Write $N = p_1^{2\beta_1} \cdots q_k^{2\beta_k}$, where p, q_1, \ldots, q_k are distinct odd primes and $p \equiv \alpha \equiv 1 \pmod 4$. An odd perfect number, if it exists, must have this form. McDaniel proved in 1970 that N is not perfect if all β_i are congruent to 1 (mod 3). Hagis and McDaniel proved in 1975 that N is not perfect if all β_i are congruent to 17 (mod 35). We prove that N is not perfect if all β_i are congruent to 32 (mod 65). We also show that N is not perfect if all β_i are congruent to 2 (mod 5) and either $7 | N$ or $3 | N$. This is related to a result of Iannucci and Sorli, who proved in 2003 that N is not perfect if each β_i is congruent either to 2 (mod 5) or 1 (mod 3) and $3 | N$.

1. INTRODUCTION

Write

$$N = p^{2\alpha}q_1^{2\beta_1} \cdots q_k^{2\beta_k},$$

(1.1)

where p, q_1, \ldots, q_k are distinct odd primes, $\alpha, \beta_1, \ldots, \beta_k \in \mathbb{N}$, and $p \equiv \alpha \equiv 1 \pmod 4$. Euler proved that an odd perfect number, if it exists, must have the form (1.1). Let \mathcal{O} denote the set of odd perfect numbers. In the case $\beta_1 = \cdots = \beta_k = \beta$, Hagis and McDaniel [3, p. 27] conjectured that $N \not\in \mathcal{O}$. This conjecture was already proved for $\beta = 1$ in 1937 [7] and for $\beta = 2$ in 1941 [5]. More recently, the conjecture has been proved for some larger values of β, including $\beta = 3, 5, 6, 8, 11, 12, 14, 17, 18, 24$, and 62 (see [1]). We now describe some infinite classes of β for which the conjecture is known to hold. Write

$$\gamma_i := 2\beta_i + 1, \quad 1 \leq i \leq k.$$

(1.2)

The assertion

$$d | \gamma_i \quad \text{for all } i \Rightarrow N \not\in \mathcal{O}$$

(1.3)

was proved for $d = 3$ by McDaniel [6] in 1970, and for $d = 35$ by Hagis and McDaniel [3] in 1975. In particular, this proves the conjecture for the infinite classes $\beta \equiv 1 \pmod 3$ and $\beta \equiv 17 \pmod {35}$.

In Theorem 2 (see Section 3), we prove (1.3) for $d = 65$, which in particular proves the conjecture for all $\beta \equiv 32 \pmod {65}$. When d is a product of two primes > 3, the only values of d for which (1.3) is known are now $d = 35, 65$. There are no prime values $d > 3$ for which (1.3) is known.
Recently, Iannucci and Sorli [4] extended the result of McDaniel [6] by proving that
\[(3|N \text{ and } \gcd(\gamma_i, 15) > 1 \text{ for all } i) \Rightarrow N \not\in \mathcal{O}.\] (1.4)
(This has an important application to bounds for the number of prime factors in odd perfect numbers.) We can prove the following related results:
\[(3|N \text{ and } 7|\gamma_i \text{ for all } i) \Rightarrow N \not\in \mathcal{O},\] (1.5)
\[(7|N \text{ and } 5|\gamma_i \text{ for all } i) \Rightarrow N \not\in \mathcal{O},\] (1.6)
\[(5|N \text{ and } 77|\gamma_i \text{ for all } i) \Rightarrow N \not\in \mathcal{O},\] (1.7)
\[(3|N \text{ and } 143|\gamma_i \text{ for all } i) \Rightarrow N \not\in \mathcal{O},\] (1.8)
\[(13|N \text{ and } 55|\gamma_i \text{ for all } i) \Rightarrow N \not\in \mathcal{O}.\] (1.9)
Of the last five assertions, we prove here only (1.6); see Theorem 1. Our proofs, like the proofs of McDaniel et. al., depend on the following result of Kanold [5]:
\[(N \in \mathcal{O} \text{ and } d|\gamma_i \text{ for all } i) \Rightarrow d^4|N.\] (1.10)

2. PRELIMINARIES

Let \(\sigma(n)\) denote the sum of the positive divisors of \(n\). Assume for the purpose of contradiction that \(N \in \mathcal{O}\), so that, as in [4, eq.(2)],
\[2N = \sigma(N) = \sigma(p^\alpha) \prod_{i=1}^{k} \sigma(q_i^{2\beta_i}).\] (2.1)
Define, for prime \(q\) and integer \(d > 1,
\[f(q) := f_d(q) = \sigma(q^{d-1}) = (q^d - 1)/(q - 1)\] (2.2)
and
\[h(q) := h_d(q) = \sigma(q^{d-1})/q^{d-1}.\] (2.3)
If \(d|\gamma_i\) for all \(i\), then for all \(i\),
\[f_d(q_i) \text{ divides } f_{\gamma_i}(q_i),\] (2.4)
so \(f_d(q_i)\) divides \(N\) by (2.1) - (2.2). Since \(\alpha\) is odd,
\[(p + 1)/2 \text{ divides } \sigma(p^\alpha),\] (2.5)
so \((p + 1)/2\) divides \(N\) by (2.1). As in [4, p. 2078], it is easily seen that for odd primes \(r > q\) and integers \(a, b, c\) with \(a > 1, c > b > 1,\)
\[h_c(q) > h_b(q) > h_a(r) \geq (r + 1)/r.\] (2.6)
Moreover, for odd prime \(u \leq p \),
\[
h_a(u)(p + 1)/p \geq h_a(p)(u + 1)/u,
\]
(2.7)
since \(h_a(x)^{-1}(x + 1)/x \) is an increasing function in \(x \) for \(x > 1 \).

Let \(S \) denote the set of prime divisors of \(N \). Suppose that \(d | \gamma_i \) for all \(i \). Then by (2.1) and (2.6),
\[
2 = \frac{\sigma(N)}{N} = \frac{\sigma(p^\alpha)}{p^\alpha} \prod_{i=1}^k h_{\gamma_i}(q_i) \geq \frac{p + 1}{p} \prod_{i=1}^k h_d(q_i) = \frac{p + 1}{p} \prod_{s \in S \atop s \neq p} h_d(s).
\]
(2.8)

Let \(T \) be any subset of \(S \) containing a prime \(u \) satisfying the condition that \(u \leq p \) if \(p \in T \).
We claim that
\[
\frac{p + 1}{p} \prod_{s \in S \atop s \neq p} h_d(s) \geq \frac{u + 1}{u} \prod_{t \in T \atop t \neq u} h_d(t).
\]
(2.9)

In the case \(p \notin T \), (2.9) follows because
\[
\prod_{s \in S \atop s \neq p} h_d(s) \geq \prod_{t \in T} h_d(t) \geq \frac{u + 1}{u} \prod_{t \in T \atop t \neq u} h_d(t);
\]
in the case \(p \in T \), (2.9) follows from (2.7).

Our objective is to find a set \(T = T(d, u) \) as above such that
\[
\frac{u + 1}{u} \prod_{t \in T \atop t \neq u} h_d(t) > 2.
\]
(2.10)

In view of (2.8) - (2.9), this will provide the desired contradiction to the assumption that \(N \in \mathcal{O} \).

3. THEOREMS AND PROOFS

We begin with a lemma. Recall that \(S \) is the set of prime divisors of \(N \).

Lemma: If \(N \in \mathcal{O} \) and \(13 | \gamma_i \) for all \(i \) and \(\gcd(p + 1, 21) = 1 \), then \(13 \in S \) and \(W \subset S \), where
\[
W = \{53, 79, 131, 157, 313, 443, 521, 547, 677, 859, 911, 937, 1093, 1171, 1223, 1249, 1301, 1327, 1483, 1613, 1847\}
\]
is the set of primes \(\equiv 1 \pmod{13} \) less than 1850.
Proof: By (1.10) with $d = 13$, we have $13 \in S$. (Bold font is used to keep track of primes confirmed to lie in S.)

A list of primes
\[r_1, r_2, \ldots, r_n \tag{3.1} \]
is called a d-chain (or simply a chain) if $r_1 \in S$ and $r_{i+1} | f_d(r_i)$ for each $i < n$, where f_d is defined in (2.2). In this proof, we take $f = f_d$ with $d = 13$. If $r_i \neq p$ for each $i < n$, then every prime in the chain (3.1) lies in S, by (2.4). An example of a chain is
\[13, 264031, (882..981), 79. \tag{3.2} \]

Here $(882..981)$ is a 64-digit prime whose center digits can be easily retrieved by factoring $f(264031)$. By hypothesis, the first and third primes in (3.2) cannot be p, because they are $\equiv 6 \pmod{7}$. The second and fourth primes cannot be p since they are $\equiv 3 \pmod{4}$. We know $13 \in S$, so $264031 \in S$ because $264031 | f(13)$. Similarly, $(882..981) \in S$ since $(882..981) | f(264031)$. Finally, $79 | f((882..981))$, so the chain (3.2) confirms that $79 \in S$.

None of the following chains can have p preceding its terminal prime r_n, and so each chain confirms that r_n (in bold) lies in S:

\[13, 53; \]
\[13, 264031, (882..981), 157; \]
\[79, (551..681), 1249; \]
\[79, (551..681), 50909, 499903; \]
\[499903, 1483; \]
\[499903, 32579, (313 \text{ and } 937); \]
\[937, 599; \]
\[599, 847683, (443 \text{ and } 1613); \]
\[599, 45137, 6397, (677 \text{ and } 911); \]
\[937, (111..851), 14561, 42304159; \]
\[42304159, 3251; \]
\[42304159, (766..419), (46073), (976..861), 859; \]
\[3251, 131; \]
\[1483, (301..587), 1223; \]
\[1223, 920011, 2081; \]
\[2081, (547 \text{ and } 1171); \]
\[157, (281..937), 5669, 168247, (395..237), 1327; \]
\[859, (183..471), 2029; \]
\[499903, 32579, (468..021). \]

Next consider the pair of chains
\[
\begin{align*}
\{313, (240..891), 9907, 1847; \\
1249, (555..427), 1847.
\end{align*}
\]
The two chains in the pair have no common primes except the terminal prime 1847. Thus, while \(p \) might precede 1847 somewhere in one chain or the other, \(p \) cannot precede 1847 in both chains. Hence (at least) one chain in the pair does not have an occurrence of \(p \) preceding 1847, and that chain confirms that 1847 \(\in S \). We now can form the single chains

\[
\begin{align*}
1847, & \quad 521; \\
521, & \quad (317..359), \quad 1951; \\
1951, & \quad (193..027), \quad 4759, \quad 1301.
\end{align*}
\]

It remains to show that 1093 \(\in S \). This is accomplished with the following pair of chains:

\[
\begin{align*}
\{ & 2029, 65677, 18038593, 1093; \\
& (468..021), 138581, (648..279), (112..139), 1873, (110..713), (582..641), \\
& (578..461), 1093. \}
\end{align*}
\]

Theorem 1: Suppose that \(5 | \gamma_i \) for all \(i \), and \(N \in \mathcal{O} \). Then \(\gcd(N, 21) = 1 \) and \(p \equiv 1 \pmod{12} \).

Proof: By (1.10) with \(d = 5 \), we have \(5 \in S \).

Suppose for the purpose of contradiction that \(p \equiv 2 \pmod{3} \). Then by (2.5), \(3 \in S \). As in (2.2), write \(f = f_d \) with \(d = 5 \). Since \(f(3) = 11^2 \), (2.4) implies that \(11 \in S \). Since \(5 | \gamma_i \) for all \(i \) and \(5^4 | N \) by (1.10), then, in the notation of (2.3) with \(d = 5 \), we obtain the contradiction

\[
2 = \sigma(N)/N > h(3)h(5)h(11) > 2.05.
\]

This proves that \(p \equiv 1 \pmod{12} \).

We have seen that \(5 \in S \). We now confirm additional primes in \(S \) by using \(d \)-chains as in the Lemma, but with \(d = 5 \) instead of \(d = 13 \). The chains

\[
\begin{align*}
5, & \quad (11 \text{ and } 71); \\
11, & \quad 3221, (195..931), \quad 41;
\end{align*}
\]

confirm that 11, 71, and 41 lie in \(S \), since neither 5 nor 3221 can equal \(p \) (as \(p \equiv 1 \pmod{12} \)). Employing many such chains, we can construct a large set \(Y \) of primes in \(S \) consisting of 5 together with most of the primes \(\equiv 1 \pmod{5} \) which are \(< 10^4 \). The set \(Y \) and the long list of chains used to construct \(Y \) may be found at [2].

Suppose that \(7 | N \). With \(T = Y \cup \{7\} \), we arrive at the contradiction (2.10) with \(u = 61, d = 5 \). Thus \(7 \nmid N \). The same argument shows that \(3 \nmid N \) (alternatively, \(3 \nmid N \) follows from (1.4)). This completes the proof of Theorem 1. \(\square \)

Theorem 2: If \(65 | \gamma_i \) for all \(i \), then \(N \notin \mathcal{O} \).

Proof: Assume for the purpose of contradiction that \(65 | \gamma_i \) for all \(i \) and \(N \in \mathcal{O} \). From (1.10), we know that \(13 \in S \). Let \(Y \) be as in the proof of Theorem 1, and let \(W \) be as defined in the Lemma. In view of Theorem 1, the hypotheses of the Lemma are satisfied, and so \(Y \cup W \subset S \). With

\[
T = Y \cup W \cup \{13\},
\]

126
we obtain the desired contradiction (2.10) with \(u = 61, d = 65 \). This completes the proof of Theorem 2. □

REFERENCES

AMS Classification Numbers: 11A25, 11B83, 11Y55