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ABSTRACT

In this article we investigate the Bernoulli numbers B̂n associated to the formal group
laws whose canonical invariant differentials generate the Lucas sequences {Un} and {Vn}. We
give explicit expressions for these numbers and prove analogues of Kummer congruences for
them.

1. INTRODUCTION

The Bernoulli numbers Bn are the rational numbers defined by the generating function

t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (1.1)

Among the many important properties of these numbers are the Kummer congruences, a strong
form of which read as follows: Let p be an odd prime, assume that p − 1 does not divide m,
and that (p− 1)pa divides c for some a ≥ 0. Then for all k ≥ 0,

k∑
j=0

(−1)k−j

(
k

j

)
Bm+jc

m + jc
≡ 0 (mod pAZ(p)), (1.2)

where A = min{m−1, k(a+1)} and Z(p) denotes the ring of rational numbers with denominator
relatively prime to p (cf. [2]).

The Bernoulli numbers have been generalized in many ways, and analogues of the congru-
ences (1.2) hold for many of these generalizations ([1], [6], [8]). For one type of generalization,
let c1, c2, ... be indeterminates and consider the formal power series

λ(t) = t +
∞∑

i=1

ci
ti+1

i + 1
(1.3)

in Q[c1, c2, ...][[t]]. Let ε denote the formal compositional inverse of λ in Q[c1, c2, ...][[t]], and
define the universal Bernoulli numbers B̂n in Q[c1, c2, ...] by

t

ε(t)
=

∞∑
n=0

B̂n
tn

n!
(1.4)

(cf. [3]). In this generalization each B̂n is actually a polynomial of degree n in c1, c2, ..., cn with
rational coefficients. Recently Adelberg [1] has proved that if c = l(p− 1) where pa divides l,
m ≥ a + 2, and m 6≡ 0, 1 (mod p− 1), then

B̂m+c

m + c
− cl

p−1

B̂m

m
≡ 0 (mod pa+1Z(p)[c1, c2, ...]), (1.5)
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whereas if m ≡ 1 (mod p− 1) and m ≥ a + 2 then

B̂m+c

m + c
− cl

p−1

B̂m

m
≡ cl+q−2

p−1 (cp−1c
p
1 − c2p−1) l/2 (mod pa+1Z(p)[c1, c2, ...]) (1.6)

where q = (m− 1)/(p− 1). Note that (1.5) is similar to the k = 1 case of (1.2). The analogy
may be seen by mapping ci 7→ (−1)i in (1.3), so λ(t) 7→ log(1 + t) and in turn ε(t) 7→ et − 1,
whence B̂n 7→ Bn by comparison of (1.4) with (1.1).

In this paper we examine the rational numbers B̂n obtained in (1.4) by mapping ci 7→ Ui+1

or ci 7→ Vi+1 in (1.3), where {Un} and {Vn} are Lucas sequences of the first and second kind.
We will call the numbers B̂n thus obtained Lucas-Bernoulli numbers. We’ll give congruences
analogous to (1.2), and stronger than the general congruences (1.5), (1.6) for these numbers.
Specifically, we show that if p is an odd prime, p − 1 does not divide m, and the increment
c = l(p− 1) where pa divides l for some a ≥ 0, then for all k ≥ 0,

k∑
j=0

(−1)k−j

(
k

j

)
c
(k−j)l
p−1

B̂m+jc

m + jc
≡ 0 (mod pAZ(p)), (1.7)

where A = min{m − 1, k(a + 1)}. One may use the explicit formula ([1], eq. (3.1)) for
the polynomials B̂n/n in terms of the indeterminates ci to express the congruences (1.7) as
nonstandard congruences for the Lucas numbers Un, Vn.

The polynomials B̂n ∈ Q[c1, c2, ...] defined in (1.4) are called universal Bernoulli numbers
because the power series λ in (1.3) is the formal logarithm of the universal formal group law
([3], [5]). It appears to us that the congruences (1.2), (1.7) one obtains for the specializations
ci 7→ (−1)i, ci 7→ Ui+1, or ci 7→ Vi+1 are stronger than those in (1.5), (1.6) because these
specializations make λ into the logarithm of an integral formal group law, whereas the universal
formal group law is not integral. These considerations are discussed in section 5 below.

2. PRELIMINARIES

Let P and Q be integers, and define sequences {Un} and {Vn} by the recurrences

Un = PUn−1 −QUn−2, Vn = PVn−1 −QVn−2, (2.1)

with initial conditions U0 = 0, U1 = 1, V0 = 2, V1 = P . Then r(t) = 1 − Pt + Qt2 is the
characteristic polynomial of the recurrence for either {Un} or {Vn}, with discriminant D =
P 2−4Q. If r(t) factors as r(t) = (1−αt)(1−βt) then α = (P +

√
D)/2 and β = (P −

√
D)/2,

so that α− β =
√

D, and for all n we have

Vn = αn + βn, Un =
1√
D

(αn − βn), (2.2)

unless D = 0, in which case Un = nαn−1. These sequences may be generated by the differential
forms

dt

r(t)
=

∞∑
n=1

Untn
dt

t
,

dr

r
= −

∞∑
n=1

Vntn
dt

t
. (2.3)
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We will make use of two well-known congruence properties of these numbers (cf. [7]): For any
prime p we have

Up ≡ (D|p) (mod p), and Vp ≡ P (mod p), (2.4)

where (D|p) is the Legendre symbol. See (5.6), (5.7) for more general versions of (2.4).
Throughout this paper p will denote a prime number, Zp the ring of p-adic integers and Z(p)

the ring of rational numbers whose denominator is relatively prime to p, so that Zp

⋂
Q = Z(p).

All our congruences involve rational numbers and are stated in Z(p), but we often work in Zp

rather than Z(p) because Zp is complete. A congruence x ≡ y (mod pAZ(p)) means that x−y is
a rational number whose numerator is divisible by pA. If R is a commutative ring with identity
then R× will denote its multiplicative group of units and R[[X]] will denote the ring of formal
power series in the indeterminate X over R. Recall that a formal power series f is a unit in
R[[X]] if and only if the constant term of f is a unit in R, and that f has a compositional
inverse in R[[X]] if and only if f has constant term zero and linear coefficient in R×. The
binomial expansion

(1 + y)a =
∞∑

k=0

(
a

k

)
yk (2.5)

will be invoked in several contexts. First, if a ∈ Zp and y ∈ pZp then the series (2.5) converges
in Zp; therefore if x ≡ 1 (mod pZp) and a ∈ Zp then xa ∈ Zp as well. Second, if a ∈ R and
y ∈ XR[[X]] is a power series with constant term zero then (2.5) makes sense in R[[X]]; thus
if f ∈ R[[X]] has constant term 1, then fa ∈ R[[X]] for any a ∈ R.

If c is a nonnegative integer, the difference operator ∆c with increment c operates on the
sequence {am} by

∆c am = am+c − am. (2.6)

The powers ∆k
c of ∆c are defined by ∆0

c = identity and ∆k
c = ∆c ◦∆k−1

c for positive integers
k, so that

∆k
c am =

k∑
j=0

(
k

j

)
(−1)k−jam+jc (2.7)

for all nonnegative integers k. Thus for example the congruences (1.2) may be expressed as
∆k

c{Bm/m} ≡ 0 (mod pAZ(p)). The calculations in our proof of the congruences (1.7) are
primarily based on two principles. One is the identity

∆k
c{XmYm} =

k∑
i=0

(
k

i

)
∆i

c{Xm}∆k−i
c {Ym+ic}, (2.8)

([8], eq. (5.38)). The other is Theorem 1.1 of [8], which states that if h ∈ Zp[[T − 1]] and
h(et) =

∑∞
n=0 antn/n! then for c ≡ 0 (mod (p− 1)pa) we have ∆k

cam ≡ 0 (mod pAZp) for all
k ≥ 0, where A = min{m, k(a + 1)}.
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3. LUCAS-BERNOULLI NUMBERS OF THE FIRST KIND

In this section we show that the numbers B̂n obtained by specializing ci 7→ Ui+1 may be
expressed in terms of the usual Bernoulli numbers Bn, and prove the congruences (1.7) for
these numbers.
Theorem 3.1: Let B̂n denote the numbers obtained in (1.4) by specializing ci 7→ Ui+1 in
(1.3). Then for all n,

B̂n =
√

D
n
Bn + αδ1,n

where δi,j is the Kronecker delta. For even n > 0 the denominator of B̂n is equal to the product
of those primes p not dividing D such that p− 1 divides n.

Proof: Following (2.3), let

ω =
dt

r(t)
=

∞∑
n=1

Untn−1 dt, so λ(t) =
∫ t

0

ω =
∞∑

n=1

Un
tn

n
(3.1)

agrees with (1.3). If D = 0 then λ(t) = t/(1− αt), whereas if D 6= 0 then

λ(t) =
1√
D

log
(

1− βt

1− αt

)
. (3.2)

Therefore if D = 0, the compositional inverse ε of λ satisfies ε(t) = t/(1 + αt), and if D 6= 0
then

ε(t) =
1− e

√
Dt

β − αe
√

Dt
. (3.3)

So if D = 0 then t/ε(t) = 1+αt, whence B̂0 = 1, B̂1 = α, and B̂n = 0 for n > 1. The theorem
is thus proven in this case. If D 6= 0 then

t

ε(t)
= αt +

√
Dt

e
√

Dt − 1
, (3.4)

and comparison with (1.1) yields the stated identity.
The von Staudt-Clausen theorem (cf. [3]) states that the denominator of Bn is always

squarefree, and for even n > 0 is in fact equal to the product of those primes p such that
p − 1 divides n. This formula implies that the denominator of the number B̂n associated to
ci 7→ Ui+1 is also squarefree, and for even n > 0 is equal to the product of those primes p not
dividing D such that p − 1 divides n. Therefore B̂n ∈ Z(p) for all n > 1 when p is a prime
dividing D.
Remarks: If we choose r(t) so that its discriminant D is not a square, this formula provides
another proof of the well-known facts that B1 = −1/2 and B2k+1 = 0 for all k > 0, since it is
clear that both Bn and B̂n are rational numbers. When k > 0 the formula reads B̂2k+1 =
√

D
2k+1

B2k+1, which cannot hold unless both sides are zero. With n = 1 we have B̂1 =
(P/2) +

√
D(B1 + (1/2)), implying B1 + (1/2) = 0, and thus B̂1 = P/2.
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The first few values of B̂n for ci 7→ Ui+1 are B̂0 = 1, B̂1 = P/2, B̂2 = D/6, B̂3 = 0,
B̂4 = −D2/30, B̂5 = 0, B̂6 = D3/42, B̂7 = 0, B̂8 = −D4/30, B̂9 = 0, B̂10 = 5D5/66. The
usual Bernoulli numbers Bn may be obtained in this way by choosing P = −1 and Q = 0; in
this case Un = (−1)n+1 for n > 0.
Theorem 3.2: Let B̂n denote the numbers obtained in (1.4) by specializing the indeterminates
ci 7→ Ui+1 in (1.3). Then if p is an odd prime, p − 1 does not divide m, and the increment
c = l(p− 1) where pa divides l for some a ≥ 0, then for all k ≥ 0, the congruence

k∑
j=0

(−1)k−j

(
k

j

)
c
(k−j)l
p−1

B̂m+jc

m + jc
≡ 0 (mod pAZ(p))

given in (1.7) holds, where A = min{m− 1, k(a + 1)}.
Proof: In the case m = 1 the left side of the congruence is just (−1)kUkl

p P/2, which lies
in Z(p); the theorem is therefore true in this case. If m > 1 is odd, the left side is zero and the

theorem is also true in this case. Now assume m > 1 is even, which implies B̂m =
√

D
m

Bm

with
√

D
m ∈ Z, and therefore the left side of the congruence becomes

k∑
j=0

(−1)k−j

(
k

j

)
U (k−j)l

p

√
D

m+jc Bm+jc

m + jc
. (3.5)

If p divides D then p divides Up as well by (2.4); therefore the power of p dividing the j-th
term in (3.5) is at least (k− j)l+(m+ jc)/2, which may be written as kl+(m/2)+ jl(p−3)/2
and is therefore greater than kl. Since pa divides l, we have l ≥ a + 1 so this exponent is at
least k(a + 1), proving the theorem in this case.

Finally suppose that p does not divide D, while m > 1 is even. In this case (2.4) tells
us that Up ≡ D(p−1)/2 ≡ (D|p) (mod p). Since D(p−1)/2/Up ≡ 1 (mod pZp), we may expand
(D(p−1)/2/Up)e/(p−1) in Zp for any integer e by (2.5). If we take e = 1 this defines an element

of Zp we’ll denote by U
−1/(p−1)
p

√
D. If e = 2c is even this defines an element of Zp we’ll denote

by Dc/U
e/(p−1)
p , which in turn defines an element U

e/(p−1)
p ∈ Zp such that (Ue/(p−1)

p )(p−1) = Ue
p

and U
e/(p−1)
p ≡ Dc (mod pZp). The expression (3.5) may then be written as

Ukl+m/(p−1)
p

k∑
j=0

(−1)k−j

(
k

j

)
(U−1/(p−1)

p

√
D)m+jc Bm+jc

m + jc

= Ukl+m/(p−1)
p ∆k

c

{
(U−1/(p−1)

p

√
D)m Bm

m

}
.

(3.6)

By the identity (2.8), this expression is equal to

Ukl+m/(p−1)
p

k∑
i=0

(
k

i

)
∆i

c

{
Bm

m

}
∆k−i

c

{
(U−1/(p−1)

p

√
D)m+ic

}
. (3.7)
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By (1.2) we have ∆i
c{Bm/m} ≡ 0 (mod pAiZ(p)) for Ai = min{m− 1, i(a + 1)}. By the

binomial theorem the term U
kl+m/(p−1)
p ∆k−i

c {(U−1/(p−1)
p

√
D)m+ic} is equal to

√
D

m+ic
U (k−i)l

p

((
D(p−1)/2

Up

)l

− 1

)k−i

. (3.8)

Since D(p−1)/2 ≡ Up (mod p) we have (D(p−1)/2/Up)l ≡ 1 (mod p(a+1)Z(p)), and therefore
(3.8) is zero modulo p(k−i)(a+1)Z(p). Therefore each term in the sum (3.7) is zero modulo
pAZ(p), proving the theorem.

4. LUCAS-BERNOULLI NUMBERS OF THE SECOND KIND

In this section we express the numbers B̂n obtained by specializing ci 7→ Vi+1 in terms
of the Bernoulli numbers Bn and the Stirling numbers S(n, k) of the second kind, which are
defined by the generating function

(et − 1)k

k!
=

∞∑
n=k

S(n, k)
tn

n!
, (4.1)

and use this to prove the congruences (1.7) for these numbers.
Theorem 4.1: Let B̂n denote the numbers obtained in (1.4) by specializing ci 7→ Vi+1 in (1.3),
where P = 1 and Q is an arbitrary integer. Then for all n,

B̂n = (−1)nBn − n

n∑
k=1

(
1/2
k

)
22k−1Qk(k − 1)!S(n− 1, k − 1).

The denominator of B̂n is equal to the denominator of Bn for all n.
Proof: Following (2.3), let

ω = −dr

r
=

∞∑
n=1

Vntn−1 dt, so λ(t) =
∫ t

0

ω =
∞∑

n=1

Vn
tn

n
(4.2)

agrees with (1.3), since we assume P = 1. It follows that λ(t) = − log r(t), so that its
compositional inverse ε satisfies

e−t = 1− ε(t) + Qε(t)2. (4.3)

By the quadratic formula we have

ε(t) =
1−

√
1 + 4Q(e−t − 1)

2Q
(4.4)

if Q 6= 0, whereas ε(t) = 1−e−t if Q = 0. Observe that the power series f = 1+4Q(e−t−1) ∈
Q[[t]] has constant term 1, so that

√
f = f1/2 may be expanded by (2.5) as a power series in

Q[[t]], which also has constant term 1; this is the meaning of the square root symbol in (4.4).
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The negative sign is chosen for the square root in order that the power series ε ∈ Q[[t]] has
constant term zero, so (4.3) makes sense. Therefore for Q 6= 0,

t

ε(t)
=

2Qt

1−
√

1 + 4Q(e−t − 1)
=
−t(1 +

√
1 + 4Q(e−t − 1))

2(e−t − 1)
, (4.5)

and the right side of (4.5) is correct even for Q = 0.
The identity of the theorem follows by applying the binomial expansion (2.5) to the

generating function (4.5), yielding

∞∑
n=0

B̂n
tn

n!
=
−t(1 +

√
1 + 4Q(e−t − 1))

2(e−t − 1)

=
−t

e−t − 1
− t

2

∞∑
k=1

(
1/2
k

)
4kQk(e−t − 1)k−1

=
−t

e−t − 1
−

∞∑
n=1

n
tn

n!

n∑
k=1

(
1/2
k

)
22k−1Qk(k − 1)!S(n− 1, k − 1).

(4.6)

Expanding the right side using (1.1) and (4.1) gives the stated identity. Since k!S(n, k) ∈ Z
we see that B̂n − (−1)nBn ∈ nZ for all n; therefore the denominator of B̂n is always equal to
the denominator of Bn.
Remarks: The first few values of B̂n in this case are B̂0 = 1, B̂1 = 1

2 −Q, B̂2 = 1
6 − 2Q2,

B̂3 = 3Q2 − 12Q3, B̂4 = − 1
30 − 4Q2 + 48Q3 − 120Q4, B̂5 = 5Q2 − 140Q3 + 900Q4 − 1680Q5,

B̂6 = 1
42 − 6Q2 + 360Q3 − 4500Q4 + 20160Q5 − 30240Q6. Clearly, if we choose Q = 0 then

we obtain B̂n = (−1)nBn. Although it is not an integer, the choice Q = 1/4 gives us B̂n =
(−2)−nBn for all n.
Theorem 4.2: Let B̂n denote the numbers obtained in (1.4) by specializing the indeterminates
ci 7→ Vi+1 in (1.3), where P = 1 and Q is an arbitrary integer. If p is an odd prime, p − 1
does not divide m, and the increment c = l(p− 1) where pa divides l for some a ≥ 0, then for
all k ≥ 0,

k∑
j=0

(−1)k−j

(
k

j

)
B̂m+jc

m + jc
≡ 0 (mod pAZ(p)),

where A = min{m− 1, k(a + 1)}.
Proof: We define

g(T ) =
1 +

√
1 + 4Q(T − 1)
2(T − 1)

, (4.7)
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so that g(et) = −1/ε(−t). Choose a positive integer b such that (b, p) = 1, and consider
h(T ) = bg(T b)− g(T ). We compute

h(T ) =
1

2(T − 1)

[
b(1 +

√
1 + 4Q(T b − 1))
Φb(T )

− 1−
√

1 + 4Q(T − 1)

]
, (4.8)

where

T b − 1 = ((T − 1) + 1)b − 1

= b(T − 1) +
(

b

2

)
(T − 1)2 + · · ·+ (T − 1)b ∈ Zp[[T − 1]],

(4.9)

and therefore

Φb(T ) =
T b − 1
T − 1

= b +
(

b

2

)
(T − 1) + · · ·+ (T − 1)b−1 ∈ Zp[[T − 1]]×. (4.10)

By (4.9), T b − 1 has no constant term when considered as an element of Zp[[T − 1]], so both
square root terms in (4.8) lie in Zp[[T−1]]. Furthermore since its constant term b is invertible in
Zp, the polynomial Φb(T ) is invertible as an element of Zp[[T−1]], and therefore the expression
in brackets in (4.8) lies in Zp[[T−1]]. The constant term of this expression in brackets is clearly
(b · 2/b)− 1− 1 = 0, so this expression in brackets in (4.8) is divisible by T − 1 and therefore
h(T ) ∈ Zp[[T − 1]].

In ([7], Theorem 1.1) we showed that if h ∈ Zp[[T −1]] and h(et) =
∑∞

n=0 antn/n! then for
c ≡ 0 (mod (p−1)pa) we have ∆k

cam ≡ 0 (mod pAZp) for all k ≥ 0, where A = min{m, k(a+1)}.
Since g(et) = −1/ε(−t) and h(T ) = bg(T b)− g(T ) we have

h(et) =
∞∑

n=0

(bn+1 − 1)
B̂n+1

n + 1
(−1)n+1 tn

n!
(4.11)

so that an = (bn+1 − 1)(−1)n+1B̂n+1/(n + 1). Therefore for any m,

∆k
c

{
(bm − 1)

B̂m

m
(−1)m

}
≡ 0 (mod pAZ(p)) (4.12)

where A = min{m− 1, k(a + 1)}. Since the increment c is even the factor (−1)m+jc = (−1)m

independent of j and therefore may be factored out of the congruences. Now suppose that k
and m are given such that p− 1 does not divide m. Since the mutiplicative group (Z/pZ)× is
cyclic of order p− 1, we may choose a positive integer x such that (x, p) = 1 and xm 6≡ 1
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(mod p). Now let N > k(a + 1) and put b = xpN

. Since yps(p−1) ≡ 1 (mod ps+1) for any
nonnegative integers y, s, it follows that this choice of b satisfies (b, p) = 1, bm ≡ xm 6≡ 1 (mod
p), and bm+jc ≡ bm (mod pN+1) for all j. Therefore from (4.12),

0 ≡
k∑

j=0

(−1)k−j

(
k

j

)
(bm+jc − 1)

B̂m+jc

m + jc
(−1)m+jc

≡ (bm − 1)(−1)m
k∑

j=0

(−1)k−j

(
k

j

)
B̂m+jc

m + jc
(mod pAZ(p)),

(4.13)

but since the factor (bm − 1)(−1)m is a unit in Z(p) the result follows.

Theorem 4.3: Let B̂n denote the numbers obtained in (1.4) by specializing the indeterminates
ci 7→ Vi+1 in (1.3), where P = 1 and Q is an arbitrary integer. If p is an odd prime, p − 1
does not divide m, and the increment c = l(p− 1) where pa divides l for some a ≥ 0, then for
all k ≥ 0, the congruence

k∑
j=0

(−1)k−j

(
k

j

)
c
(k−j)l
p−1

B̂m+jc

m + jc
≡ 0 (mod pAZ(p))

given in (1.7) holds, where A = min{m− 1, k(a + 1)}.

Proof: We have Vp ≡ 1 (mod p), so by (2.5) there exists V
1/(p−1)
p ∈ Zp such that

(V 1/(p−1)
p )p−1 = Vp and V

1/(p−1)
p ≡ 1 (mod pZp). The left side of the congruence of the

theorem may be written as

k∑
j=0

(−1)k−j

(
k

j

)
V (k−j)l

p

B̂m+jc

m + jc

= V kl+m/(p−1)
p

k∑
j=0

(−1)k−j

(
k

j

)
(V −1/(p−1)

p )m+jc B̂m+jc

m + jc

= V kl+m/(p−1)
p ∆k

c

{
(V −1/(p−1)

p )m B̂m

m

}
.

(4.14)

By the identity (2.8), this expression is equal to

V kl+m/(p−1)
p

k∑
i=0

(
k

i

)
∆i

c

{
B̂m

m

}
∆k−i

c

{
(V −1/(p−1)

p )m+ic
}

. (4.15)

By Theorem 4.2 we have ∆i
c{B̂m/m} ≡ 0 (mod pAiZ(p)) for Ai = min{m− 1, i(a + 1)}. By

the binomial theorem the term V
kl+m/(p−1)
p ∆k−i

c {(V −1/(p−1)
p )m+ic} is equal to

V (k−i)l
p

(
V −l

p − 1
)k−i

. (4.16)
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Since Vp ≡ 1 (mod p) we have V −l
p ≡ 1 (mod p(a+1)Z(p)), and therefore (4.16) is zero modulo

p(k−i)(a+1)Z(p). Therefore each term in the sum (4.15) is zero modulo pAZ(p), proving the
theorem.

5. CONNECTIONS TO FORMAL GROUP LAWS

In this section we summarize some basic facts concerning formal group laws which relate
to the results of this paper. Let c1, c2, ... ∈ Z, define λ ∈ Q[[t]] by (1.3), and let ε be the
compositional inverse of λ in Q[[t]]. Then the two-variable formal power series F ∈ Q[[X, Y ]]
defined by F (X, Y ) = ε(λ(X) + λ(Y )) is a commutative formal group law over Q; that is,

F (X, Y ) = F (Y,X), (5.1)

F (X, 0) = X and F (0, Y ) = Y (5.2)

and
F (F (X, Y ), Z) = F (X, F (Y,Z)) (5.3)

hold as identities in Q[[X, Y ]]. If

v(T ) =
∂

∂X
(F (X, Y ))

∣∣∣∣∣
X=0,Y =T

(5.4)

then ω = dT/v(T ) is the canonical invariant differential on F , λ(t) =
∫ t

0
ω is the formal

logarithm of F , and the compositional inverse ε of λ is the formal exponential of F , which
satisfies the autonomous differential equation ε′ = v(ε). Any choice of integers ci in (1.3) will
make λ into the logarithm of a formal group law over Q, but only certain choices of ci ∈ Z will
yield a formal group law over Z.

By the functional equation lemma of Hazewinkel [5], the formal group law F thus con-
structed will be defined over Z (i.e., F ∈ Z[[X, Y ]]) if and only if for each prime p there exists
an element ηp ∈ Zp such that for all positive integers m, s we have

cmps−1 ≡ ηpcmps−1−1 (mod psZp), (5.5)

with the convention c0 = 1. For ci 7→ Ui+1 we have

Umps ≡ (D|p)Umps−1 (mod psZp), (5.6)

whereas for ci 7→ Vi+1 we have

Vmps ≡ Vmps−1 (mod psZp), (5.7)

(cf. [7]). Therefore the differential forms in (2.3), (3.1), (4.2) are invariant differentials on
integral formal group laws. (For ci 7→ Vi+1 we required P = 1 only so that the first coefficient
c0 of λ will be 1.) For both of these specializations of the ci we have seen that for even n > 0
the denominator of B̂n is equal to the product of those primes p not dividing cp−1 such that
p− 1 divides n (see Theorems 3.1 and 4.1 and also [3]).
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If we map ci 7→ Ui+1 so that ω and λ are as in (3.1), we may calculate that the rational
function

F (X, Y ) =
X + Y − PXY

1−QXY
(5.8)

is the corresponding formal group law. From [4] we know that every rational formal group
law over Q is of the form (5.8). Therefore we may interpret Theorem 3.2 as saying that the
numbers B̂n satisfy the congruences (1.7) whenever the ci in (1.3) are specialized to integers
which make λ into the logarithm of a rational formal group law.

A more general connection between integrality of formal group laws and Kummer congru-
ences may be seen in Adelberg’s result ([1], Theorem 4.5). There he showed that if c = l(p−1)
where pa divides l, m ≥ a + 2, and m 6≡ 0, 1 (mod p − 1) then the congruence (1.5) holds,
whereas if m ≡ 1 (mod p− 1) and m ≥ a + 2 then the congruence (1.6) holds for the univer-
sal Bernoulli numbers B̂n. Now if the ci are specialized to integers in (1.3) so that λ is the
logarithm of an integral formal group law, then by (5.5) with s = 1 we have cp−1 ≡ ηp (mod
p) and c2p−1 ≡ ηpc1 (mod p). It follows that cp−1c

p
1 − c2p−1 ≡ 0 (mod p), and therefore the

expression on the right in (1.6) vanishes modulo pa+1Zp. That is, the right side of (1.6) is
trivial for the B̂n associated to any formal group law over Z, but not for an arbitrary formal
group law over Q. In [6] Snyder showed that the numbers B̂n associated to any formal group
law over Z satisfy the congruences (1.7) in the case where l = 1. In this paper we have looked
at the examples of integral formal group laws obtained by ci 7→ Ui+1 or ci 7→ Vi+1 and shown
that their associated numbers B̂n satisfy not only (1.5), but the more general version (1.7).
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