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ABSTRACT

The Bernoulli numbers of the second kind bn are defined by

∞∑
n=0

bntn =
t

log(1 + t)
.

In this paper, we give an explicit formula for the sum∑
j1+j2+···+jN=n

j1,j2,... ,jN >0

bj1bj2 · · · bjN
.

We also establish a q-analogue for

n∑
k=0

bkbn−k = −(n − 1)bn − (n − 2)bn−1.

The Bernoulli numbers Bn are defined by

∞∑
n=0

Bn

n!
tn =

t

et − 1
.

It is well-known (cf. [5]) that for n > 1

n−1∑
j=1

(
2n

2j

)
B2jB2n−2j = −(2n + 1)B2n. (1)

As a generalization of (1), in [2] Dilcher proved that for n > N/2

∑
j1+j2+···+jN=n

j1,j2,... ,jN >0

(
2n

2j1, 2j2, . . . , 2jN

)
B2j1B2j2 · · ·B2jN

=
(2n)!

(2n − N)!

b(N−1)/2c∑
k=0

c
(N)
k

B2n−2k

2n − 2k
, (2)
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where the array {c(N)
k } is given by c

(1)
0 = 1 and

c
(N+1)
k = − 1

N
c
(N)
k +

1
4
c
(N−1)
k−1

with c
(N)
k = 0 for k < 0 and k > b(N − 1)/2c.

On the other hand, the Bernoulli numbers of the second kind bn are given by

∞∑
n=0

bntn =
t

log(1 + t)
.

And we set bk = 0 whenever k < 0. It is easy to check that

n∑
k=0

(−1)kbn−k

k + 1
= δn,0, (3)

where δn,0 = 1 or 0 according to whether n = 0 or not. In [3], Howard used the Bernoulli
numbers of the second kind to give an explicit formula for degenerate Bernoulli numbers. And
some 2-adic congruences of bn have been investigated by Adelberg in [1].

In this short note, we shall give an analogue of (2) for the Bernoulli numbers of the second
kind. Define an array of polynomials {a(N)

k (x)} by

a
(1)
0 (x) = 1, a

(N)
k (x) = 0 for k < 0 and k > N,

and

a
(N)
k (x) = − 1

N − 1
((x − N + 1)a(N−1)

k (x) + (x − N)a(N−1)
k−1 (x − 1))

if N > k > 0.
Theorem 1: Let N = 1 be an integer. Then for any non-negative integer n

∑
j1+j2+···+jN=n

j1,j2,... ,jN >0

bj1bj2 · · · bjN
=

N−1∑
k=0

a
(N)
k (n)bn−k. (4)

Proof: Let:
sN (n) =

∑
j1+j2+···+jN=n

j1,j2,... ,jN >0

bj1bj2 · · · bjN
.

Clearly s1(n) = bn, whence (4) holds for N = 1. Now we make an induction on N . For
arbitrary power series f(t), let [tn]f(t) denot the coefficient of tn in f(t). It is easy to see that

tN

logN (1 + t)
=

 ∞∑
j=0

bjt
j

N

=
∞∑

n=0

sN (n)tn.
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Therefore

sN+1(n) =[tn]
tN+1

logN+1(1 + t)
= [tn−N−1]

1
logN+1(1 + t)

= − [tn−N−1]
(

(1 + t)
N

d

dt

(
1

logN (1 + t)

))

= − [tn−N−1]
1
N

d

dt

(
1

logN (1 + t)

)
− [tn−N−2]

1
N

d

dt

(
1

logN (1 + t)

)
.

Now

d

dt

(
1

logN (1 + t)

)
=

d

dt

( ∞∑
n=0

sN (n)tn−N

)
=

∞∑
n=0

(n − N)sN (n)tn−N−1.

Thus by the induction hypothesis on N ,

sN+1(n) = − 1
N

((n − N)sN (n) + (n − N − 1)sN (n − 1))

= − n − N

N

N−1∑
k=0

a
(N)
k (n)bn−k − n − N − 1

N

N−1∑
k=0

a
(N)
k (n − 1)bn−1−k

= − n − N

N

N−1∑
k=0

a
(N)
k (n)bn−k − n − N − 1

N

N∑
k=1

a
(N)
k−1(n − 1)bn−k

= − 1
N

N∑
k=0

(
(n − N)a(N)

k (n) + (n − N − 1)a(N)
k−1(n − 1)

)
bn−k

=
N∑

k=0

a
(N+1)
k (n)bn−k.

We are done.
For example, substituting N = 2, 3 in (4), we obtain that

s2(n) = −(n − 1)bn − (n − 2)bn−1, (5)

and

s3(n) =
1
2
(n − 1)(n − 2)bn +

1
2
(n − 2)(2n − 5)bn−1 +

1
2
(n − 3)2bn−2. (6)

For arbitrary integer n, let

[n]q =
1 − qn

1 − q
.
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We say that [n]q is a q-analogue of the integer n since limq→1[n]q = n. Then [1]q = 1 and
[n − a]q = [n]q − qn−a[a]q. Define the q-logarithm function by

logq(1 + t) =
∞∑

n=1

(−1)n−1tn

[n]q

which is convergent for |t| < 1. Also define a q-analogue of the Bernoulli numbers of the second
kind by

∞∑
n=0

bn(q)tn =
t

logq(1 + t)
.

Clearly we get the q-analogue of (3)

n∑
k=0

(−1)kbn−k(q)
[k + 1]q

= δn,0. (7)

Now we can give a q-analogue of (5).
Theorem 2: For any integer n > 0, we have

n∑
k=0

qk−1bk(q)bn−k(q) = −[n − 1]qbn(q) − [n − 2]qbn−1(q), (8)

where we set bk(q) = 0 if k < 0.
Proof: We make an induction on n. When n = 0, noting that [−1]q = −q−1 and b0(q) = 1

by (7), so both sides of (8) coincide with q−1. Now assume that n > 0 and (8) holds for smaller
values of n. In view of (7), we have

bn−k(q) = −
n−k∑
j=1

(−1)jbn−k−j(q)
[j + 1]q

when k < n. Then

n∑
k=0

qk−1bk(q)bn−k(q)

= qn−1bn(q) −
n−1∑
k=0

qk−1bk(q)
n−k∑
j=1

(−1)jbn−k−j(q)
[j + 1]q

= qn−1bn(q) −
n∑

j=1

(−1)j

[j + 1]q

n−j∑
k=0

qk−1bk(q)bn−k−j(q)

= qn−1bn(q) +
n∑

j=1

(−1)j

[j + 1]q
([n − j − 1]qbn−j(q) + [n − j − 2]qbn−j−1(q))
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where we apply the induction hypothesis in the last step. Now we know that

−
n∑

j=1

(−1)j

[j + 1]q

n−j∑
k=0

qk−1bk(q)bn−k−j(q)

=
n∑

j=1

(−1)j

[j + 1]q
([n − j − 1]qbn−j(q) + [n − j − 2]qbn−j−1(q))

=
n∑

j=1

(−1)j

[j + 1]q
(([n]q − qn−j−1[j + 1]q)bn−j(q) + ([n − 1]q − qn−j−2[j + 1]q)bn−j−1(q))

= [n]q
n∑

j=1

(−1)jbn−j(q)
[j + 1]q

+ [n − 1]q
n−1∑
j=1

(−1)jbn−j−1(q)
[j + 1]q

−
n∑

j=1

(−1)jqn−j−1bn−j(q)

−
n−1∑
j=1

(−1)jqn−j−2bn−j−1(q)

= −[n]qbn(q) − [n − 1]qbn−1(q) −
n∑

j=1

(−1)jqn−j−1bn−j(q) +
n∑

j=2

(−1)jqn−j−1bn−j(q).

Thus
n∑

k=0

qk−1bk(q)bn−k(q) =qn−1bn(q) − [n]qbn(q) − [n − 1]qbn−1(q) + qn−2bn−1(q)

= − [n − 1]qbn(q) − [n − 2]qbn−1(q).

Remark: A q-analogue of (1) has been given by Satoh in [2].
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