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ABSTRACT

In this paper, we define the Chebyshev polynomials representation of xn, then use this
expression to study the Fibonacci numbers and Lucas numbers by the elementary method,
and get some beautiful identities about Fibonacci numbers and Lucas numbers.

1. INTRODUCTION

The Fibonacci sequence {Fn} and the Lucas sequence {Ln}{n = 0, 1, 2, ...} are defined by
the second-order linear recurrence sequence

Fn+2 = Fn+1 + Fn

Ln+2 = Ln+1 + Ln

where n ≥ 0, F0 = 0, F1 = 1, L0 = 2 and L1 = 1. These sequences play a very important role
in the study of the theory and application of mathematics. Therefore, the various properties
of Fn and Ln have been investigated by many authors. For example, R.L. Duncan[2] and
L.Kuipers[3] have proved that (log Fn) is uniformly distributed mod 1. Neville Robbins[4] has
studied the Fibonacci numbers of the forms px2 ± 1, px3 ± 1, where p is a prime. The second
author Zhang Wenpeng[5] has obtained the general formulas involving Fn and Ln
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where k,m are any positive integers, n, a1, a2, . . . , ak+1 are nonnegative integers and i is the
square root of −1.

In this paper, we study the common formulas for xn being represented by Chebyshev
polynomials, then get two identities about the Fibonacci numbers and Lucas numbers. That
is, we shall prove the following.

164



SEVERAL IDENTITIES INVOLVING THE FIBONACCI NUMBERS AND LUCAS NUMBERS

Theorem 1: For any nonnegative integer n and positive integer m, we have the identities
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Theorem 2: For any nonnegative integer n and positive integer m, we have the identities
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2. SOME LEMMAS

In this section, we shall give several lemmas which are necessary in the proofs of the
theorems. First we need two exact expressions on Chebyshev polynomials of the first and
second kind Tn(x) and Un(x) (n = 0, 1, · · · )
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There is another way of defining Chebyshev polynomials as follows

Tn+2(x) = 2xTn+1(x)− Tn(x),

Un+2(x) = 2xUn+1(x)− Un(x),

for n ≥ 0, T0(x) = x, T1(x) = x, U0(x) = 1 and U1(x) = 2x.
Furthermore, we shall have the following lemmas.

Lemma 1: For any positive integers m and n, we have the identities

Tn(Tm(x)) = Tmn(x),

Un(Tm(x)) =
Um(n+1)−1(x)

Um−1(x)
.
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Proof: See Ref. [5].
Lemma 2: Let i be the square root of −1, m and n any positive integers, then we have the
identities
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Proof: It is easy to see that Un( i
2 ) = inFn+1, Tn( i

2 ) = in

2 Ln, then according to Lemma
1, we can see the last two formulas clearly. This proves Lemma 2.
Lemma 3: For any nonnegative integer n, let

xn ≡ 1
2
an0T0(x) +

∞∑
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ankTk(x) (1)

and

xn ≡
∞∑
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then we have
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0, otherwise.
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(4)

Proof: As we know, Chebyshev polynomials have a lot of properties (See Ref. [1]) such
as ∫ 1

−1
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0, m 6= n,
π
2 , m = n > 0,

π, m = n = 0;
(5)

Tn(cos θ) = cos nθ; (6)
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∫ 1
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For any nonnegative integer m, first multiply Tm(x)√
1−x2 to the two sides of (1), then integrate it

from −1 to 1, finally, applying the property (5), we can get
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But

an+m0 =
2
π

∫ π

0

cosn+m t dt

=

{
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Let m = k, we immediately get formula (3).
In the similar way, for any nonnegative integer m, first multiply

√
1− x2Um(x) to the two

sides of (2), then integrate from −1 to 1, finally, applying the property (7), we can get
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bnk =
2
π

∫ π

0

cosnt sin(k + 1)t sin t dt

=
2
π

−1
n + 1

∫ π

0

sin(k + 1)t d(cosn+1t)

=
2
π

−1
n + 1

(cosn+1t sin(k + 1)t
∣∣∣∣π
0

− (k + 1)
∫ π

0

cosn+1t cos(k + 1)t dt)

=
2
π

k + 1
n + 1

∫ π

0

cosn+1t cos(k + 1)t dt

=
k + 1
n + 1

an+1k+1.

168



SEVERAL IDENTITIES INVOLVING THE FIBONACCI NUMBERS AND LUCAS NUMBERS

According to the formula (3), we can get

bnk =

{
2(k+1)n!

(n−k)!!(n+k)!! , n ≥ k, n + k is even;

0, otherwise.

Therefore, we get formula (4). This proves Lemma 3.
Lemma 4: For any nonnegative integer n, we also have the expressions of xn in the following
forms
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Proof: This follows directly from Lemma 3.

3. PROOF OF THEOREMS

In this section, we shall complete the proofs of theorems. Firstly we prove Theorem 1.
According to Lemma 4, let x = Tm(x), then we have
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i(2n+1)m
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That is,
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This completes the proof of Theorem 1.
Proof of Theorem 2. According to Lemma 4, we have
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That is
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This proves Theorem 2.
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