zero modulo $p^{A} \mathbb{Z}_{(p)}$, proving the theorem.

5. CONNECTIONS TO FORMAL GROUP LAWS

In this section we summarize some basic facts concerning formal group laws which relate to the results of this paper. Let $c_{1}, c_{2}, \ldots \in \mathbb{Z}$, define $\lambda \in \mathbb{Q}[[t]]$ by (1.3), and let ε be the compositional inverse of λ in $\mathbb{Q}[[t]]$. Then the two-variable formal power series $F \in \mathbb{Q}[[X, Y]]$ defined by $F(X, Y)=\varepsilon(\lambda(X)+\lambda(Y))$ is a commutative formal group law over \mathbb{Q}; that is,

$$
\begin{gather*}
F(X, Y)=F(Y, X) \tag{5.1}\\
F(X, 0)=X \quad \text { and } \quad F(0, Y)=Y \tag{5.2}
\end{gather*}
$$

and

$$
\begin{equation*}
F(F(X, Y), Z)=F(X, F(Y, Z)) \tag{5.3}
\end{equation*}
$$

hold as identities in $\mathbb{Q}[[X, Y]]$. If

$$
\begin{equation*}
v(T)=\left.\frac{\partial}{\partial X}(F(X, Y))\right|_{X=0, Y=T} \tag{5.4}
\end{equation*}
$$

then $\omega=d T / v(T)$ is the canonical invariant differential on $F, \lambda(t)=\int_{0}^{t} \omega$ is the formal logarithm of F, and the compositional inverse ε of λ is the formal exponential of F, which satisfies the autonomous differential equation $\varepsilon^{\prime}=v(\varepsilon)$. Any choice of integers c_{i} in (1.3) will make λ into the logarithm of a formal group law over \mathbb{Q}, but only certain choices of $c_{i} \in \mathbb{Z}$ will yield a formal group law over \mathbb{Z}.

By the functional equation lemma of Hazewinkel [5], the formal group law F thus constructed will be defined over \mathbb{Z} (i.e., $F \in \mathbb{Z}[[X, Y]]$) if and only if for each prime p there exists an element $\eta_{p} \in \mathbb{Z}_{p}$ such that for all positive integers m, s we have

$$
\begin{equation*}
c_{m p^{s}-1} \equiv \eta_{p} c_{m p^{s-1}-1} \quad\left(\bmod p^{s} \mathbb{Z}_{p}\right) \tag{5.5}
\end{equation*}
$$

with the convention $c_{0}=1$. For $c_{i} \mapsto U_{i+1}$ we have

$$
\begin{equation*}
U_{m p^{s}} \equiv(D \mid p) U_{m p^{s-1}} \quad\left(\bmod p^{s} \mathbb{Z}_{p}\right) \tag{5.6}
\end{equation*}
$$

whereas for $c_{i} \mapsto V_{i+1}$ we have

$$
\begin{equation*}
V_{m p^{s}} \equiv V_{m p^{s-1}} \quad\left(\bmod p^{s} \mathbb{Z}_{p}\right) \tag{5.7}
\end{equation*}
$$

(cf. [7]). Therefore the differential forms in (2.3), (3.1), (4.2) are invariant differentials on integral formal group laws. (For $c_{i} \mapsto V_{i+1}$ we required $P=1$ only so that the first coefficient c_{0} of λ will be 1.) For both of these specializations of the c_{i} we have seen that for even $n>0$ the denominator of \hat{B}_{n} is equal to the product of those primes p not dividing c_{p-1} such that $p-1$ divides n (see Theorems 3.1 and 4.1 and also [3]).

If we map $c_{i} \mapsto U_{i+1}$ so that ω and λ are as in (3.1), we may calculate that the rational function

$$
\begin{equation*}
F(X, Y)=\frac{X+Y-P X Y}{1-Q X Y} \tag{5.8}
\end{equation*}
$$

is the corresponding formal group law. From [4] we know that every rational formal group law over \mathbb{Q} is of the form (5.8). Therefore we may interpret Theorem 3.2 as saying that the numbers \hat{B}_{n} satisfy the congruences (1.7) whenever the c_{i} in (1.3) are specialized to integers which make λ into the logarithm of a rational formal group law.

A more general connection between integrality of formal group laws and Kummer congruences may be seen in Adelberg's result ([1], Theorem 4.5). There he showed that if $c=l(p-1)$ where p^{a} divides $l, m \geq a+2$, and $m \not \equiv 0,1(\bmod p-1)$ then the congruence (1.5) holds, whereas if $m \equiv 1(\bmod p-1)$ and $m \geq a+2$ then the congruence (1.6) holds for the universal Bernoulli numbers \hat{B}_{n}. Now if the c_{i} are specialized to integers in (1.3) so that λ is the logarithm of an integral formal group law, then by (5.5) with $s=1$ we have $c_{p-1} \equiv \eta_{p}(\bmod$ $p)$ and $c_{2 p-1} \equiv \eta_{p} c_{1}(\bmod p)$. It follows that $c_{p-1} c_{1}^{p}-c_{2 p-1} \equiv 0(\bmod p)$, and therefore the expression on the right in (1.6) vanishes modulo $p^{a+1} \mathbb{Z}_{p}$. That is, the right side of (1.6) is trivial for the \hat{B}_{n} associated to any formal group law over \mathbb{Z}, but not for an arbitrary formal group law over \mathbb{Q}. In [6] Snyder showed that the numbers \hat{B}_{n} associated to any formal group law over \mathbb{Z} satisfy the congruences (1.7) in the case where $l=1$. In this paper we have looked at the examples of integral formal group laws obtained by $c_{i} \mapsto U_{i+1}$ or $c_{i} \mapsto V_{i+1}$ and shown that their associated numbers \hat{B}_{n} satisfy not only (1.5), but the more general version (1.7).

REFERENCES

[1] A. Adelberg. "Universal Kummer Congruences Mod Prime Powers." J. Number Theory 109 (2004): 362-378.
[2] L. Carlitz. "Some Congruences for the Bernoulli Numbers." Amer. J. Math. 75 (1953): 163-172.
[3] F. Clarke. "The Universal von Staudt Theorems." Trans. Amer. Math. Soc. 315 (1989): 591-603.
[4] R. Coleman and F. McGuinness. "Rational Formal Group Laws." Pacific J. Math. 147 (1991): 25-27.
[5] M. Hazewinkel. Formal Groups and Applications, Academic Press, New York, 1978.
[6] C. Snyder. "A Concept of Bernoulli Numbers in Algebraic Function Fields (II)." Manuscripta Math. 35 (1981): 69-89.
[7] P. T. Young. " p-adic Congruences for Generalized Fibonacci Sequences." The Fibonacci Quarterly 32.1 (1994): 2-10.
[8] P. T. Young. "Congruences for Bernoulli, Euler, and Stirling Numbers." J. Number Theory 78 (1999): 204-227.

AMS Classification Numbers: 11B68, 11B39

