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ABSTRACT

In this paper, we show that the diophantine equation Fn = pa ± pb + 1 has only finitely
manypositive integer solutions (n, p, a, b), where p is a prime number and max{a, b} ≥ 2.

1. INTRODUCTION

The Fibonacci sequence denoted by (Fn)n≥0 is the sequence of integers given by F0 =
0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.

There are many papers in the literature which address diophantine equations involving
Fibonacci numbers. A long standing problem asking whether 0, 1, 8 and 144 are the only
perfect powers in the Fibonacci sequence was recently confirmed by Bugeaud, Mignotte and
Siksek [2]. An extension of such a result to diophantine equations involving perfect powers in
products of Fibonacci numbers whose indices form an arithmetic progression was obtained in
[5]. For example, the only instance in which a product of consecutive terms in the Fibonacci
sequence is a perfect power is the trivial case F1F2 = 1.

In a different direction, there has been a lot of activity towards studying arithmetic prop-
erties of those positive integers n which admit nice representations in a fixed base b > 1. For
example, finding all the perfect powers yq which are rep-units in some integer base x > 1
(with n ≥ 3 digits) reduces to the diophantine equation yq = xn−1

x−1 . All solutions of this last
diophantine equation are still not known, although particular instances of it have been dealt
with (see, for example, [3] for the case q = 2, or [1] for the case x = 10). All solutions of the
diophantine equation x2 = 2a ± 2b + 1 in positive integers (x, a, b) where found in [10], and
the more general equation diophantine equation x2 = pa± pb +1 in positive integer unknowns
(x, p, a, b) with p a prime number was treated in [4]. We mention a further result directly
related to the problem treated in this paper. Let p be a fixed prime. Pethö and Tichy (see
Theorem 2 in [8]), showed that there are only finitely many Fibonacci numbers of the form
Fn = pa + pb + pc with integers a > b > c ≥ 0; i.e., which have three digits of 1 in base p
and the remaining digits equal to zero. Their proof can be generalized to allow for three term
representations with digits 1 and some negative signs too. However, the proof of their result
uses the finiteness of solutions of S-unit equations, and as such is ineffective.

Throughout this paper, we use the Landau symbols O and o as well as the Vinogradov
symbols �, �, and � with their regular meanings and with the understanding that the
constants (respectively the convergence) implied by them is effectively computable. We recall
that A � B,B � A, and A = O(B) are all equivalent to the fact that the inequality |A| ≤ cB
holds with some positive constant c, and that A � B means that both A � B and A � B
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hold. For two positive integers u and v we use both gcd(u, v) and (u, v) for their greatest
common divisor.

2. MAIN RESULT

In this note, we prove the following theorem.
Theorem 1: The diophantine equation Fn = pa ± pb + 1 admits only finitely many, effec-
tively computable, positive integer solutions (n, p, a, b), where p is a prime number, n > 2 and
max{a, b} ≥ 2.

The proof of our Theorem follows closely the method of [6], where it was shown that
the similar looking diophantine equation Fn = pa ± pb has only finitely many positive integer
solutions (n, p, a, b) with p a prime number and max{a, b} ≥ 2.

3. PRELIMINARY RESULT

Let (Lk)k≥0 be the Lucas sequence given by L0 = 2, L1 = 1, and Lk+2 = Lk+1 + Lk for
all k ≥ 0. The following Lemma is instrumental for the proof of our main result Theorem 1.
Lemma 2: Let m ≥ n be two nonnegative integers such that m ≡ n (mod 2). Let δ ∈ {±1}
be 1 if m ≡ n (mod 4) and −1 otherwise. Then,

Fm − Fn = F(m−δn)/2L(m+δn)/2.

Proof: We write α = (1 +
√

5)/2 and β = (1−
√

5)/2. It is well-known that the formulae

Fn =
αn − βn

α− β
and Ln = αn + βn

hold for all nonnegative integers n. Then,

F(m−δn)/2L(m+δn)/2 =

(
α(m−δn)/2 − β(m−δn)/2

) (
α(m+δn)/2 + β(m+δn)/2

)
α− β

=
(αm − βm) + (αβ)(m−n)/2

(
α(1−δ)n/2β(1+δ)n/2 − α(1+δ)n/2β(1−δ)n/2

)
α− β

.

When m ≡ n (mod 4), we have that δ = 1, (m − n)/2 is even, and since αβ = −1, we have
that (αβ)(m−n)/2 = 1. Thus, the above formula becomes

F(m−n)/2L(m+n)/2 =
αm − βm + (βn − αn)

α− β
= Fm − Fn.
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When δ = −1, we have that (m − n)/2 is odd, and therefore (αβ)(m−n)/2 = −1. The above
formula becomes

F(m+n)/2L(m−n)/2 =
αm − βm − (αn − βn)

α− β
= Fm − Fn,

which completes the proof of the lemma.

4. THE PROOF OF THEOREM 1

We write the diophantine equation

Fn = pa ± pb + 1 (1)

as
Fn − 1 = pb(pa−b ± 1).

Since F1 = F2 = 1, it follows, by Lemma 2, that

F(n−δ)/2L(n+δ)/2 = pb(pa−b ± 1), (2)

where δ = 1 if n ≡ 1 (mod 4), δ = −1 if n ≡ −1 (mod 4), δ = 2 if n ≡ 2 (mod 4) and
δ = −2 if n ≡ 0 (mod 4). Since n > 2, it follows that the integer appearing in either side
of equation (2) is nonzero, therefore the instance in which a = b and the sign is −1 does not
occur. We may assume that n is as large as we wish, since when n is fixed, equation (2) shows
that both pb and pa−b±1 are divisors of the fixed nonzero integer F(n−δ)/2L(n+δ)/2, thus there
are only finitely many possibilities for p, a, and b, which are obviously effectively computable.

Since F(n−δ)/2|Fn−δ, L(n+δ)/2 | Fn+δ, and gcd(Fu, Fv) = F(u,v) holds for all positive
integers u and v, we get that

gcd
(
F(n−δ)/2, L(n+δ)/2

)
| gcd (Fn−δ, Fn+δ) | F2|δ| | F4.

It then follows that gcd
(
F(n−δ)/2, L(n+δ)/2

)
| 3. Equation (2) now shows that pb ≤ 3Lbn/2c+1.

In particular, pb � αn/2. From equation (2), we get that

pa−b ≥ pa−b + 1
2

≥ Fn − 1
2pb

≥ Fn − 1
6Lbn/2c+1

� αn/2.

In particular, a > b if n is sufficiently large. We next show that there exists a computable
constant c1 such that a < c1. We shall assume that a is large. Since

pb � αn/2 and pa−b � αn/2,

we get that pb � pa−b, therefore a ≥ 2b + O(1). We thus get that b/a < 2/3 if a > c2, where
c2 is some effectively computable constant.
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We now rewrite our diophantine equation (1) as

∣∣∣∣ 1√
5
αn − pa

∣∣∣∣ =
∣∣∣∣ 1√

5
βn ± pb + 1

∣∣∣∣ < 3pb < 3 (pa)2/3
.

The above inequality implies that pa and 1√
5
αn are very close one to another when n is large,

and therefore the inequality

∣∣∣∣ 1√
5
αn − pa

∣∣∣∣ <

(
max

{
1√
5
αn, pa

})3/4

holds for large values of n. An argument of Shorey and Stewart (see [9]) based on lower bounds
for linear forms in logarithms, now shows that there exists a computable absolute constant
c3 > c2 such that a < c3. Since a > b, we may assume that both a and b are fixed. We may
now set X = p, and look at the more general equation

Fn = Xa ±Xb + 1, (3)

in integer unknowns (n, X) with n positive.
We recall that in [7], all polynomials P (X) ∈ Q[X] of degree ≥ 2 such that the diophantine

equation Fn = P (X) admits infinitely many integer solutions (n, X) have been completely
classified. Such polynomials are related to the Chebyshev polynomials. Instead of applying
the above result, we will just prove that a polynomial of the form Xa±Xb+1, where a > b > 0,
does not have this property.

Inserting the equation Fn = Xa ±Xb + 1 into the well-known identity

L2
n = 5F 2

n ± 4,

we get the equation
Y 2 = f(X), (4)

with Y = Ln and f(X) = 5(Xa + εXb + 1)2 ± 4, where ε ∈ {±1}. By a well-known result of
Siegel, the diophantine equation (4) has only finitely many integer solutions (X, Y ) provided
that f(X) ∈ Q[X] has at least three simple roots. We now show that all roots of our polynomial
f(X) are simple (note that the degree of f(X) is 2a ≥ 4). Indeed, if x is a double root of
f(x), then x satisfies both the equation f(x) = 0 and the equation f ′(x) = 0. Since f ′(x) =
10(xa + εxb + 1)xb−1(axa−b + εb), it follows easily that the only possibility is axa−b + εb = 0.

This gives x = ζ(−εb/a)
1

(a−b) , where ζ is some root of unity of order a− b. Inserting this into
the equation f(x) = 0, we get

2ζ1√
5
− 1 = xb(xa−b + ε) = xb

(
ε(a− b)

a

)
,

where ζ1 is some root of unity of order 4, which leads to

(
2ζ1√

5
− 1

)a−b

=
(
−εb

a

)b (
ε(a− b)

a

)a−b

.
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Squaring the above relation we get that (2ζ1 −
√

5)2(a−b) is a rational number, which is im-
possible for a > b. Hence, our polynomial f(X) has only simple roots, which, via Siegel’s
Theorem, shows that equation (3) has only finitely many integer solutions (n, X) whenever
b < a are fixed positive integers. The fact that these are effectively computable follows from
the fact that all the integer solutions to hyperelliptic equations like (4) can be found in an
effective way.

Theorem 1 is therefore completely proved.

5. COMMENTS AND GENERALIZATIONS

Our result can be somewhat extended to a more general situation. Namely, let (Gn)n≥0

be the sequence of integers given by G0 = 0, G1 = 1 and Gn+2 = uGn+1 + Gn for all n ≥ 0,
where u ≥ 1 is an integer. One can show that the analogue of Lemma 2 holds for the Fibonacci
sequence (Fn)n≥0 replaced by the sequence (Gn)n≥0, where now the role of the sequence (Ln)≥0

is played by the sequence (Hn)n≥0 given by H0 = 2, H1 = u and Hn+2 = uHn+1 + Hn for
all n ≥ 0. By a completely similar method, one can now show that for each of k = 1, 2, the
equation

Gn = pa ± pb + Gk with n ≡ k (mod 2)

has only finitely many effectively computable solutions n. However, the beauty of the result
for the case of the Fibonacci sequence comes from the fact that every positive integer n is
either odd or even, but both F1 and F2 equal to 1, thus allowing us to conclude that equation
(1) has only finitely many effectively computable solutions n independently of the parity of n.
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