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ABSTRACT

The author has previously generalized the concept of a multiplier of a second-order linear
recurrence modulo pr, where p is an odd prime and r is a positive integer, to that of a
special multiplier of a second-order linear recurrence modulo pr. In this paper, we will extend
these results to show that infinitely many kth-order linear recurrences have special multipliers
modulo pr, where k ≥ 2 and p is a prime, not necessarily odd.

1. INTRODUCTION

In [1], [2], and [8], Somer generalized the concept of a multiplier of a second-order linear
recurrence modulo pr, where p is an odd prime and r ≥ 1, to that of a special multiplier of
a second-order linear recurrence modulo pr. Special multipliers modulo pr were used in [1] to
investigate the distribution of residues in second-order recurrences reduced modulo pr. In this
paper, we will extend these results to show that infinitely many kth-order linear recurrences
satisfying certain conditions have special multipliers modulo pr, where k ≥ 2 and p is a prime,
not necessarily odd. Throughout this paper, p will denote a rational prime.

2. PRELIMINARIES

Let k ≥ 2 and let w(a1, a2, . . . , ak) = (w) be a kth-order linear recurrence satisfying the
recursion relation

wn+k = a1wn+k−1 − a2wn+k−2 + · · ·+ (−1)k+1akwn, (2.1)

where the parameters a1, . . . , ak and initial terms w0, . . . , wk−1 are all rational integers. We will
assume throughout this paper that w(a1, . . . , ak) is a regular recurrence, that is, w(a1, . . . , ak)
satisfies no linear recursion relation of order less than k. We will distinguish one particular
recurrence, the unit sequence satisfying the recursion relation (2.1) and having initial terms
u0 = u1 = · · · = uk−2 = 0, uk−1 = 1.

Associated with w(a1, . . . , ak) is the characteristic polynomial

f(x) = xk − a1x
k−1 + · · ·+ (−1)kak =

t∏
i=1

(x− αi)m1 , (2.2)

where the distinct characteristic roots αi appear with multiplicity mi for i = 1, 2, . . . , t. We
let D be the discriminant of f(x). We further let K = Q(α1, . . . , αt) be the Galois field
associated with f(x), i.e., the splitting field of the characteristic roots of f(x), and let R
be the ring of integers of K. Note that α ∈ R for 1 ≤ i ≤ t. In this paper, we will also be

10



SPECIAL MULTIPLIERS OF kth-ORDER LINEAR RECURRENCES

considering recurrences w′(a1, · · · , ak) satisfying the recursion relation (2.1), but having initial
terms w′0, . . . , w

′
k−1 in R and not necessarily just in Z. We also let

f̂(x) =
t∏

i=1

(x− αi) (2.3)

be the square-free kernel of f(x). Then the coefficients of f̂(x) are rational integers. We let
the discriminant of f̂(x) be denoted by D̂. If t = 1, we let D̂ = 1. We let (p) denote the
principal ideal in R generated by p.

We will assume throughout this article that ak 6= 0 and gcd(ak, pr) = 1. Then it is known
(see [3, pp. 344-345]) that w(a1, . . . , ak) is purely periodic modulo pr. The period λ(pr) of (w)
modulo pr is the least positive integer λ such that

wn+λ ≡ wn (mod pr)

for all n. Any positive integer m such that wn+m ≡ wn (mod pr) for all n is called a general
period of (w) modulo pr. Clearly, if m is a general period of (w) modulo pr, then λ(pr)|m.

In [3, pp. 345-355], R. D. Carmichael generalized the concept of the period λ(pr) of (w)
modulo pr to that of the restricted period h(pr) of (w) modulo pr. He defined h(pr) to be the
least positive integer h such that for some integer M , coprime to p, and for all n

wn+h ≡ Mwn (mod pr).

The integer M = M(pr), defined up to congruence modulo pr, is called the multiplier of
(w) modulo pr. Any positive integer c such that wn+c ≡ Gwn (mod pr) for some integer G and
all n is called a general restricted period of (w) modulo pr, and G is called a general multiplier
of (w) modulo pr. If c is a general restricted period of (w) modulo pr, then h(pr)|c. It was
shown in [3, pp. 345-355] that h(pr)|λ(pr) and that E(pr) = λ(pr)/h(pr) is the multiplicative
order in (Z/pZ)∗ of the multiplier M(pr). Moreover, if h = h(pr) and M = M(pr), then, for
all n,

wn+ih ≡ M iwn (mod pr). (2.4)

Thus, every general multiplier G satisfies G ≡ M i (mod pr) for some i, and the general
multipliers of (w) modulo pr form a cyclic group of order E(pr) in (Z/pZ)∗.

Given the prime p, we define the positive integer e(p) = e as follows. If p is an odd prime,
we define e to be the largest integer, if it exists, such that h(pe) = h(p). If p = 2, we let e be
the largest integer, if it exists, such that h(22) = h(2e). If e does not exist, we write informally
that e = ∞. We will give conditions shortly that show that it is usual that e < ∞.

As was pointed out in [1], restricted periods and multipliers may be viewed from another
perspective. If h = h(pr) and M = M(pr), then for every n the sequence (w∗) defined by
w∗m = wn+mh satisfies the first-order recursion relation w∗m+1 ≡ Mw∗m (mod pr). Thus, the
restricted period modulo pr can be characterized as the smallest positive integer h such that
for all n, the subsequence {wn+mh}∞m=0 satisfies the same first-order recursion relation modulo
pr.

It may occur, however, that for a fixed n, there exists a nonnegative integer g < h
such that the subsequence defined by w∗m = wn+mg satisfies a first-order recursion relation
w∗m+1 ≡ M∗w∗m (mod pr). We will be interested in this phenomenon when g = h(pc) for
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some positive integer c < r and h(pc) < h(pr), where h(pc) and h(pr) are restricted periods
of (w). (In this case, g becomes a restricted period when (w) is reduced modulo pc.) Since
h(p) = h(p2) = · · · = h(pe) when p is an odd prime and h(p2) = h(p3) = · · · = h(pe) when
p = 2, we will assume that r > e. This motivates the following definition.
Definition 2.1: Let w(a1, . . . , ak) be a kth-order recurrence and p be a prime. For fixed
integers n ≥ 0, r > e, and c such that e ≤ c < r, we call h(pc) = h′ a general special restricted
period of (w) with respect to wn modulo pr if h(pc) < h(pr) and the sequence w∗m = wn+mh′

satisfies a first-order recursion relation w∗m+1 ≡ M∗w∗m (mod pr) for some rational integer
M∗. The integer M∗ = M∗(n, h(pc), pr) (defined up to congruence modulo pr) is called a
general special multiplier of (w) with respect to wn modulo pr. If c is the least positive integer
greater than or equal to e such that h(pc) is a general special restricted period of (w) with
respect to wn modulo pr, then h(pc) is called the principal special restricted period of (w) with
respect to wn modulo pr.

We note that if e ≤ c < r, h′ = h(pc), and wn 6≡ 0(mod p), then M∗(n, h(pc), pr) ≡
wn+h′w−1

n (mod pr).
Example 2.2: Consider the Fibonacci sequence u(1,−1). Here h(34) = 108 and M(34) ≡ 80
(mod 34). Let h∗ = h(32) = 12 and h′ = h(3) = 4. We note that if u∗i = u1+h∗i = u1+12i, then
u∗i+1 ≡ 71u∗i (mod 34), while if u′i = u1+h′i = u1+4i, then (u′i) does not satisfy a first-order
recursion relation modulo 24. Hence, h(32) = 12 is the principal special restricted period of
u(1,−1) with respect to u1 modulo 34, while

M∗(1, h(32), 34) = M∗(1, 12, 81) ≡ 71 (mod 34)

is the principal special multiplier of (u) with respect to u1(mod 34).
We further observe that if h′′ = h(33) = 36 and u′i

′ = u1+h′′i = u1+36i, then ui+1
′′ ≡ 53

(mod 34). Thus, h(33) = 36 is a nonprincipal general special restricted period of (u) with
respect to u1 (mod 34) and

M∗(1, h(33), 34) = M∗(1, 36, 81) ≡ 53 (mod 34)

is a nonprincipal general special multiplier of (u) with respect to u1 (mod 34). Since h(33) =
3 · h(32), it follows from (2.4) that

M∗(1, h(33), 34) ≡ 53 ≡ [M∗(1, h(32), 34)]3 ≡ 713 (mod 34).

Before presenting our main theorem, we will need some results and definitions concerning
regular and p-regular recurrences. Given the recurrence w(a1, . . . , ak), we define the kth-order
determinant

An(w) =

∣∣∣∣∣∣∣∣∣
wn wn+1 . . . wn+k−1

wn+1 wn+2 . . . wn+k

. . . . . . . . . . . .

wn+k−1 wn+k . . . wn+2k−2

∣∣∣∣∣∣∣∣∣ . (2.5)

It is known that w(a1, . . . , ak) is regular if and only if A0(w) 6= 0. By Heymann’s theorem [4,
Chapter 12.12],

An(w) = an
kA0(w). (2.6)
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Given the prime p, the recurrence (w) is called p-regular if

gcd(A0(w), p) = 1. (2.7)

We note that w(a1, . . . , ak) is p-regular if and only if (w), when reduced modulo p, does not
satisfy a recursion relation of order less than k. Notice that by (2.6), if w(a1, . . . , ak) is p-
regular, then An(w) 6≡ 0 (mod p) for all n ≥ 0. We observe that A0(u) = (−1)k(k−1)/2, and
thus, u(a1, . . . , ak) is p-regular for all primes p. If w′(a1, . . . , ak) is a recurrence satisfying (2.1)
with initial terms w′0, . . . , w

′
k−1 in R such that gcd((A0(w′)), (p)) = (1), we say that (w′) is

(p)-regular, where (A0(w′)) and (p) are principal ideals in R.
Let w(a1, . . . , ak) be p-regular and w′(a1, . . . ak) be any other recurrence satisfying (2.1)

with initial terms w′0, w
′
1, . . . , w

′
k−1 in R and not necessarily (p)-regular. Then (2.7) together

with Cramer’s rule imply the existence of algebraic integers c0, c1, . . . , ck−1 in R (which are all
in Z if w′0, . . . , w

′
k−1 are all in Z) such that

c0w0 + c1w1 + . . . + ck−1wk−1 ≡ w′0 (mod (pr))
c0w1 + c1w2 + . . . + ck−1wk ≡ w′1 (mod (pr))
. . . . . . . . . . . . . . . . . . . . . . . . . . .

c0wk−1 + c1wk + . . . + ck−1w2k−2 ≡ w′k−1 (mod (pr)).

It now follows by the recursion relation defining both w(a1, . . . , ak) and w′(a1, . . . , ak) that for
all n,

w′n ≡ c0wn + c1wn+1 + · · ·+ ck−1wn+k−1 (mod (pr)).

Therefore, w′(a1, . . . , ak) has the period, restricted period, and multiplier modulo pr of the
p-regular recurrence w(a1, . . . , ak) as a general period, general restricted period, and general
multiplier modulo (pr), respectively. Moreover, it follows that all p-regular recurrences have
the same period, restricted period, and multiplier modulo pr. Further, all p-regular recurrences
therefore have the same value for e(p).

We say that the recurrence w(a1, . . . , ak) is degenerate if αi/αj is a root of unity for some
pair of distinct characteristic roots αi and αj , where 1 ≤ i < j ≤ t. Let p be an odd prime.
Since u(a1, . . . , ak) is p-regular for all odd primes p, it follows that if w(a1, . . . , ak) is any p-
regular recurrence, then e(p) = ∞ if and only if uh(p)+i = 0 for i = 0, 1, . . . , k−2. By Corollary
C.1 on page 38 of [5], this occurs only if w(a1, . . . , ak) is a degenerate sequence. (Note that
u(a1, . . . , ak) is also then degenerate.)

The following theorem determines the value of h(pr) for p-regular recurrences w(a1, . . . , ak)
in terms of h(pe) when r ≥ e.
Theorem 2.3: Let w(a1, . . . , ak) be a p-regular recurrence for which e(p) < ∞. Suppose that
r ≥ e. Then h(pr) = pr−eh(pe).

Proof: This is proved in Theorem 1.5.18 on pages 24-25 of [6].

3. THE MAIN THEOREM

Theorem 3.1: Let k ≥ 2 and let w(a1, . . . , ak) be a nondegenerate regular recurrence with
ak 6= 0, initial terms w0, . . . , wk−1 all in Z, and distinct characteristic roots α1, . . . , αt. Let the
multiplicity of αi be mi (1 ≤ i ≤ t) and suppose that m1 ≤ 2 and m2 = m3 = · · · = mt = 1.
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Let p be a rational prime such that p 6 | akA0(w). If k ≥ 3, suppose further that p 6 | D̂.
Then (w) is p-regular, purely periodic modulo pr, and e(p) < ∞. Suppose that r > e. Let
r∗ = max(dr/2e, e). Suppose that n is a fixed nonnegative integer such that wn 6≡ 0 (mod p).

Then h(pr∗) = h∗ is a general special restricted period of (w) with respect to wn modulo
pr and

M∗(n, h(pr∗), pr) ≡ wn+h∗w−1
n (mod pr)

is a general special multiplier of (w) with respect to wn modulo pr.
Moreover, if k = 2, then h(pr∗) is the principal special restricted period of (w) with respect

to wn modulo pr and M∗(n, h(pr∗), pr) is the principal multiplier of (w) with respect to wn

modulo pr.
Example 3.2: When k ≥ 3 and r > e, we shall see below that while Theorem 3.1 guarantees
that if w(a1, . . . , ak) is a p-regular recurrence and wn 6≡ 0 (mod p), then h(pr∗) is a general
special restricted period of (w) with respect to wn modulo pr, it sometimes happens that h(pr∗)
might not be the principal restricted period. We will also present an example in which h(pr∗)
is the principal restricted period of (w) with respect to wn modulo pr.

For both examples, we consider the 5-regular unit sequence u(4, 1,−6) modulo 53. Then
e(5) = 1 and r∗ = 2. We note that u(4, 1,−6) has the characteristic polynomial

f(x) = x3 − 4x2 + x + 6 = (x + 1)(x− 2)(x− 3)

and that D = D̂ = 144. By Theorem 3.1, h(5r∗) = h(52) = 20 is a general restricted period of
(u) with respect to u2 ≡ 1 modulo 53 and

M∗(2, h(52), 53) = M∗(2, 20, 125) ≡ u22u
−1
2 ≡ 51(1−1) ≡ 51 (mod 125)

is a general special multiplier of (u) with respect to u2 modulo 53. However, by inspection, one
sees that h(5) = 4 is the principal special restricted period with respect to u2 modulo 53 and

M∗(3, h(52), 53) = M∗(3, 20, 125) ≡ u23u
−1
3 ≡ 4(4−1) ≡ 1 (mod 125)

is the principal special multiplier of (u) with respect to u3 modulo 53.
From looking at numerous examples, it appears that for k ≥ 3, h(pr∗) is usually the prin-

cipal special restricted period of w(a1, . . . , ak) with respect to wn modulo pr, but we have no
proof of this.

4. NECESSARY LEMMAS

Before proving Theorem 3.1, we will need the following lemmas.
Lemma 4.1: Let w(a1, . . . , ak) be a regular recurrence with ak 6= 0 and distinct characteristic
roots αi with multiplicity mi (1 ≤ i ≤ t). Let

b = max
1≤i≤t

(mi − 1).

Let p be a rational prime such that p > b and p 6 | akD̂.
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(a) There exist uniquely determined polynomials fi ∈ K[x] of degree less than mi (i =
1, 2, . . . , t) such that

wn =
t∑

i=1

fi(n)αn
i . (4.1)

Moreover, each of the coefficients of fi(n) can be expressed as a fraction r1/r2, where
r1, r2 ∈ R, and the prime ideal P divides r2 only if

P | b!α1α2 . . . αt

∏
1≤i<j<t

(αi − αj). (4.2)

(b) There exist polynomials Fi of degree less than mi (1 ≤ i ≤ t) with coefficients which are
well-defined elements of the quotient ring R/(pr) such that

wn ≡
t∑

i=1

Fi(n)αn
i (mod (pr)). (4.3)

(c) Let fi be a polynomial with coefficients in K of degree less than mi (i = 1, 2, . . . , t). Let
{w′n}∞n=0 be a sequence defined by

w′n =
t∑

i=1

fi(n)αn
i . (4.4)

Then (w′) satisfies the same recursion relation (2.1) as w(a1, . . . , ak).
Proof: (a) The unique expression of (w) as given in (4.1) is proved in [5, Theorem C.1(a),

pp. 33-34]. The expression of the coefficients of fi(n) as a fraction in K of the form r1/r2,
where r1, r2 ∈ R, is determined by means of a partial fraction decomposition and by making
use of the binomial theorem for negative integral exponents. By examining this proof, one sees
that the only prime ideals in R which can possibly divide the denominators of the coefficients
of fi for 1 ≤ i ≤ t are those dividing

b!α1α2 · · ·αt

∏
1≤i<j<t

(αi − αj). (4.5)

(b) By part (a), there exist polynomials fi (1 ≤ i ≤ t) such that

wn =
t∑

i=1

fi(n)αn
i , (4.6)

where deg(fi(n)) < mi and the coefficients of fi can be expressed in the form r1/r2, where
r1, r2 ∈ R and the only prime ideals dividing r2 are those dividing

b!α1α2 · · ·αt

∏
1≤i<j<t

(αi − αj).
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Since p > b, p 6 | ak = αm1
1 αm2

2 · · ·αmt
t , and p 6 | D̂ =

∏
1≤i<j<t

(αi − αj)2, r−1
2 exists in the

quotient ring R/(pr). Reducing equation (4.6) modulo (pr), the assertion is proved.
(c) This is proved in Theorem C.1(b) on pages 33-34 of [5].

Remark 4.2: We note that in the proof of Lemma 4.1, we do not necessarily assume unique
factorization in R, but we make use of the unique factorization of ideals in R as a product of
prime ideals.

In part (b) of Lemma 4.1, we talk about the coefficients of Fi(n) in (4.3) being well-defined
in the quotient ring R/(pr). We give an example in which the coefficients of Fi(n) are not
well-defined in R/(pr), and, in fact, wn reduced modulo (pr) cannot be expressed in the form
given in congruence (4.3). Consider the Fibonacci sequence u(1,−1) modulo (pr), where p = 5
and r = 2. Then α1 = (1+

√
5)/2, α2 = (1−

√
5)/2, and α1−α2 =

√
5. By the Binet formula,

un =
1√
5
αn

1 −
1√
5
αn

2 (4.7)

if α1 6= α2 and
un = nαn−1 (4.8)

if α1 = α2. Note that

gcd((α1 − α2), (52)) = gcd((
√

5, (52)) = (
√

5) 6= (1). (4.9)

However,
√

5
−1

is not well-defined modulo (52). Thus, (4.7) cannot hold as a congruence
modulo (52), and by inspection, (4.8) is not satisfied for all n as a congruence modulo (52). In
particular, we obtain

u2 ≡ 2α1 ≡ 1 +
√

5 ≡ 1 (mod (25)).

This implies that
√

5 ≡ 0 (mod (25)), which is a contradiction. We note on the other hand
that although gcd((α1 − α2), (5)) = (

√
5) 6= (1), we can express un modulo (5) by means of the

congruence

un ≡ nαn−1 ≡ n[(1 +
√

5)2−1]n−1 ≡ n[(1 + 0)2−1]n−1 ≡ n3n−1 ≡ 3−1n3n (mod (5)).

Lemma 4.3: Let w(a1, . . . , ak) be a regular recurrence with ak 6= 0 and distinct characteristic
roots αi (i = 1, 2, . . . , t) with multiplicity mi as given in (2.2). Suppose that

wn =
t∑

i=1

fi(n)αn
i (4.10)

for some polynomials fi, each of degree less than mi, with coefficients in K. Let

b = max
1≤i≤t

(mi − 1).
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Define (w′) by
w′m = wn+cm, (4.11)

where n is a fixed nonzero integer and c is a fixed positive integer. Then (w′) satisfies the
kth-order recursion relation given by

w′m+k = a
(c)
1 w′m+k−1 − a

(c)
2 w′m+k−2 + · · ·+ (−1)k+1a

(c)
k w′m, (4.12)

where the parameters a
(c)
1 , a

(c)
2 , . . . , a

(c)
t are all rational integers. The characteristic polynomial

of (w′) is given by

g(x) = xk − a
(c)
1 xk−1 + · · ·+ (−1)ka

(c)
k =

t∏
i=1

(x− αc
i )

mi , (4.13)

where the αi’s and mi’s are as given in (2.2). Moreover,

w′m =
t∑

i=1

[αn
i fi(n + cm)](αc

i )
m =

t∑
i=1

gi(m)(αc
i )

m, (4.14)

where the polynomials fi are as given in (4.10). Then deg(gi) = deg(fi) < mi (1 ≤ i ≤ t).
Moreover, the coefficients of gi can all be expressed in the form s1/s2, where s1, s2 ∈ R and a
prime ideal P divides s2 only if

P | b!α1α2 · · ·αt

∏
1≤i<j≤t

(αi − αj). (4.15)

Proof: All the assertions except the last one are proved in [7]. The assertion given in
(4.15) follows from (4.14) and Lemma 4.1 (a).
Lemma 4.4: Let w(a1, . . . , ak) be a p-regular recurrence such that p 6 | ak and with distinct
characteristic roots α1, . . . , αt. Let r∗ be defined as in Theorem 3.1. Let h∗ = h(pr∗) and M∗

be an integer such that M∗ ≡ M(pr∗) (mod (pr)). Then

αh∗

i ≡ M∗ (mod (pr∗))

for 1 ≤ i ≤ t.
Proof: First note that for 1 ≤ i ≤ t, the sequence {αn

i }∞n=0 with terms in R satisfies the
same recursion relation (2.1) as w(a1, . . . , ak), though it also satisfies the first-order relation

αn+1
i = αiα

n
i

with parameter αi in R. Thus, by our earlier discussion, {αn
i } has h(pr∗) as a general restricted

period modulo (pr∗) and M∗ as a general multiplier modulo (pr∗). Hence,

αh∗

i ≡ M∗α0
i ≡ M∗ (mod (pr∗))
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for 1 ≤ i ≤ t.

5. PROOF OF THE MAIN THEOREM

Proof of Theorem 3.1: Since p 6 | A0(w), we see that (w) is p-regular. Moreover, (w)
is purely periodic modulo pr, as p 6 | ak. The fact that (w) is nondegenerate guarantees that
e(p) < ∞. We note that r∗ < r, since r > e. Also, h∗ = h(pr∗) < h(pr) by Theorem 2.3. The
result for the case in which k = 2 and p is an odd prime was proved in Theorem 3.5 of [1].
The proof of Theorem 3.5 of [1] carries over completely to the case in which k = 2 and p = 2
upon making use of Theorem 2.3 of this paper.

Now assume that k ≥ 3. Let M∗ be a rational integer such that M∗ ≡
wn+h∗w−1

n (mod pr). By (2.2) and the hypotheses of Theorem 3.1, w(a1, . . . , ak) has char-
acteristic polynomial

f(x) =
t∏

i=1

(x− αi)mi , (5.1)

where m1 = 1 or 2 and m2 = m3 = · · · = mt = 1. By Lemma 4.1 (a), there exist polynomials
fi (i = 1, 2, . . . , t) with coefficients in K such that

wn =
t∑

i=1

fi(n)αn
i , (5.2)

where deg(f1) < m1 ≤ 2 and deg(fi) = 0 for 2 ≤ i ≤ t.
Let {w∗m}∞m=0 be the sequence defined by

w∗m = wn+mh∗ . (5.3)

By Lemma 4.3, (w∗) satisfies the kth-order recursion relation

w∗m+k = a
(h∗)
1 w∗m+k−1 − a

(h∗)
2 w∗m+k−2 + · · ·+ (−1)k+1a

(h∗)
k w∗m (5.4)

with characteristic polynomial

G(x) =
t∏

i=1

(x− αh∗

i )mi , (5.5)

where the parameters a
(h∗)
i are rational integers for 1 ≤ i ≤ t and the multiplicities mi are the

same as the multiplicities given in (5.1). Moreover, by (4.14),

w∗m =
t∑

i=1

gi(m)(αh∗

i )m, (5.6)
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where the polynomial gi (1 ≤ i ≤ t) has coefficients in K and has the same degree as the
polynomial fi given in (5.2). Since w(a1, . . . , ak) is nondegenerate, the characteristic roots αh∗

i

are distinct for 1 ≤ i ≤ t. If deg(g1) = 0, let g1(x) = c1, where c1 ∈ K. We let
gi(x) = ci (2 ≤ i ≤ t), where ci ∈ K. Noting that p 6 | akD̂ and that mi ≤ 2 for 1 ≤ i ≤ t,
it follows from Lemma 4.1 (b) and Lemma 4.3 that the coefficients of fi and gi are both
well-defined modulo (pr). Hence, we see that

w∗m ≡
t∑

i=1

gi(m)(αh∗

i )m (mod(pr)), (5.7)

where the coefficients of gi(m) can be taken to be elements of R. We note that the characteristic
roots αh∗

i (1 ≤ i ≤ t) of G(x) are not necessarily distinct modulo (pr).
Let H(x) be the polynomial defined by

H(x) = (x− αh∗

1 )2 if m1 = 2 (5.8)

and
H(x) = (x−M∗)2 if m1 = 1. (5.9)

Note that if m1 = 2, then αh∗

1 ∈ Z, since each of the parameters a
(h∗)
1 , a

(h∗)
2 , . . . , a

(h∗)
k is in

Z. (This observation is not absolutely necessary for our proof, but we use it for convenience.)
Let w′(a′1, a

′
2) be a p-regular second-order linear recurrence having H(x) as its characteristic

polynomial. Then (w′) satisfies the recurrence relation

w′i+2 = 2αh∗

1 w′i+1 − α2h∗

1 w′i (5.10)

if m1 = 2 and
w′i+2 = 2M∗w′i+1 − (M∗)2w′i (5.11)

if m1 = 1. Note that, in particular, the second-order unit sequence u(a′1, a
′
2) is p-regular.

Our proof will proceed by first showing that the sequence {(M∗)i}∞i=0 satisfies the same
second-order recursion relation modulo (pr) as (w′) does. We will next show that the kth-order
recurrence (w∗) also satisfies this same second-order recursion relation modulo (pr). We will
be interested in particular in the sequence {(M∗)iw∗0}∞i=1. This sequence satisfies the same
second-order recursion relation as {(M∗)i}∞i=1 modulo (pr), since multiples of a recurrence
modulo (pr) satisfy that same recursion relation (mod (pr)). Using (5.3) and the definition of
M∗ at the beginning of Section 5, we see that

w∗0 = wn and w∗1 ≡ M∗w∗0 (mod pr). (5.12)

Since the terms of (w∗) are all in Z, it follows that

w∗m ≡ (M∗)mw∗0 (mod pr) (5.13)

for all nonnegative integers m. This will imply that M∗ is a general special multiplier of
w(a1, . . . , ak) with respect to wn modulo pr.
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To continue with our proof, we now demonstrate that

H(M∗) ≡ 0 (mod (pr)). (5.14)

Noting that
(pr∗)2 ≡ 0 (mod pr) (5.15)

and that
αh∗

i ≡ M∗ (mod (pr∗)) (5.16)

for 1 ≤ i ≤ t by Lemma 4.4, it follows from (5.8) and (5.9) that (5.14) holds. This implies that
the sequence {(M∗)i}∞i=0 satisfies the same recursion relation modulo (pr) as w′(a′1, a

′
2) does.

We now show that, for a fixed i, the sequence {ci(αh∗

i )m}∞m=0 satisfies the same second-
order recursion relation modulo (pr) as w′(a′1, a

′
2) does. We first consider the case in which

mi = 1. By hypothesis, this always occurs if 2 ≤ i ≤ t. In this case, we also treat the situation
in which i = 1 and m1 = 1. By (5.9), (5.15), and (5.16), we see that

H(αh∗

i ) ≡ 0 (mod (pr)) (5.17)

if 2 ≤ i ≤ t or both i = 1 and m1 = 1. Thus, {(αh∗

i )m}∞m=0 and hence, {ci(αh∗

i )m}∞m=0 both
satisfy the same second-order recursion relation modulo (pr) as w′(a′1, a

′
2) when 2 ≤ i ≤ t or

i = 1 and m1 = 1.
Next, we consider the remaining case in which i = 1 and m1 = 2. Recall that m1 = 1 or 2.

Then by (5.8),
H(αh∗

1 ) = 0. (5.18)

Thus, by Lemma 4.1 (c), (5.8), and (5.18), the sequence {g1(m)(αh∗

1 )m}∞m=0 satisfies the same
recursion relation as w′(a′1, a

′
2) = w′(2αh∗

1 ,−α2h∗

1 ) does. Reducing modulo (pr), we see that
the sequence {g1(m)(αh∗

1 )m}∞m=0 satisfies the same recursion relation modulo (pr) as w′(a′1, a
′
2)

does.
Noting that

w∗m ≡
t∑

i=1

gi(m)(αh∗

i )m (mod (pr))

and that linear combinations of linear recurrences all satisfying a particular recursion relation
modulo (pr) also satisfy that same recursion relation (mod (pr)), we see that the kth-order
recurrence w∗m satisfies the same second-order recursion relation modulo (pr) as w′(a′1, a

′
2)

does. The result now follows from our earlier discussion.
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