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ABSTRACT

Let α be an irrational number between 0 and 1. Let a and b be distinct letters. Define
dn = a (resp., b) if [(n + 1)α] − [nα] = 0 (resp., 1), n ∈ Z. Define x to be the two-way
infinite word whose nth letter is dn, n ∈ Z. Define xm = dm+1dm+2 · · · ,m ∈ Z, s0 = ε,
the empty word, sm = d1d2 · · · dm,m ≥ 1. The problem of determining the extracted word
〈xm, x0〉 obtained by aligning xm with x0 was originally posed by D.R. Hofstadter in 1963.
Known extraction formulae include 〈xm, x0〉 (m > 0) (by R.J. Hendel and S.A. Monteferrante
1994), 〈x0, xm〉 (m ≥ 1) (by W. Chuan 1995) for α = (

√
5 − 1)/2 and partial results for

〈xm, x0〉 (m ≥ 1) (by R.J. Hendel 1996) and all cases of 〈x0, xm〉 (m ≥ 0) (by W. Chuan and
F. Yu 2000) for α =

√
2−1. In this short note, we establish the following three new extraction

formulae for α = (
√

5− 1)/2:

〈xm, x−2〉 = xm (m > −2)
〈xm, x−2〉 = R(s−m−2) (m ≤ −2)

〈x0, x−m〉 =
{

xm−2 (m > 1)
bx0 6= x−1 (m = 1)

which involve xm, where m < 0. We also show that the first formula is equivalent to the
formula proved by Hendel and Monteferrante.

1. INTRODUCTION

Throughout this paper, we consider only words over the alphabet {a, b} and we adopt
notations from [3,6,7,8]. Let ε denote the empty word. For any word w = a1a2 · · · an, where
n ≥ 1, ai ∈ {a, b}, 1 ≤ i ≤ n, define the reversal R(w) and the length |w| of w by R(w) =
an · · · a2a1, |w| = n, R(ε) = ε, and |ε| = 0. A word w is said to be a palindrome if R(w) = w.
If w,w1, w2, · · · are words, products, powers are defined as usual by w0 = ε, w1 = w, wn+1

= wnw, n ≥ 2,
∞∏

i=1

wi = w1

∞∏
i=2

wi. A nonempty word u is said to be a prefix (resp., suffix)

of w if there exists a nonempty word x such that w = ux (resp., w = xu).
Let α be an irrational number between 0 and 1. Define dn = a (resp., b) if [(n+1)α]−[nα] =

0 (resp., 1), n ∈ Z. Define x = x(α) to be the two-way infinite word whose nth letter is
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dn, n ∈ Z. Define s0 = ε, sm = d1d2 · · · dm, m ≥ 1, xm = dm+1dm+2 · · · , m ∈ Z. Each xm is
called a suffix of x. x0 is called the characteristic word of α. Clearly, x0 = smxm, m ≥ 0. For
α = (

√
5 − 1)/2, the word x0 (resp., x) is the golden sequence (resp., two-way infinite golden

sequence) (see [11]). x0 is also called the infinite Fibonacci word.
Originally, Hofstadter [9] formulated the concept of aligning xm with x0, m ≥ 1 (see also

[3,6,7,8]). The idea is to try to match each term (letter) in x0 with a term in xm, beginning
at the first term of xm. After a term in x0 has been matched with a term in xm, one looks for
the earliest match to the next term in x0. Those terms in xm that are skipped over from the
extracted word 〈xm, x0〉. For example, when α = (

√
5− 1)/2 and m = 4,

xm = a b a b b a b b a b a b b a b a b b a · · ·
x0 = b a b b a b a b b a b b a · · ·

〈xm, x0〉 = a b a b a b · · ·
(1.1)

Here we say that xm aligns (with) x0 with extraction 〈xm, x0〉. The word x0 is called the
aligned word. The relationship (1.1) is an alignment. Hendel and Monteferrante [8] were the
first to provide a rigorous definition of alignment of finite words. Hendel [7] was the first to
introduce the functional notation 〈xm, x0〉. The original notation for 〈u, v〉 = w was u ⊃ v; w.
In [9], Hofstadter conjectured that 〈xm, x0〉 = xm−2, for m ≥ 2. Hendel and Monteferrante
[8] observed that this was not always the case, and for α = (

√
5− 1)/2, they successfully

established a modified formula for 〈xm, x0〉. In order to state their result, we need to define
the notation m∗.
Lemma A:
(a) (see [2,10]) Each positive integer m has a unique representation as m =

∑n
i=1 riFi+1,

where
ri ∈ {0, 1}, ri + ri+1 ≥ 1, 1 ≤ i ≤ n− 1, and rn = 1. (1.2)

(This representation of m is called the maximal representation of m.)
(b) (see [1,10]) Each positive integer m can be expressed uniquely as m =

∑n
i=1 riFi+1, where

rn = 1, ri ∈ {0, 1}, and ri = 0 whenever ri+1 = 1, 1 ≤ i ≤ n− 1. (This result is known
as Zeckendorf’s theorem, and this representation of m is called the minimal representation
or Zeckendorf representation of m.)
If m is a positive integer and m =

∑n
i=1 riFi+1 is the minimal representation of m given

by part (b) of Lemma A, define a binary string m∗ = r1r2 · · · rn. Define 0∗ = λ, the empty
binary string. Let

M = {m ∈ Z+ : m∗ =102k−11s for some k ∈ Z+

and some binary string s}. (1.3)

The modified formula for 〈xm, x0〉, proved by Hendel and Monteferrante [8] for α =
(
√

5− 1)/2 is as follows.
Theorem B: For m ≥ 2,

〈xm, x0〉 =
{

xm−2, if m /∈ M,

axm−1 6= xm−2, if m ∈ M.
(1.4)
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The extractions 〈x0, xn〉 and 〈xm, xn〉, where m, n ≥ 1, were first considered by Chuan [3] who
proved the following formula for α = (

√
5− 1)/2.

Theorem C: 〈x0, xn〉 = R(sn), n ≥ 1. (1.5)
In [3], Chuan also proved that

〈xm, xn〉 differs from xm−n−2 (if m > n ≥ 0) or from
R(sn−m) (if n > m ≥ 0) by at most the first letter. (1.6)

For α =
√

2− 1, Hendel proved some results for 〈xm, x0〉 and 〈x0, xm〉, m ≥ 1 (see[7]). Chuan
and Yu introduced the subtraction rule for exponents, which is equivalent to the equation
〈x0, xm〉 = R(sm), m ≥ 0 (see [6]). In this short note, we extend the extraction problem for
α = (

√
5− 1)/2 to include xm, where m < 0.

The new extraction formulae are
Theorem 1.1: 〈xm, x−2〉 = xm, m > −2. (1.7)
Theorem 1.2: 〈xm, x−2〉 = R(s−m−2), for m ≤ −2. (1.8)
Theorem 1.3: 〈x0, x−m〉 = xm−2, m ≥ 2, (1.9)

〈x0, x−1〉 = bx0 6= x−1. (1.10)
We remark that Theorem 1.3 directly extends Theorem C; Theorem 1.2 clearly extends

Theorem B to negative m; in Theorem 3.4 below, we show that Theorem B and Theorem 1.1
are equivalent. It is remarkable that the extracted words obtained in Theorem 1.1 and 1.2 are
always suffixes and reversals of prefixes of x respectively. The methods used in this paper, can
be used to generalize Theorems 1.1-1.3 to the case α =

√
2− 1.

We first state some known results that will be used later. Define a sequence {wn} of words
by

w1 = a, w2 = b, wn = wn−2wn−1 (n ≥ 3).

Clearly
|wn| = Fn, for n ≥ 1. (1.11)

Lemma D:
(a) (see Lemma 3.10 and Corollary 3.8 of [5], [8]) Let m ≥ 0. If m =

∑n
i=1 riFi+1 where

ri ∈ {0, 1} (1 ≤ i ≤ n), then

R(sm) = wr1
2 wr2

3 · · ·wrn
n+1, (1.12)

xm = w1−r1
2 w1−r2

3 · · ·w1−rn
n+1 wn+2wn+3 · · · . (1.13)

(b) (see [3])

wn = w2(w1w2 · · ·wn−2), if n ≥ 4 is even. (1.14)
sm = R(wn)sm−Fn

, if Fn ≤ m ≤ Fn+2 − 2, n ≥ 2. (1.15)

(c) (see [8]) If un, vn and en are words with 〈un, vn〉 = en, n = 1, 2 · · · , then 〈
∏

un,
∏

vn〉 =∏
en.
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(d) (see [8])
〈wn, wn−1〉 = wn−2 for n ≥ 3. (1.16)

2. PROOFS OF THE MAIN THEOREMS

In order to prove the main theorems, we first use the known factorizations (1.12)-(1.14)
of R(sm) and xm to derive more factorizations of suffixes of x in terms of wn’s.
Lemma 2.1:

(a) d−n = dn−1 (n ≥ 2). (2.1)
(b) x−2 = w2nw2n−1w2nw2n+1 · · · (n ≥ 1). (2.2)
(c) x−m = R(sm−2)x−2 (m ≥ 2). (2.3)
(d) Let m ≥ 0. Let n ≥ 0 be such that Fn+2 − 1 ≤ m ≤ Fn+3 − 2. Then

xm = R(sk)wn+3wn+4 · · · , where k = Fn+4 −m− 2. (2.4)

Proof: Part (a) is clear. Part (b) follows from (1.13) with m = 0, and (1.14). Part (c)
follows from (2.1).

(d): The case m = 0 is trivial. Now let m ≥ 1. Since Fn+2 − 1 ≤ m ≤ Fn+3 − 2, m =∑n
i=1 riFi+1, for some ri ∈ {0, 1} (1 ≤ i ≤ n).

Clearly,

Fn+4 − 2−m =
n+1∑
i=1

Fi+1 −
n∑

i=1

riFi+1 =
n∑

i=1

(1− ri)Fi+1 + Fn+2.

Therefore, by (1.12),
R(sk) = w1−r1

2 w1−r2
3 · · ·w1−rn

n+1 wn+2,

where k = Fn+4 − 2−m. Consequently, by (1.13),

xm = w1−r1
2 w1−r2

3 · · ·w1−rn
n+1 wn+2wn+3 · · · = R(sk)wn+3wn+4 · · · .

Lemma 2.2: 〈x−2, wnwn+1 · · · 〉 = wn+1, for n ≥ 1. (2.5)
Proof: We repeatedly apply Lemma D (c) to the representation (2.2) of x−2. If n = 1,

then

〈x−2, w1w2 · · · 〉 = 〈w2(w1w2 · · · ), w1w2 · · · 〉
= 〈w2w1, w1〉〈w2w3 · · · , w2w3 · · · 〉
= w2.

If n ≥ 3 is odd, then

〈x−2, wnwn+1 · · · 〉 = 〈wn+1(wnwn+1 · · · ), wnwn+1 · · · 〉
= 〈wn+1, wn〉〈wnwn+1, wn+1〉〈wn+2wn+3 · · · , wn+2wn+3 · · · 〉
= wn−1wn (by (1.16))
= wn+1.
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If n is even, then

〈x−2, wnwn+1 · · · 〉 = 〈wn(wn−1wn · · · ), wnwn+1 · · · 〉
= 〈wn, wn〉〈wn−1wn, wn+1〉〈wn+1wn+2, wn+2〉〈wn+3wn+4 · · · , wn+3wn+4 · · · 〉
= wn+1 (by (1.16)).

Lemma 2.3: Let m ≥ 3. Let n ≥ 2 be such that either Fn+2 ≤ m ≤ Fn+3 and n is even, or
Fn+2 + 1 ≤ m ≤ Fn+3 − 1 and n is odd. Then

〈R(sm), w2(w1w2 · · ·wn)〉 = R(sm−Fn+2). (2.6)

Proof: We proceed by induction on n. When n = 2 or 3, the result clearly holds. Suppose
that k ≥ 3 and that the result holds for all n ≤ k. Now let n = k+1. Let Fk+3 ≤ m ≤ Fk+4−1.
There are five cases to consider:
Case 1: m = Fk+3;
Case 2: m = 2Fk+2;
Case 3: Fk+3 + 1 ≤ m ≤ 2Fk+2 − 1;
Case 4: 2Fk+2 + 1 ≤ m ≤ Fk+4 − 2;
Case 5: m = Fk+4 − 1.
We prove only Cases 2 and 4. The proof of Case 1 (resp., Cases 3 and 5) is similar to Case 2
(resp., Case 4).

Proof of Case 2. m = 2Fk+2 :

〈R(sm), w2(w1w2 · · ·wk+1)〉

=
{ 〈wk+2wk+2, wk+3〉 if k is even
〈wk+2wk+2, wk+2wk+1〉 if k is odd

( by (1.11), (1.15), (1.14))

= wk ( by (1.16)).

Proof of Case 4. 2Fk+2 + 1 ≤ m ≤ Fk+4 − 2 : Since Fk+2 + 1 ≤ m− Fk+2 ≤ Fk+3 − 2,
it follows that

〈R(sm), w2(w1w2 · · ·wk+1)〉
= 〈R(sm−Fk+2), w2(w1w2 · · ·wk)〉〈wk+2, wk+1〉 (by (1.15))
= R(sm−Fk+2−Fk+2)wk (by the inductive hypothesis and (1.16))
= R(sm−2Fk+2+Fk

) (by (1.15))
= R(sm−Fk+3).

Therefore the result holds for n = k + 1. This completes the proof.
Proof of Theorem 1.1: We consider m ≥ 3. Let Fn+2 − 1 ≤ m ≤ Fn+3 − 2, where

n ≥ 2. Let k = Fn+4 −m− 2. Then Fn+2 ≤ k ≤ Fn+3 − 1. There are two cases.
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Case 1. k = Fn+2 and n is odd:

〈xm, x−2〉
= 〈R(sk), w2(w1w2 · · ·wn−1)〉〈wn+3wn+4 · · · , wnwn+1 · · · 〉 (by (2.2), (2.4))

= R(sk−Fn+1)〈wn+3, wnwn+1〉〈wn+4, wn+2wn+3〉
∞∏

i=n+4

〈wi+1, wi〉 (by Lemma 2.3)

= R(sk−Fn+1)wn+1wn+3wn+4 · · · (by (1.16))
= R(sk)wn+3wn+4 · · · (by (1.15))
= xm (by (2.4)).

Case 2. Either Fn+2 ≤ k ≤ Fn+3 − 1 and n is even, or Fn+2 + 1 ≤ k ≤ Fn+3 − 1 and n
is odd:

〈xm, x−2〉
= 〈R(sk), w2(w1w2 · · ·wn)〉〈wn+3wn+4 · · · , wn+1wn+2 · · · 〉 (by (2.2), (2.4))

= R(sk−Fn+2)〈wn+3, wn+1wn+2〉
∞∏

i=n+3

〈wi+1, wi〉 (by Lemma 2.3)

= R(sk−Fn+2)wn+2wn+3 · · · (by (1.16))
= R(sk)wn+3wn+4 · · · (by (1.15))
= xm (by (2.4)).

The proofs for m = −1, 0, 1, 2 are almost identical to the above proof.
Proof of Theorem 1.2: We consider m ≥ 6. Let n ≥ 2 be such that either Fn+2 ≤

m− 2 ≤ Fn+3 and n is even, or Fn+2 + 1 ≤ m− 2 ≤ Fn+3 − 1 and n is odd. Then

〈x−m, x−2〉
= 〈R(sm−2), w2(w1w2 · · ·wn)〉〈x−2, wn+1wn+2 · · · 〉

(by (2.2), (2.3))
= R(sm−2−Fn+2)wn+2 (by Lemma 2.3 and (2.5))
= R(sm−2) (by (1.15)).

The proof for m = 2, 3, 4, 5 is almost identical to the above proof.
Finally, we use the following lemma to prove Theorem 1.3 (see [6] for a similar lemma for

the case α =
√

2− 1).
Lemma 2.4 (Subtraction rule of exponents): Let n ≥ 1. If r1r2 · · · rn is a string such
that (1.2) holds then

〈w2w3 · · ·wn+1, wr1
2 wr2

3 · · ·wrn
n+1〉 = w1−r1

2 w1−r2
3 · · ·w1−rn

n+1 . (2.7)

Proof: We proceed by induction on n. When n = 1, 2, 3, 4, the result clearly holds.
Suppose that k ≥ 4 and that the result holds for n ≤ k. Now let n = k + 1. Let r1r2 · · · rn be
a string satisfying (1.2). There are two cases to consider:
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Case 1: r1r2 · · · rk+1 = r1r2 · · · rk−111 :

〈w2w3 · · ·wk+2, wr1
2 wr2

3 · · ·wrk+1
k+2 〉

= 〈w2w3 · · ·wk+1, wr1
2 wr2

3 · · ·wrk

k+1〉〈wk+2, wk+2〉

= w1−r1
2 w1−r2

3 · · ·w1−rk

k+1 (by the inductive hypothesis)

= w1−r1
2 w1−r2

3 · · ·w1−rk+1
k+2 .

Case 2: r1r2 · · · rk+1 = r1r2 · · · rk−2101 :

〈w2w3 · · ·wk+2, wr1
2 wr2

3 · · ·wrk+1
k+2 〉

= 〈w2w3 · · ·wk, wr1
2 wr2

3 · · ·wrk−1
k 〉〈wk+1wk+2, wk+2〉

= w1−r1
2 w1−r2

3 · · ·w1−rk−1
k wk+1

(by the inductive hypothesis and (1.16))

= w1−r1
2 w1−r2

3 · · ·w1−rk+1
k+2 .

This completes the proof.
Proof of Theorem 1.3: Proof of (1.9): When m = 2, (1.9) follows from (1.7). Now

let m > 2, and let m− 2 =
∑n

i=1 riFi+1 be the maximal representation of m− 2 given by part
(a) of Lemma A. Then

〈x0, x−m〉
= 〈w2w3 · · ·wn+1, R(sm−2)〉〈wn+2wn+3 · · · , x−2〉 (by (1.13), (2.3))
= 〈w2w3 · · ·wn+1, wr1

2 wr2
3 · · ·wrn

n+1〉〈wn+2wn+3 · · · , x−2〉 (by (1.12))

= w1−r1
2 w1−r2

3 · · ·w1−rn
n+1 wn+2wn+3 · · · (by (2.7), (1.7))

= xm−2 (by (1.13)).

This proves (1.9).
Proof of (1.10):

〈x0, x−1〉 = 〈bab, ab〉
∞∏

i=3

〈wi+1, wi〉 = bw2w3 · · · = bx0 6= x−1.

3. EQUIVALENCE OF THEOREM B AND THEOREM 1.1

In this section, we show that Theorem B and Theorem 1.1 are equivalent.
Lemma 3.1 (see Theorem 3.1 of [4]): Let m ≥ 0. Then the prefix of xm having length 2 is bb
if and only if m∗ = 01s for some binary string s.
Lemma 3.2: Let M be the set defined by (1.3). Then

M = {m ∈ Z+ : xm−2 = bbxm}. (3.1)
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Proof: Since the sets on both sides of (3.1) do not contain 1, we consider only m ≥ 2.
Applying Lemma 3.1 with m− 2 in place of m, we see that

the prefix of xm−2 having length 2 is bb

⇔ (m− 2)∗ = 01s for some binary string s

⇔ m∗ = 102k−11s′ for some k ∈ Z+ and some binary string s′

⇔ m ∈ M.

Lemma 3.3 (see, for example, Theorem 3.1 of [4]): The words aa, bbb and ababa are not
factors of x.
Theorem 3.4: Theorem B and Theorem 1.1 are equivalent.

Proof: We prove that (1.4)⇔(1.7).
Proof of (1.4)⇒(1.7): Suppose that (1.4) holds. Let m ≥ −1. By Lemma 3.3, there

are four cases to consider.
Case 1: xm = baxm+2 : By (3.1), m + 2 /∈ M . Therefore, by (1.4), 〈xm+2, x0〉 = xm. Hence
〈xm, x−2〉 = 〈baxm+2, bax0〉 = 〈ba, ba〉〈xm+2, x0〉 = xm.

Case 2: xm = abaxm+3 : By (3.1) and (1.4), 〈xm+3, x0〉 = xm+1. Hence 〈xm, x−2〉 =
〈abaxm+3, bax0〉 = 〈aba, ba〉〈xm+3, x0〉 = axm+1 = xm.

Case 3: xm = abbaxm+4 : By (3.1) and (1.4), 〈xm+4, x0〉 = xm+2. Hence 〈xm, x−2〉 =
〈abbaxm+4, bax0〉 = 〈abba, ba〉〈xm+4, x0〉 = abxm+2 = xm.

Case 4: xm = bbaxm+3 : By (3.1) and (1.4), 〈xm+3, x0〉 = xm+1. Hence 〈xm, x−2〉 =
〈bbaxm+3, bax0〉 = 〈bba, ba〉〈xm+3, x0〉 = bxm+1 = xm.

This proves (1.7).
Proof of (1.7) ⇒ (1.4): Suppose that (1.7) holds. Let m ≥ 2. By Lemma 3.3, there are four
cases to consider.
Case 1: m /∈ M and xm−2 = baxm : By (1.7), 〈xm−2, x−2〉 = xm−2. Hence 〈xm, x0〉 =
〈baxm, bax0〉 = 〈xm−2, x−2〉 = xm−2.

Case 2: m /∈ M and xm−2 = abaxm+1 = ababxm+2 : By (1.7), 〈xm−2, x−2〉 = xm−2. Hence

〈xm, x0〉 = 〈abxm+2, bx1〉 = a〈xm+2, x1〉 = 〈aba, ba〉〈bxm+2, bx1〉
= 〈ababxm+2, babx1〉 = 〈xm−2, x−2〉 = xm−2.

Case 3. m /∈ M and xm−2 = abbabaxm+4: By Lemma 3.3, ababa is not a factor of x. Hence
xm = bababbaxm+7. Since xm = baxm+2, it follows from Case 1 that 〈xm+2, x0〉 = xm. Thus

〈xm, x0〉 = 〈bababbaxm+7, babbax5〉 = ab〈xm+7, x5〉
= ab〈babbaxm+7, babbax5〉 = ab〈xm+2, x0〉
= abxm = xm−2.

Case 4. m /∈ M and xm−2 = abbabbxm+4 = abbabbabxm+6 : Since xm−3 = baxm−1, it follows
from Case 1 that 〈xm−1, x0〉 = xm−3. Hence

b〈xm+2, x2〉 = 〈bba, ba〉〈xm+2, x2〉 = 〈bbaxm+2, bax2〉
= 〈xm−1, x0〉 = xm−3 = bxm−2.
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Thus 〈xm, x0〉 = 〈baxm+2, bax2〉 = 〈xm+2, x2〉 = xm−2.
Case 5. m ∈ M, i.e., xm−2 = bbxm: Since xm−1 = baxm+1, it follows from Case 1 that
〈xm+1, x0〉 = xm−1. Hence

〈xm, x0〉 = 〈abxm+2, bx1〉 = a〈bxm+2, bx1〉 = a〈xm+1, x0〉
= axm−1 6= xm−2.

This proves (1.4).
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